Monitoring and management of common property resources: empirical evidence from forest user groups in Ethiopia

Goytom Abraha Kahsay¹ and Erwin Bulte^{2*}

¹ Department of Food and Resource Economics, University of Copenhagen, Frederiksberg, Denmark and ² Development Economics Group, Wageningen University, Wageningen, The Netherlands

*Corresponding author. E-mail: <u>erwin.bulte@wur.nl</u>

ONLINE APPENDIX

Appendix A. Extra tables

	1 1	Ĩ	
Treatments	Number of forest	Total members	Members sampled
	user groups		L
Control group	34	933	320
Monitoring intervention	98	2,665	895
TOTAL	132	3,598	1,215

 Table A1. Sample size per experimental arm

	Baseline data					
Variables	Control	Treatment	Diff	P-value		
Monitoring						
Monitoring committee (0/1)	0.383	.296	.087	.355		
Leader ability	0.000	> 0				
Education ^a	3 220	2 706	514	045		
Years of schooling (years)	4 860	3 607	1 252	077		
Business experience $(0/1)$	0.212	093	12	072		
Leader effort	0.212	1075	•••=	.072		
Forest natrolling (days)	41 084	43 334	-2.25	533		
Forest benefits	11.001	15:551	2.23	.000		
Forest income (ETB)	1781 100	2144 394	-363 295	488		
Leader characteristics	1701.100	2111.391	505.275	.100		
Age (years)	45 960	45 086	875	738		
Gender (1 if male)	0.980	45.000 972	009	802		
Income (FTB)	35596 580	50611.037	-15014457	200		
Livestock holding (number of livestock)	29 271	25 207	4 064	.200		
Household size (number of household	11 820	10 144	1.004	.271		
members)	11.020	10.144	1.070	.005		
Duration in power (years)	6 240	5 162	1 079	120		
Duration in power (years)	0.240	J.102	1.079	.120		
Crown abaractoristics	0.344	.424	080	.430		
Altitude	2 264	2 215	051	702		
Veer of establishment	2.204	2.213	.031	.705		
Group size	2003.077	2003.012	.004	.920		
Chorp of famala mambars	27.300	27.194	.300	.132		
	0.208	.203	.004	.073		
Average age	48.572	47.712	.839	.487		
Average education	0.462	.509	047	.292		
Average nousenoid size	9.055	9.295	241	.402		
Average income	2/400.396	30388.300	-8987.970	.033		
Average livestock holding	23.063	21.607	1.457	.313		
Share of trusting members	0.168	.118	.050	.227		
Number of potential crop trees (per	45.064	45.425	360	.954		
hectare)	0.010	0.510	10.6	702		
Value of standing trees ⁶	2.819	2.712	.106	.793		
Distance to market	2.768	5.221	-2.453	.449		
Distance to asphalt road ^e	0.148	.197	049	.191		
Average outside income opportunity $(0/1)$	0.328	.349	022	.354		
Income heterogeneity (Gini coefficient)	0.257	.302	045	.129		
Land heterogeneity (Gini coefficient)	0.502	.494	.007	.871		
Clan fractionalization index	0.093	.158	064	.067		
Members prosocial motivation	0.851	.792	.059	.183		
Members' forest patrolling (days)	39.639	42.967	-3.329	.218		
		End-line	data			
Leader characteristics						
Education ^a	2.867	2.453	.414	.022		
Years of schooling	4.387	3.693	.695	.116		
Business experience (0/1)	0.344	.114	.230	0		
Forest patrolling (days)	62.569	76.021	-13.452	.189		
Group characteristics						
Average forest income (ETB)	4056.445	6339.1	-2282.655	.085		
Average outside income opportunity (0/1)	0.144	.180	036	.149		

Table A2. Descriptive statistics

^a Education is a categorical variable that ranges from 1 (no education) to 6 (university diploma or degree). ^b Value of standing trees is measured as the forest stock weighted by distance to market.

^c Distance indicators are measured in hours of walking. Land holding measured in *timad* (a local measure): one timad is approximately 0.25 hectares.

Notes: ETB: Ethiopian Birr. Altitude ranges from 1 (2,200–2,700 m above sea level) to 3 (3,000–500m above sea level).

	Full sample of	Less pro-socially	More pro-socially
	leaders	motivated	motivated
OIO	-0.000	0.084	-0.041
	(0.227)	(0.349)	(0.303)
Altitude	-0.347	-0.189	0.117
	(0.202)	(0.573)	(0.283)
Year of establishment	-0.021	-0.052	0.086
	(0.014)	(0.038)	(0.038)
Group size	-0.005	-0.004	0.014
	(0.005)	(0.007)	(0.010)
Share of female members	-0.248	-0.057	0.219
	(0.357)	(0.465)	(0.473)
Average age	-0.007	-0.017	0.012
	(0.010)	(0.010)	(0.011)
Average education	-0.059	-0.077	-0.367
	(0.156)	(0.243)	(0.263)
Land heterogeneity	0.007	0.226	-0.328
	(0.113)	(0.336)	(0.349)
Clan fractionalization index	0.073	0.123	-0.334
	(0.124)	(0.207)	(0.362)
Distance to market	-0.002	0.001	0.005
	(0.013)	(0.034)	(0.013)
Potential crop trees	-0.000	-0.002	0.003
	(0.001)	(0.003)	(0.003)
Village fixed effects	Yes	Yes	Yes
Constant	44.011	106.968	-172.734
	(27.642)	(77.457)	(76.516)
R^2	0.552	0.694	0.711
Observations ^a	117	65	46

Table A3. Determinants of monitoring committee

^a The number of observations dropped from 132 to 117 because we have data on "potential crop trees" for only 117 FUGs.

Note: Clustered (at village level) standard errors in parentheses.

	Education	Years of	Business	Days patrolling
		schooling	experience	
	(1)	(2)	(3)	(4)
Monitoring	0.516	1.393	-0.066	13.998
	(0.424)	(1.208)	(0.120)	(7.806)
OIO	1.288	1.800	0.630	-9.254
	(1.035)	(2.948)	(0.300)	(21.675)
Monitoring \times	-3.566	-8.432	-0.626	2.449
OIO	(1.393)	(3.967)	(0.405)	(16.202)
Controls	Yes	Yes	Yes	Yes
Village F.E.	Yes	Yes	Yes	Yes
Constant	15.175	-63.997	41.282	5048.477
	(154.074)	(438.769)	(45.366)	(1688.384)
R^2	0.471	0.439	0.449	0.611
Observation	125	125	130	124

Table A4. Monitoring, leader ability and leader effort (obs	oservational data with imputation)
---	------------------------------------

Notes: F.E.: fixed effects. Clustered (at village level) standard errors in parentheses. Included explanatory variables: age of the leader, income of the leader, livestock holding of the leader, clan of the leader, household size of the leader, altitude, year of establishment, group size, share of female members, average age of members, share of members who can read and write, average household size of members, share of trusting members, share of members who have non-farm income (employment and business), income heterogeneity, land heterogeneity, clan fractionalization index, average distance to market, average distance to asphalt road, value of standing timber stock, and number of potential crop trees per ha.

	Forest stock w	veighted by dista	ance to market	Forest stocl	k multiplied by	timber price	Forest stock	multiplied by tin	ber price and
		X7 C	D :		X 7 C		weighte	ed by distance to	market
	Education	Years of	Business	Education	Years of	Business	Education	Years of	Business
		schooling	experience		schooling	experience		schooling	experience
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Monitoring	1.415	3.901	0.065	1.120	3.112	-0.026	0.616	1.910	-0.077
	(0.386)	(1.136)	(0.193)	(0.429)	(0.874)	(0.145)	(0.544)	(1.131)	(0.146)
Monitoring \times	-0.024	-0.049	-0.002	0.000	0.000	-0.000	0.000	0.001	0.000
VT	(0.021)	(0.075)	(0.011)	(0.000)	(0.000)	(0.000)	(0.000)	(0.001)	(0.000)
VT	0.019	0.086	0.003	0.240	0.912	-0.066	0.278	1.044	-0.031
	(0.013)	(0.036)	(0.004)	(0.099)	(0.364)	(0.048)	(0.120)	(0.417)	(0.036)
OIO	2.709	6.476	1.318	2.600	6.711	0.673	2.883	6.157	0.812
	(1.823)	(5.064)	(0.956)	(2.134)	(4.867)	(0.766)	(2.125)	(4.391)	(0.623)
$VT \times OIO$	0.008	0.048	-0.037	0.000	-0.000	-0.000	-0.000	-0.000	-0.000
	(0.072)	(0.192)	(0.029)	(0.001)	(0.001)	(0.000)	(0.000)	(0.001)	(0.000)
Monitoring \times	-5.570	-12.853	-1.336	-2.886	-5.203	-1.420	-3.207	-6.056	-1.616
OIO	(2.052)	(4.974)	(0.882)	(2.652)	(6.355)	(0.962)	(2.651)	(6.573)	(0.885)
Monitoring \times	-0.001	-0.002	0.000	-0.001	-0.004	0.000	-0.002	-0.006	0.000
$OIO \times VT$	(0.000)	(0.001)	(0.000)	(0.001)	(0.001)	(0.000)	(0.001)	(0.003)	(0.000)
Controls	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Village fixed	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
effects									
Constant	192.040	480.248	15.747	232.795	702.684	39.950	199.561	550.980	23.711
	(189.001)	(480.951)	(41.630)	(156.100)	(468.157)	(44.935)	(144.798)	(413.223)	(42.682)
R^2	0.498	0.490	0.472	0.545	0.527	0.453	0.550	0.535	0.458
Observations	101	101	101	101	101	101	101	101	101

Table A5. Monitoring, resource rents, and leader ability (observational data, alternative measures of resource rent)

Notes: Clustered (at forest user group level for DID and village level for OLS) standard errors in parentheses. Included explanatory variables: age of the leader, education of the leader, income of the leader, livestock holding of the leader, clan of the leader, household size of the leader, altitude, year of establishment, group size, share of female members, average age of members, share of members who can read and write, average household size of members, share of trusting members, share of members who have non-farm income (employment and business), income heterogeneity, land heterogeneity, clan fractionalization index, average distance to market, average distance to asphalt road, value of standing timber stock, and number of potential crop trees per ha.

	Α	bility	Effort
	Education	Years of schooling	Days patrolling
Monitoring intervention	0.104	0.399	-14.059
	(0.304)	(0.848)	(16.079)
OIO	1.624	3.985	-144.694
	(0.874)	(2.600)	(47.392)
Monitoring intervention ×	-2.645	-5.147	154.197
OIO	(1.157)	(3.500)	(53.925)
Controls	Yes	Yes	Yes
Village fixed effects	Yes	Yes	Yes
Constant	139.503	122.672	-19709.298
	(126.874)	(327.962)	(13306.648)
R^2	0.414	0.367	0.452
Observations	101	101	101

 Table A6. Monitoring, ability and effort (experimental data, ANCOVA model)

Notes: Clustered (at forest user group level for DID and village level for OLS) standard errors in parentheses. Included explanatory variables: age of the leader, education of the leader, income of the leader, livestock holding of the leader, clan of the leader, household size of the leader, altitude, year of establishment, group size, share of female members, average age of members, share of members who can read and write, average household size of members, share of trusting members, share of members who have non-farm income (employment and business), income heterogeneity, land heterogeneity, clan fractionalization index, average distance to market, average distance to asphalt road, value of standing timber stock, and number of potential crop trees per ha.

		Ability		Effort
	Education	Years of	Business	Days
		schooling	experience	patrolling
	(1)	(2)	(3)	(4)
Top-down monitoring	-1.053	-2.363	-0.233	-14.975
	(0.377)	(1.129)	(0.141)	(9.864)
Reward	-0.673	-2.079	-0.087	-14.026
	(0.405)	(1.132)	(0.159)	(8.857)
Bottom-up monitoring	-0.772	-2.127	-0.069	-9.899
	(0.449)	(1.169)	(0.201)	(9.057)
OIO	-1.692	-4.199	1.023	12.030
	(1.142)	(3.153)	(0.462)	(29.507)
Top down monitoring \times OIO	1.558	3.250	-1.365	
~	(1.359)	(3.829)	(0.545)	
Reward × OIO	1.710	2.492	-1.119	
	(1.555)	(4.321)	(0.658)	
Bottom-up monitoring \times OIO	1.121	1.698	-1.154	
	(1.674)	(4.289)	(0.746)	
Year	-1.210	-2.645		33.198
	(0.369)	(0.820)		(14.665)
Top-down monitoring \times Year	0.749	2.578		55.662
	(0.511)	(1.103)		(23.868)
Reward x Year	1.261	3.081		62.781
	(0.507)	(1.055)		(25.156)
Bottom-up monitoring \times Year	0.665	2.839		-0.306
	(0.504)	(1.044)		(22.855)
OIO × Year	3.927	9.309		
	(1.642)	(4.036)		
Top-down monitoring \times OIO \times	-2.415	-5.883		
Year	(2.319)	(5.313)		
Reward x OIO \times Year	-4.637	-8.048		
	(2.369)	(4.995)		
Bottom-up monitoring \times OIO \times	-4.074	-8.596		
Year	(2.388)	(5.104)		
Controls				
Village fixed effects				
Model				
Constant	219.486	331.456	-21.947	-2089.830
	(164.220)	(404.782)	(61.357)	(5920.951)
R^2	0.346	0.284	0.409	0.417
Observations	211	211	107	210

Table A7. Monitoring, ability and effort (experimental data, distinguishing the three monitoring interventions)

Notes: Clustered (at forest user group level for DID and village level for OLS) standard errors in parentheses. Included explanatory variables: age of the leader, education of the leader, income of the leader, livestock holding of the leader, clan of the leader, household size of the leader, altitude, year of establishment, group size, share of female members, average age of members, share of members who can read and write, average household size of members, share of trusting members, share of members who have non-farm income (employment and business), income heterogeneity, land heterogeneity, clan fractionalization index, average distance to market, average distance to asphalt road, value of standing timber stock, and number of potential crop trees per ha.

Coefficient stability

We probe the robustness of our main result, the effect of monitoring on ability of the leader in the presence of outside income opportunities, using the coefficient stability approach (see Altonji *et al.*, 2005; González and Miguel, 2015; Oster, 2017). We calculate adjusted coefficients, using the following equation:

$$\hat{\hat{\beta}} = \hat{\beta}^* - \left(\hat{\beta} - \hat{\beta}^*\right) * \frac{(R^{max} - R^*)}{(R^* - R)},\tag{A1}$$

where $\hat{\beta}$ is the adjusted coefficient; $\hat{\beta}^*$ and R^* are estimated coefficient and R^2 from a model with observables, respectively; and $\hat{\beta}$ and R are estimated coefficient and R^2 from a model without controls respectively. R^{max} is R^2 from a regression of the dependent variable on all relevant controls (both observables and unobservables). Since we do not have information on unobservable covariates, we do not know the value of R^{max} . We follow the previous literature: (1) González and Miguel (2015) assume that R^{max} is a survey–resurvey reliability ratio of an outcome variable, usually a pairwise correlation in time-invariant variables between two survey rounds; (2) Bellows and Miguel (2009) assume that $R^{max} = 2R^* - R$; (3) Oster (2017) assumes that $R^{max} = min\{2.2R^*, 1\}$; and the most conservative case, (4), is based on the assumption that $R^{max} = 1$. The results are presented in Table A8. As is evident, including observables does not make our key coefficients insignificant, which suggests that the effect of monitoring on leader's ability and effort is unlikely to be driven by unobserved variables.

		-					
			González and Miguel (2015)	González and Miguel (2015)	Bellows and Miguel (2009)	Oster (2017)	Most conservative case
Monitoring and leader's ability in the presence	-3.284	-5.63					cuse
of outside income opportunities (categorical education)	(1.217)	(1.521)					
R^2	0.208	0.497					
R ^{max}			0.500	0.800	0.933	1	1
Adjusted coefficients			-5,657	-8,096	-7,982	-9,721	-9,721
Monitoring and leader's ability in the presence	-7.874	-12.59	,	,	,	,	,
of outside income opportunities (Years of schooling)	(3.522)	(4.26)					
R^2	0.155	0.49					
R ^{max}			0.500	0.800	0.921	1	1
Adjusted coefficients			-12,740	-16,972	-17,296	-19,793	-19,793
Monitoring and leader's effort	15.991	18.71		·			
	(6.999)	(9.12)					
R^2	0.329	0.647					
<i>R</i> ^{max}			0.500	0.800	1.212	1	1
Adjusted coefficients			17,455	20,024	21,437	21,737	21,737
Controls	No	Yes					
Village fixed effects	Yes	Yes					
Observations	125	99					

 Table A8. Monitoring and leaders: Coefficient stability approach

Note: Robust standard errors in parentheses.

Figure A1. Distribution of key variables.

Appendix B. The Adaba-Dodola Participatory Forest Management (PFM) program

The Adaba-Dodola forest is located on the northern slopes of the Bale Mountains. Before PFM, the forest was under state control but access was open to anyone. Expansion of agricultural land, livestock grazing, and uncontrolled forest extraction decreased the area of Ababa-Dodola forest from 140,000 ha in the 1980s to 53,000 ha in recent years (Kubsa *et al.*, 2003). Currently, about 50,000 hectares of this forest are managed by 132 forest user groups (FUGs) under the PFM program. As a result, deforestation rates have substantially decreased (Ameha *et al.*, 2016).

Membership: Jointly with community representatives, the Oromia Forest and Wildlife Enterprise (OFWE) developed membership criteria based on settlement proximity to the forest, permanent residence in the village, and customary use rights. These criteria were subsequently approved by majority vote in each village and used to establish FUGs.

Rights and responsibilities: Established FUGs negotiate contracts with the Oromia Rural Land and Natural Resources Administration Authority (ORLNRAA) specifying rights and duties of the group, and conditions of contract termination. FUGs are allowed to use forest products for consumption and sales, and maintain existing farm plots inside the forest. In return, they should manage the forest in a sustainable manner, restrict further settlement and agricultural expansion, and pay an annual rent. This rental agreement remains valid for an indefinite period, unless forest utilization exceeds the maximum extraction level set by the government (the socalled "allowable cut") by more than 10 per cent. Each FUG is allocated a demarcated forest block, which is managed jointly by group members. The size of the forest block depends on the size of the group, with a carrying capacity assumption of 12 ha per member (so 360 ha for the maximum group size). Forests play a significant role in the livelihood of group members, and we estimate that the value of forest-based products accounts for about 25 per cent of annual income. Other key income sources are agriculture and livestock production.

Appendix C. The formal model

Stage 3. Optimal effort by group members

We first solve for the effort level that each group member would choose if she were elected as the leader. Individual group members can be ranked in terms of ability: $A_i \in (0, \hat{A})$. The first order condition of (1) with respect to effort e_i for individual *i* is:

$$\frac{\partial Y_i}{\partial e_i} = -\alpha I_{e_i}(A_i, 1 - e_i) + (1 - \alpha)(1 + \beta)P_{e_i}(A_i, e_i, R) - C_{e_i}(m, e_i) = 0.$$
(B1)

Using the implicit function theorem, we immediately obtain:

$$\frac{de_l^*}{dm} = -\left[\frac{-C_{e_lm}(m,e_l)}{\alpha I_{e_le_l}(A_l,1-e_l) + (1-\alpha)(1+\beta)P_{e_le_l}(A_l,e_l,R) - C_{e_le_l}(m,e_l)}\right].$$
(B2)

Assuming $C_{e_lm} < 0$, $C_{e_le_l} = 0$, $I_{e_le_l} < 0$, and $P_{e_le_l} < 0$, we obtain the intuitive result that $\frac{de_l^*}{dm} > 0$. If supplying effort reduces the monitoring costs for leaders (due to, say, less onerous inspections if group members are more satisfied), then leaders will optimally increase their effort toward the production of the public good.

How do outside opportunities affect the leader's effort? We readily obtain:

$$\frac{de_l^*}{d\alpha} = -\left[\frac{-I_{e_l}(A_l, 1-e_l) - (1+\beta)P_{e_l}(A_l, e_l, R)}{\alpha I_{e_le_l}(A_l, 1-e_l) + (1-\alpha)(1+\beta)P_{e_le_l}(A_l, e_l, R) - C_{e_le_l}(m, e_l)}\right] < 0.$$
(B3)

Greater opportunity costs will, at the margin, reduce effort allocated to production of the public good. From (B2) and (B3) we find how prosocial motivation affects effort. Specifically:

$$\frac{d(\frac{de_l^*}{dm})}{d\beta} < 0, \text{ and}$$
(B4)

$$\frac{d(\frac{de_l^*}{d\alpha})}{d\beta} > 0 \qquad \text{if } \alpha P_{e_l} I_{e_l e_l} > (1 - \alpha) I_{e_l} P_{e_l e_l}. \tag{B5}$$

If leaders have stronger prosocial preferences, the change in their optimal effort level as a result of either extra monitoring or improved outside opportunities will be attenuated ("dampened").

Stage 2. Selection of the leader

Members use predicted effort levels to elect the candidate that will provide the highest level of the public good, given the set of candidates (to be determined below). Grossman and Hanlon (2014) make the simplifying assumption that the public good value produced in equilibrium is increasing in the ability of the leader: $\frac{dP}{dA_i}$ >0, or that the direct effect of ability is greater than any indirect effect via reduced effort levels chosen by more able leaders. Stage 2 therefore reduces to a simple step: select the most able candidate from the pool of volunteers. If there are no candidates, no leader is elected and no public good is provided.

Stage 1. Candidacy choice

Group members will compare their expected utility as a "normal group member" and as the leader. The most able candidate will be elected, so each member has to evaluate her payoffs as the leader in terms of the public good that will be provided as well as in terms of candidacy and monitoring cost (φ and $C(m, e_i)$) and the opportunity cost of effort, e_i . The Nash equilibrium solution of this game, where members simultaneously decide whether to run or not, is complex as multiple equilibria might emerge (observe that group members have to form expectations about whether their peers are prepared to run or not, which will depend on the expectations of these peers, and so on).

Grossman and Hanlon (2014) discuss the following conditions as necessary and sufficient for the existence of an equilibrium in pure strategies: (i) at most one individual will choose to run; (ii) if a member chooses to run, the net payoff (payoff from being a leader minus payoff without leader) is greater than or equal to zero; (iii) if a member chooses to run, no other member who could produce a higher public good has a positive payoff from running; and (iv) if no member chooses to run, it must be because the net payoff (payoff from running minus payoff from no one running) is not positive.

Model predictions with respect to leader ability

Next, turn to the impact of monitoring on ability of the leader. The net payoff from running as a candidate is given by:

$$\pi_i = \alpha I(A_i, 1 - e_i^*) + (1 - \alpha)(1 + \beta)P(A_i, e_i^*, R) - C(m, e_i^*) - \phi - \alpha I(A_i, 1).$$
(B6)

Observe that the following holds:

$$\frac{d\pi_i}{dA_i} = \alpha I_{A_i}(A_i, 1 - e_i^*) + (1 - \alpha)(1 + \beta)P_{A_i}(A_i, e_i^*, R) - \alpha I_{A_i}(A_i, 1).$$
(B7)

Following Grossman and Hanlon, we focus on the case where $\frac{d\pi_i}{dA_i} < 0$, or the case where high-ability group members have less incentive to be the leader than low-ability members (see below).

Increasing the intensity of monitoring, *m*, raises the additional compliance or sanctioning costs of being the leader: $C_m > 0$. This reduces utility for the incumbent leader, and hence reduces the probability for candidate leaders that "running for office" is the optimal strategy. For the marginal candidate, the expected utility from being the leader may now fall below the expected utility from not being the leader. For each member, there is a threshold monitoring level, \overline{m}_i , where she is indifferent between being the leader and having no group leader (and for monitoring intensities greater than this personal threshold level she will prefer not to run).

Assuming $\frac{d\pi_i}{dA_i} < 0$, it can be shown that $\overline{m}_i > \overline{m}_j$ for $A_i < A_j$. In other words, for highability candidates the threshold monitoring level is higher than for low-ability candidates, and there exists a range of monitoring levels for which high-ability candidates decide not to run, while it is optimal for low-ability candidates to run for leadership.

But when does the condition $\frac{d\pi_i}{dA_i} < 0$ hold? To address this question, Grossman and Hanlon first show that $\frac{d\pi_i}{dA_i}$ is decreasing in outside opportunity parameter α . It follows that:

$$\frac{d^{2}\pi_{i}}{dA_{i}d\alpha} = \left[I_{A_{i}}(A_{i}, 1 - e_{i}^{*}) - \alpha I_{A_{i}}(A_{i}, 1)\right] + \left[\alpha I_{e_{i}A_{i}}(A_{i}, 1 - e_{i}^{*}) + (1 - \alpha)(1 + \beta)P_{e_{i}A_{i}}(A_{i}, e_{i}^{*}, R)\right]\frac{de_{i}^{*}}{d\alpha}.$$
(B8)

Now it can be shown, upon rearranging terms and applying a linear approximation, that:

$$\frac{d^2\pi_i}{dA_i d\alpha} < 0. \tag{B9}$$

Next, Grossman and Hanlon show that there exists a cut-off level of α above which $\frac{d\pi_i}{dA_i} < 0$, for all values of *m*. Using (B7), this cut-off level is given by:

$$\bar{\alpha} = \frac{(1+\beta)P_{A_i}(A_i, 1, R)}{I_{A_i}(A_i, 1) + (1+\beta)P_{A_i}(A_i, 1, R)} < 1.$$
(B10)

For all $\alpha > \overline{\alpha}$, we therefore know that $\frac{d\pi_i}{dA_i} < 0$. In other words, for "sufficiently high" opportunity costs – defined by (B10) – high-ability members will choose not to run for the leadership position at a lower level of monitoring than low-ability leaders. The highest-ability group member will first opt out of the pool of candidates as monitoring intensity increases.

From (B10) it also follows directly that $\frac{d\bar{\alpha}}{d\beta} > 0$, or that the critical level of outside income opportunity is higher for pro-socially motivated leaders. This means that group members with a stronger prosocial motivation exit out of candidacy later – the critical level of individual ability where members decide "not to run" occurs at a higher level of ability as members are more prosocial. From (B10) it also follows that $\frac{d\bar{\alpha}}{dR} > 0$, or that more able members are willing to run for the leadership for greater value of the resource stock. This follows from the assumption of complementarity between ability and resource wealth in producing the public good: $\frac{\partial^2 P}{\partial A dR} > 0$.

References

- Altonji J, Elder T and Taber C (2005) Selection on observed and unobserved variables: assessing the effectiveness of Catholic schools. *Journal of Political Economy* **113**, 151– 184.
- Ameha A, Meilby H and Feyisa GL (2016) Impacts of participatory forest management on species composition and forest structure in Ethiopia. *International Journal of Biodiversity Science, Ecosystem Services & Management* 12, 139–153.
- Bellows J and Miguel E (2009) War and local collective action in Sierra Leone. *Journal of Public Economics* 93, 1144–1157.
- **González F and Miguel E** (2015) War and local collective action in Sierra Leone: a comment on use of coefficient stability approaches. *Journal of Public Economics* **128**, 30–33.
- Grossman G and Hanlon WW (2014) Do better monitoring institutions increase leadership quality in community organizations? Evidence from Uganda. *American Journal of Political Science* 58, 669–686.
- Kubsa A, Mariame A, Amante G, Lipp HJ and Tadesse T (2003) Wajib: an alternative forest conservation approach for Ethiopia's forests. In XII World Forestry Congress, Quebec, Canada.
- **Oster E** (2017) Unobservable selection and coefficient stability: theory and evidence. *Journal of Business & Economic Statistics*, 1–18.