Supplementary Material for:

Multidimensional Constructions of Target Groups and Their Political Implications: The Case of Immigrant (II)legality

by Kirill Zhirkov and Lauren Van De Hey

Contents

Model statement

Immigration policy questions

Figure S1. OLS regression results predicting opinions on the four different policies using conjoint IMCEs

Model statement

There is conjoint-experimental data on respondents indexed i = 1, ..., I. Each respondent rates profiles of hypothetical immigrants indexed j = 1, ..., J by likelihood of being illegal/undocumented. Profiles have attributes indexed k = 1, ..., K. Each attribute has a specific number of levels indexed $l = 1, ..., L^k$. At the first step, IMCEs for each attribute k are estimated using respondent-specific regression models

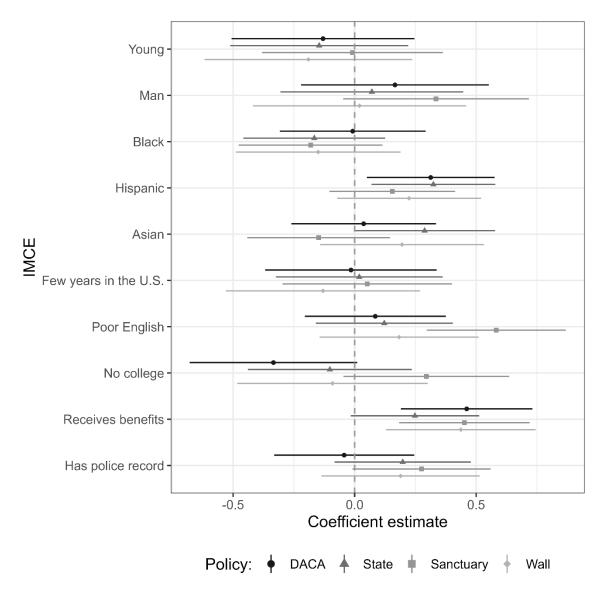
$$y_{ij} = \alpha_{ik} + \sum_{l=2}^{L^k} \beta_{ikl} x_{ijkl} + \varepsilon_{ijk}$$

where y_{ij} is the rating given by respondent i to profile j, α_{ik} is the constant, β_{ikl} is the respondentspecific regression coefficient for value l of attribute k, x_{ijkl} is an indicator variable that equals 1 if attribute k from profile j presented to respondent i has value l and 0 otherwise, and ε_{iik} is the error. To achieve identification, β_{ik1} is not estimated and IMCEs effectively represent the estimated differences in average ratings between profiles with their respective attribute values and profiles with the baseline value. Estimate of IMCE for value l of attribute k specific to respondent i, denoted π_{ikl} , is equivalent to the estimate of respondent specific regression coefficient

$$\hat{\pi}_{ikl} = \hat{\beta}_{ikl}$$

 $\hat{\pi}_{ikl} = \hat{\beta}_{ikl}$ This estimate assesses the direction and strength of the stereotype along a specific dimension for each individual: the degree to which respondent i associates value l of attribute k (e.g., being a man) with the outcome (e.g., having illegal/undocumented status). At the second step, IMCE estimates for all K attributes and $(L^k - 1)$ attribute values (baseline values excluded) are used in regression analysis to predict the outcome of interest z, such as support for strict immigration enforcement, with a set of control variables indexed h = 1, ... H

$$z_{i} = \gamma + \sum_{k=1}^{K} \sum_{l=2}^{L^{k}} \delta_{kl} \hat{\pi}_{ikl} + \sum_{h=1}^{H} \theta_{h} w_{ih} + u_{i}$$


where γ is the constant, δ_{kl} is the coefficient of stereotype l along dimension k, θ_h is the coefficient of control variable h, w_{ih} is the value of variable h for respondent i, and u_i is the error.

Immigration policy questions

In the next few questions, you will be asked to express opinions about several policies related to enforcement of the U.S. immigration laws.

- What about DACA, a program that allows individuals unlawfully present in the U.S. who were brought to the country as children to obtain a work permit?
- What about state bills requiring law enforcement officers to verify an individual's legal immigration status during a lawful stop, detention, or arrest?
- What about sanctuary initiatives that limit cities' cooperation with the federal government's effort to enforce immigration law?
- What about renovating and extending the barrier, or wall, along the U.S. southern border intended to reduce illegal immigration?

Answer scale from 1 = Strongly oppose to 7 = Strongly support.

Figure S1. OLS regression results predicting opinions on the four different policies using conjoint IMCEs

Note. Dependent variables: opposition to DACA, support for state-level immigration enforcement, opposition to sanctuary initiatives, support for border wall