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Shoreline Segments  
 
NOAA’s Environmental Sensitivity Index (ESI) data included up to three shoreline types for each segment, 
representing landward to seaward types. Their simplified “general_symbol” types selected the most 
environmentally sensitive of these. We created a crosswalk to develop general categories to indicate the 
type most relevant to recreational choices. For each shoreline segment, we recoded the ESI “general 
shoreline types” to more general “New England Water Quality (NEWQ)” categories of armored, rocky and 
steep, beach, or vegetated. We then merged the segments based on these simplified NEWQ categories, 
combining like-type adjacent shorelines, resulting in 17,665 shoreline segments from Connecticut to 
Maine (see TABLE S1 for ESI shoreline type crosswalk). We conducted processing using ArcGIS ArcPy 
scripting functionality (ESRI 2020). 
 
We created an exposed/sheltered attribute for the NEWQ segments (“NEWQ shoreline segments”; Figure 
1) based on the presence of “exposed” or “sheltered” in the ESI “shoretypes” descriptions for the three 
landward to seaward shoreline types. NOAA’s type 1 and 2 shoretypes were classified as exposed; 
shoretypes 8, 9, and 10 were classified as sheltered. 
 
 
TABLE S1: ESI to NEWQ Shoreline Type Crosswalk 

Generalized ESI Type 
NEWQ shoreline 
type* 

1: Armored 1 

1: Armored/2: Rocky and Steep Shorelines (Bedrock/Sand/Clay) 1 

1: Armored/2: Rocky and Steep Shorelines (Bedrock/Sand/Clay)/3: Beaches 
(Sand/Gravel) 3 

1: Armored/2: Rocky and Steep Shorelines (Bedrock/Sand/Clay)/4: Flats (Mud/Sand) 1 

1: Armored/3: Beaches (Sand/Gravel) 3 

1: Armored/3: Beaches (Sand/Gravel)/2: Rocky and Steep Shorelines 
(Bedrock/Sand/Clay) 3 

1: Armored/3: Beaches (Sand/Gravel)/4: Flats (Mud/Sand) 3 

1: Armored/4: Flats (Mud/Sand) 1 

1: Armored/5: Vegetated (Grass/Marsh/Mangroves/Scrub-Shrub) 1 

1: Armored/5: Vegetated (Grass/Marsh/Mangroves/Scrub-Shrub)/3: Beaches 
(Sand/Gravel) 1 

1: Armored/5: Vegetated (Grass/Marsh/Mangroves/Scrub-Shrub)/4: Flats (Mud/Sand) 1 

2: Rocky and Steep Shorelines (Bedrock/Sand/Clay) 2 

2: Rocky and Steep Shorelines (Bedrock/Sand/Clay)/3: Beaches (Sand/Gravel) 3 

2: Rocky and Steep Shorelines (Bedrock/Sand/Clay)/3: Beaches (Sand/Gravel)/4: Flats 
(Mud/Sand) 3 

2: Rocky and Steep Shorelines (Bedrock/Sand/Clay)/4: Flats (Mud/Sand) 2 

2: Rocky and Steep Shorelines (Bedrock/Sand/Clay)/5: Vegetated 
(Grass/Marsh/Mangroves/Scrub-Shrub) 2 

3: Beaches (Sand/Gravel) 3 

3: Beaches (Sand/Gravel)/1: Armored 3 

3: Beaches (Sand/Gravel)/1: Armored/4: Flats (Mud/Sand) 3 

3: Beaches (Sand/Gravel)/2: Rocky and Steep Shorelines (Bedrock/Sand/Clay) 3 

3: Beaches (Sand/Gravel)/2: Rocky and Steep Shorelines (Bedrock/Sand/Clay)/4: Flats 
(Mud/Sand) 3 
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3: Beaches (Sand/Gravel)/4: Flats (Mud/Sand) 3 

3: Beaches (Sand/Gravel)/5: Vegetated (Grass/Marsh/Mangroves/Scrub-Shrub) 3 

3: Beaches (Sand/Gravel)/5: Vegetated (Grass/Marsh/Mangroves/Scrub-Shrub)/4: Flats 
(Mud/Sand) 3 

5: Vegetated (Grass/Marsh/Mangroves/Scrub-Shrub) 5 

5: Vegetated (Grass/Marsh/Mangroves/Scrub-Shrub)/1: Armored 5 

5: Vegetated (Grass/Marsh/Mangroves/Scrub-Shrub)/1: Armored/3: Beaches 
(Sand/Gravel) 5 

5: Vegetated (Grass/Marsh/Mangroves/Scrub-Shrub)/1: Armored/4: Flats (Mud/Sand) 5 

5: Vegetated (Grass/Marsh/Mangroves/Scrub-Shrub)/2: Rocky and Steep Shorelines 
(Bedrock/Sand/Clay) 5 

5: Vegetated (Grass/Marsh/Mangroves/Scrub-Shrub)/2: Rocky and Steep Shorelines 
(Bedrock/Sand/Clay)/3: Beaches (Sand/Gravel) 5 

5: Vegetated (Grass/Marsh/Mangroves/Scrub-Shrub)/2: Rocky and Steep Shorelines 
(Bedrock/Sand/Clay)/4: Flats (Mud/Sand) 5 

5: Vegetated (Grass/Marsh/Mangroves/Scrub-Shrub)/3: Beaches (Sand/Gravel) 3 

5: Vegetated (Grass/Marsh/Mangroves/Scrub-Shrub)/3: Beaches (Sand/Gravel)/2: Rocky 
and Steep Shorelines (Bedrock/Sand/Clay) 5 

5: Vegetated (Grass/Marsh/Mangroves/Scrub-Shrub)/3: Beaches (Sand/Gravel)/4: Flats 
(Mud/Sand) 5 

5: Vegetated (Grass/Marsh/Mangroves/Scrub-Shrub)/4: Flats (Mud/Sand) 5 

*NEWQ Types: 1 = armored; 2=rocky/steep; 3=beach; 4=flats; 5=vegetated 

 
EPA’s BEACON system defines beach location in their Reach Address Database (RAD). We first combined 
the beach lines (RAD lines) where they overlapped, then joined them spatially to the NEWQ shorelines. 
Lastly, we dissolved the shoreline segments where there were beaches lines occurring across multiple 
NEWQ shorelines, to maintain beaches as single units, with the other shoreline attributes summarized by 
percent of the segment with each shoreline type. 
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Figure S2: NEWQ Sandy Shorelines 
 
 
Travel time and distance 
 
Table S2 shows the one-way distance traveled in miles and time traveled in minutes for day trips. The 
table shows both the self-reported distance and time and the calculated distance and time from the 
respondent’s home census block to the chosen coastal recreation location. Respondents’ unweighted 
mean reported distance and time are slightly less than the calculated mean distance and time but are 
close.  

 
TABLE S2: Reported and Measured One-Way Distance and Time Traveled for Day Trips 
 

One-Way Distance and 
Time Traveled 

Mean Linearized 
Std. Error 

95% Confidence 
Interval 

Reported distance (mi) 30.2 1.53 27.18 33.18 
Measured distance (mi) 36.8 1.49 33.88 39.73 
Reported time (min) 56.4 3.18 50.11 62.61 
Measured time (min) 59.0 3.33 52.48 65.57 

 
TABLE S3: Estimated Days Per Year for Survey Sample Area 
 

Season 
Mean Days* Number of 

Participants** 
Estimated 
Total Days 

Spring (March, April, May) 9.0 3,401,893 30,449,820 
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Summer (June, July, August) 18.8 4,252,072 80,066,906 
Fall (September, October, November) 10.2 3,537,166 35,946,516 
Winter (December, January, February) 3.3 2,981,586 9,822,978 
12-month total 36.8 4,629,453 170,498,066 

*Days were truncated to remove values >95th percentile; seasonal responses include zeros; for 
total year estimates, zeros were entered as missing values.  
**Participants include people aged 18 and older 

 
 
Economic Methods 
 
Analysis of Revealed Preference Data 
 
We analyzed the revealed preference survey data using a random utility model (RUM). Bockstael et al. 
(1987) wrote the seminal work applying the RUM to recreation demand in the context of recreation and 
water quality. The RUM approach has been applied extensively within revealed preference research and 
allows for well-defined welfare measures (e.g., willingness to pay) to be derived from observed recreation 
choice behavior using the travel cost method (Phaneuf and Smith 2005; Parsons 2003).  
 
Following Phaneuf and Smith (2005) and Parsons (2003 and 2017) closely, the RUM approach assumes 
that individuals choose where to recreate by choosing the choice alternative that gives the highest utility. 
The individual is assumed to face a set of I possible sites for a trip. The sites might be beaches, parks, boat 
ramps, or other coastal public access points (Parsons 2003). Each site i (i=1, 2…I) is assumed to give the 
individual, n, some utility 𝑈𝑖𝑛 on a given choice occasion. 
 
Following standard random utility theory, utility is assumed known to the respondent, but stochastic from 
the perspective of the researcher, such that: 
 

(𝑆1)      𝑈𝑖𝑛(∙) =  𝑈(𝑿𝒊, 𝑫𝒏,  𝑇𝑖𝑛) =  𝑣(𝑿𝒊, 𝑫𝒏,  𝑇𝑖𝑛) +  𝜀𝑖𝑛 
 
where: 
𝑿𝒊 = a vector of variables describing attributes of recreation site i 
𝑫𝒏 = a vector of demographic and other attributes of the respondent n 
 𝑇𝑖𝑛  = the cost of choosing site i for respondent n (the travel cost) 
𝑣(∙) = a function representing the empirically estimable component of utility 
𝜀𝑖𝑛 = the stochastic or unobservable component of utility 
 
 
Standard RUMs are based on the probability that a respondent’s utility from site i, 𝑈𝑖𝑛(∙), exceeds the 
utility from alternative site j, 𝑈𝑗𝑛(∙), for all potential sites j≠i considered by the respondent. The RUM 

presumes that the respondent considers the utility that would result from each recreational site choice i, 
and chooses the site that provides the highest utility, or: 
 

(𝑆2)       𝑉𝑛  =  𝑚𝑎𝑥(𝑈1𝑛 , 𝑈2𝑛, … . ,  𝑈𝐼𝑛) 
 
Changes in this per-trip utility, 𝑉𝑛, can be used to value a loss or gain from site access (simulated as a 
removal or addition of a site to the choice set) as well as for changes in site quality, such as water quality 
(Parsons 2017). Suppose water quality at sites 2 and 3 is improved through a water quality improving 
project. If so, trip utility for person n becomes: 
 

(𝑆3)      𝑉𝑛
𝑐𝑙𝑒𝑎𝑛 =  𝑚𝑎𝑥(𝑈1𝑛, 𝑈2𝑛

∗ , 𝑈3𝑛
∗ , … ,  𝑈𝐼𝑛) 
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Where 𝑈2𝑛
∗  and 𝑈3𝑛

∗  are the higher utility due to the improved water quality. Trip utility increases from 𝑉𝑛 

to 𝑉𝑛
𝑐𝑙𝑒𝑎𝑛. Change in utility is monetized by dividing the change by the negative of the coefficient on trip 

cost (α), which is a measure of the marginal utility of income. This creates the welfare effects (wn
clean) in 

monetary terms for changes in trip utility. These are estimated changes in welfare represented on a per-
trip, per-person basis (Parsons 2017).  
 

(𝑆4)      𝑤𝑛
𝑐𝑙𝑒𝑎𝑛  =  

(𝑉𝑛
𝑐𝑙𝑒𝑎𝑛 − 𝑉𝑛)

−𝛼
 

 
 
 
Econometric specification  
 
Consider 𝑣(∙), the estimable component of utility in (S1) in a simple linear form most common in the 
literature (Phaneuf 2005), 
 

(S5)   𝑣𝑖𝑛 =  𝛼 𝑇𝑖𝑛 +  𝜻𝑿𝒊 
 
where:  
𝛼 = the travel cost coefficient, or marginal utility of the cost of the trip 
 𝑇𝑖𝑛  = the cost of choosing site i for respondent n (the travel cost) 
𝜻 = a vector of coefficients for site attributes, Xi 
 
The response variable collected in the survey is binary (1 if the respondent went to site i, 0 otherwise). We 
used a logistic (logit) regression to model this process. This assumes the log of the odds ratio of visiting a 
site is a linear function of covariates and is solved using maximum likelihood, fitting parameters that make 
the outcomes observed most likely. The likelihood function is derived from assuming the errors in 
equation (S5) are from an i.i.d extreme value distribution (see Parsons 2017). 
 
Below, we replace 𝑣𝑖𝑛 with the more specific logit function to make clear the connection between utility, 
the computational methods and the choice probabilities. We estimated a conditional logit model 
specification, as follows:  
 

(𝑆6)     𝑙𝑜𝑔𝑖𝑡(𝑝𝑖𝑛) =  𝛼 𝑇𝑖𝑛 +  𝜻𝑿𝒊 
 

where:  
𝑝𝑖𝑛  =   the probability that respondent n chooses site i 
𝑙𝑜𝑔𝑖𝑡(𝑝𝑖𝑛) =  the log of the odds ratio of respondent n visiting site i 
𝛼   = the travel cost coefficient, or marginal utility of the cost of the trip 
 𝑇𝑖𝑛    = cost of choosing site i for respondent n, the travel cost; 
𝜻   = a vector of coefficients for site attributes, Xi; 
 
The logit function: 

(𝑆7)    𝑙𝑜𝑔𝑖𝑡(𝑝𝑖𝑛) = ln (
𝑝𝑖𝑛

1 − 𝑝𝑖𝑛

) 

 
As shown in (Train 2009) for the logit model, the probability that respondent n chooses site i, where I  is 
all alternatives in the choice set, is: 
 

(𝑆8)   𝑝𝑖𝑛 =  
𝑒  𝛼 𝑇𝑖𝑛+ 𝜻𝑿𝒊

∑ 𝑒  𝛼 𝑇𝑖𝑛+ 𝜻𝑿𝒊𝐼
𝑖=1

 

where:  
I = all site alternatives in the choice set 
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Mixed (Random Parameter) Logit Model 
 
The mixed (random parameter) logit model is a variation of the more commonly used logit presented in 
the manuscript. The mixed logit model assumes each respondent’s parameters may come from a 
distribution instead of a single value, allowing it to capture more flexible choice patterns than the 
standard logit model. However, mixed logit requires assuming distributions and fitting additional 
parameters (distributional parameters of each covariate’s coefficient) and making choices about 
correlations between the coefficients (von Haefen & Domanski 2010).  
 
We fit a mixed logit model for the whole choice set. Using a mixed logit adds significant computational 
burden to solve even on small choice sets. The full model run on the whole choice set took 50+ hours to 
converge on a desktop computer with 192GB of RAM and 2x 2.6 GHz processors. We assumed normally 
distributed coefficients in a mixed logit model using 20 Halton draws. We used R version 4.1.1 and the 
Rchoice package to fit the model. We created the welfare metrics and scenario results below. 
 
TABLE S4: Mixed logit models 
 

Variable Description 

 

Coefficients 
Standard 

Deviation of 
Coefficients 

Travel Cost ($) 
Round trip cost of 
travel 

-0.077.*** (0.003) 0.024.*** (0.002) 

Beach Site includes a beach 1.313.*** (0.098) 0.077 (0.169) 

Size (1000m) 
Straight line length of 
shoreline 

0.628.*** (0.037) 0.013 (0.098) 

% Sheltered 
% of shoreline segment 
that is sheltered 

-0.482.*** (0.155) 0.027 (0.223) 

% Sandy 
% of shoreline segment 
that is sandy 

-6.105.*** (0.207) 0.179 (0.200) 

% Rocky 
% of shoreline segment 
that is rocky 

-7.528.*** (0.354) 0.061 (0.890) 

% Vegetated 
% of shoreline segment 
that is vegetated 

-7.149.*** (0.249) 0.167 (0.342) 

% Armored 
% of shoreline segment 
that is armored 

-5.913.*** (0.264) 0.141 (0.422) 

% Impervious 
% of nearby area that 
is impervious cover  

-0.101.*** (0.017) 0.035.** (0.014) 

Secchi depth (m) 
Remote sensing 
estimate of Secchi 
depth 

0.210.*** (0.071) 0.132.* (0.069) 

Impaired 
1/0 existence of 303(d) 
impairment in adjacent 
water 

0.116 (0.092) 0.027 (0.105) 
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Variable Description 

 

Coefficients 
Standard 

Deviation of 
Coefficients 

CFU or MPN 
Bacteria measure by 
colony forming units or 
most probable number 

-0.005.*** (0.001) 0.003.*** (0.001) 

CFU or MPN data 
available 

1/0 to indicate sites 
with bacteria data 

0.309.*** (0.119) 0.075 (0.082) 

WTP for clarity 
($/meter) 

 
$2.719  

WTP for CFU or 
MPN ($/CFU or 
MPN) 

 
$-0.061  

N of respondents  706  

 

Note: * p < .1, ** p < .05, *** p < .01 

 
 

TABLE S5: Welfare Scenario Results for Full Mixed Logit 

Water Quality Improvement 

Cape Cod  

Welfare per 
Trip 

Welfare per Year 

80M Trips 

Present Value 
(r=3%) 

+5% clarity $0.01 $.61 $20M 

+10% clarity $0.02 $1.2M $41M 

+20% clarity $0.03 $2.5M $82M 

Narragansett Bay    

-5% CFU or MPN $0.02 $1.6M $53M 

-10% CFU or MPN $0.04 $3.2M $108M 

-20% CFU or MPN $0.08 $6.6M $220M 

 

The mixed logit model produced lower welfare values than the standard logit model. Both clarity and 
bacteria conditions had a smaller impact using mixed logit which played through to the scenario results. 
The significant standard deviation of the individual-level coefficients for clarity and bacteria (the mixed 
part of the mixed logit) implies there may be variability in how respondents value water quality in these 
dimensions.  
 
 
 
Alternative Specific Constants Models 
 
RUM models for recreation demand may suffer from unobserved variable bias and heterogeneity among 
respondents, which can affect the travel cost coefficient and coefficients of site attributes. To address 
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this, two-stage models using alternative specific constants (ASC) in the first stage along with the travel 
cost have been proposed. In the second stage, these ASCs are regressed against the site attributes 
(Murdock 2006).  
 
With our large choice set (7k+ segments), ASC models required aggregation or simplification of the choice 
set to be computationally feasible. Additionally, ASC methods require that alternatives are chosen at least 
once, preferably more, to numerically fit the constants, and we had many sites that were not chosen and 
many that were chosen by only one person. A few alternative methods have been proposed when choice 
sets are sparsely chosen (Melstrom and Jaysekera 2017). To enable estimation of an ASC model, we 
created an aggregated choice set based on the zip codes of the shoreline segments (where each zip code 
became a single site), a second choice set including only those shoreline segments chosen once or more, 
and a third choice set of only the chosen (at least once) shoreline segments.  
 
For the zipcode model, we dropped zip codes with no visits, leaving a choice set of 138 chosen zip codes, 
which allowed for a feasible application of ASC models. To estimate this aggregated choice set model, we 
aggregated water quality and site attributes using averages across segments within a zip code and sums 
for number of beaches and length of shoreline. For the chosen segment only choice set, we left the 
attributes as they were in the full model. 

 
The first stage of the ASC model is a logit model: 
 

(𝑆9)     𝑣𝑖𝑛 =  𝑎𝑠𝑐𝑖 + 𝛼 𝑇𝑖𝑛 
 

where:  
 
𝑎𝑠𝑐𝑖  = the alternative specific constant for site i 
𝛼 = the travel cost coefficient, or marginal utility of the cost of the trip 
 𝑇𝑖𝑛  = cost of choosing site i for respondent n, the travel cost 
 
The second stage of the ASC model is a linear regression: 
 

(𝑆10)      𝑎𝑠𝑐𝑖 = 𝜻𝑿𝒊 +  𝜀𝑖 
 
where: 
 
𝜻 = a vector of coefficients for site attributes, Xi 

𝜀𝑖  =  error term  
 
We used R version 4.1.1 and the mlogit package to fit the first stage and the lm function for the second 
stage linear regression (R Core Team 2013, Croissant 2012). We simulated the welfare scenarios in R.  
 
 
TABLE S6: . Stage 1 of ASC Models 
 

Variable Description zipcodes chosen 

Travel Cost ($) Round trip cost of travel -0.061*** (0.002) -.091***(0.003) 

N of respondents  731 729 

 
Note: * p < .1, ** p < .05, *** p < .01 
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TABLE S7:  Stage 2 of ASC Models 
 

Variable Description zipcodes chosen 

# of Beaches 
Number of 
beaches  

0.015** (0.009) 
 

Beach 
Site includes 
a beach 

 0.127 (0.152) 

Size (1000m) 
Straight line 
length of 
shoreline 

0.041.*** (0.010) 
0.149.** 
(0.066) 

% Sheltered 

% of 
shoreline 
segment 
that is 
sheltered 

-0.719 (0.665) -0.065 (0.232) 

% Sandy 

% of 
shoreline 
segment 
that is sandy 

0.498 (0.823) 0.350 (0.306) 

% Rocky 

% of 
shoreline 
segment 
that is rocky 

0.413 (1.023) -0.652 (0.502) 

% Armored 

% of 
shoreline 
segment 
that is 
armored 

-1.097 (0.722) -0.424 (0.311) 

% Impervious 

% of nearby 
area that is 
impervious 
cover 

-0.072 (0.047) 0.002 (0.018) 

Secchi depth (m) 

Remote 
sensing 
estimate of 
Secchi depth 

-0.167 (0.361) 0.065 (0.113) 



 

 

11 

 

Variable Description zipcodes chosen 

Impaired 

1/0 
existence of 
303(d) 
impairment 
in adjacent 
water 

-0.382 (0.353) 
-0.445.*** 
(0.151) 

CFU or MPN 

Bacteria 
measure by 
colony 
forming 
units or most 
probable 
number 

-0.006.*** (0.002) 
-0.006.*** 
(0.001) 

CFU or MPN 
data available 

1/0 to 
indicate sites 
with bacteria 
data 

 0.078 (0.183) 

N  138 394 

R2  0.54 0.19 

 
Note: * p < .1, ** p < .05, *** p < .01 

 
 
 
 
To create a welfare scenario from the ASC models, we used the zipcode version. We used the same 
coastline segment scenario attribute adjustments as in the non-ASC model and aggregated the change to 
the zip-code level in the same way we created the zip-code level attributes for the baseline model. First, 
these attribute changes are simulated through the second-stage ASC regression (equation S10), predicting 
new ASCs. These constants are then simulated through the first stage (equation S9) to create new 
respondent and alternative choice utilities. We calculated the welfare changes from there in the same 
manner as before using the logsum approach and equation 3. We only created welfare scenarios for the 
bacteria changes because clarity was insignificant in the ASC model.  
 
 
TABLE S8: . Welfare from ASC zipcode model  
 
 

Water Quality 
Improvement  

Welfare 
Per Trip 

Welfare per 
Year 

80M Trips 

Present 
Value 
(r=3%) 

Narragansett Bay    

-5% CFU or MPN $0.03 $2.5M $82M 
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Water Quality 
Improvement  

Welfare 
Per Trip 

Welfare per 
Year 

80M Trips 

Present 
Value 
(r=3%) 

Narragansett Bay    

-10% CFU or MPN $0.06 $5.0M $166M 

-20% CFU or MPN $0.13 $10.2M $339M 

 
 
Water clarity was insignificant in both of the ASC models. Bacteria conditions had a larger influence in the 
ASC model, resulting in larger welfare scenario results for Narragansett Bay. The formulation of the ASC 
model required significant aggregation of our choice set as compared to our preferred standard 
conditional logit with the fully disaggregated choice set, taking advantage of water quality variation at the 
shoreline segment level. In order to estimate the ASC model, we had to make simplifying steps that 
abstract away from the choice set design and water quality variation we sought to study.  
 
Since we had 7k+ sites in the original model, we grouped them by zip code, which is roughly grouping to 
towns in New England, creating averages of the segments for each zip code. In some cases, this resulted in 
combining and averaging conditions of estuary and open ocean waters. We also had to drop any 
unchosen zip codes, since ASC models need sites to be chosen, at least a few times, to computationally fit 
the constants; alternatively, one could estimate a more complicated hurdle type model that allows for 
zero trip options. Our aggregation resulted in 138 ASCs (or 394 in the chosen site only model), which is in 
line with the maximum ASCs found in the literature. However, neither of these options is a preferred 
approach to creating choice sets, with bias issues created by aggregation and by elimination of choices 
and arbitrary groupings. We did not prefer dropping relevant alternatives in the chosen site only model 
for the same reason, as this is not considered good choice set design practice (Parsons 2000; Lupi et al 
2020). It is unclear if the proposed benefits of the ASC models outweigh the downsides it imposed for this 
survey collection and attribute dataset.  
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