
SUPPORTING INFORMATION
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SI 1 Variables

Table SI 1.1: Outcomes and predictors

Democracy Indicators
Electoral democracy index (D) v2x_polyarchy
Freedom House, combined e_fh_combined
Polity revised combined score (E) e_polity2
Predictors
Lower chamber election vote share of largest vote-getter (A) v2ellovtlg
Lower chamber election vote share of second-largest vote-getter (A) v2ellovtsm
Lower chamber election vote share of third-largest vote-getter (A) v2ellovttm
Lower chamber election seat share won by largest party (A) v2ellostsl
Lower chamber election seat share won by second largest party (A) v2ellostss
Lower chamber election seat share won by third largest party (A) v2ellostts
Presidential election vote share of largest vote-getter (A) v2elvotlrg
Presidential election vote share of second-largest vote-getter (A) v2elvotsml
Executive electoral regime index (A) v2xex_elecreg
Legislative electoral regime index (A) v2xlg_elecreg
Elections multiparty (LIED) multi_party_elections
Share of population with suffrage (D) v2x_suffr
Dummy for legislative elections v2eltype_legislative
Dummy for presidential elections v2eltype_presidential
Difference in vote share of top two parties top2_difference
Combined vote share of top two parties top2_combined
Top two parties have vote share larger than 59.99 top2_monopoly
Legislative elections, consecutive v2ellocons
Legislative elections, cumulative v2ellocumul
Presidential elections, consecutive v2ellocons
Presidential elections, cumulative v2elprescumul
Head of government turnover v2elturnhog
Head of state turnover v2elturnhos
Executive turnover v2eltvrexo
Turnover period (LIED) turnover_period
Turnover event (LIED) turnover_event
Two turnover period (LIED) two_turnover_period
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SI 2 Missing Data Plot

Figure SI 2.1: Missing Data Plot
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SI 3 Variable Importance Plot
In this appendix section we present the Variable Importance Plots for each model presented
in the main manuscript. A variable importance plot in a Random Forest provides insights
into the importance of different features (variables) in making accurate predictions. It
quantifies how much each feature contributes to the overall predictive power of the model.
This information is valuable for understanding which features are most influential in driving
the model’s decisions and can help guide feature selection, data analysis, and problem
understanding. The variable importance is not necessarily a measure of causality. A feature
might be important for prediction without directly causing the predicted outcome. In theory,
variables could even achieve high VIP scores through spurious correlation or a confounding
factor that leads to high importance. More generally, random forests are based on decision
trees, which generate a tree-like structure that makes decisions by recursively splitting the
data based on the values of input features. Each internal node of the tree represents a decision
based on a particular feature, each branch represents an outcome of that decision, and each
leaf node represents a predicted class (in classification) or a predicted value (in regression).
It is possible that the features mentioned by the reviewer are very important for the model
because they allow it to reliably split the data into high- and low-scoring democracies and
they receive the high variable importance score because they do so across a lot of different
model specifications.

It is important to clarify here that the VIP (Variable Importance Plot) does not show
how much variation can be explained by a specific variable.
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Figure SI 3.1: Variable Importance Plot for Polyarchy
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Figure SI 3.2: Variable Importance Plot for Polity2
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Figure SI 3.3: Variable Importance Plot for Freedom House
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SI 4 Histogram and Density Plots for out of sample pre-
diction

Figure SI 4.1: Histogram and Density for Polyarchy
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Figure SI 4.2: Histogram and Density Plot for Polity2
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Figure SI 4.3: Histogram and Density Plot for Freedom House
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SI 5 Polities

Countries
AFG Afghanistan LAO Laos
AGO Angola LBN Lebanon
ALB Albania LBR Liberia
ARE United Arab Emirates LBY Libya
ARG Argentina LKA Sri Lanka
ARM Armenia LSO Lesotho
AUS Australia LTU Lithuania
AUT Austria LUX Luxembourg
AZE Azerbaijan LVA Latvia
BDI Burundi MAR Morocco
BEL Belgium MDA Moldova
BEN Benin MDG Madagascar
BFA Burkina Faso MEX Mexico
BGD Bangladesh MKD North Macedonia
BGR Bulgaria MLI Mali
BHR Bahrain MMR Burma/Myanmar
BIH Bosnia and Herzegovina MNE Montenegro
BLR Belarus MNG Mongolia
BOL Bolivia MOZ Mozambique
BRA Brazil MRT Mauritania
BTN Bhutan MUS Mauritius
BWA Botswana MWI Malawi
CAF Central African Republic MYS Malaysia
CAN Canada NAM Namibia
CHE Switzerland NER Niger
CHL Chile NGA Nigeria
CHN China NIC Nicaragua
CIV Ivory Coast NLD Netherlands
CMR Cameroon NOR Norway
COD Democratic Republic of the Congo NPL Nepal
COG Republic of the Congo NZL New Zealand
COL Colombia OMN Oman
COM Comoros PAK Pakistan
CPV Cape Verde PAN Panama
CRI Costa Rica PER Peru
CUB Cuba PHL Philippines
CYP Cyprus PNG Papua New Guinea
CZE Czechia POL Poland
DDR German Democratic Republic PRK North Korea
DEU Germany PRT Portugal

Continued on next page...
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Table SI 5.2 (Continued)
Countries

DJI Djibouti PRY Paraguay
DNK Denmark QAT Qatar
DOM Dominican Republic ROU Romania
DZA Algeria RUS Russia
ECU Ecuador RWA Rwanda
EGY Egypt SAU Saudi Arabia
ERI Eritrea SDN Sudan
ESP Spain SEN Senegal
EST Estonia SGP Singapore
ETH Ethiopia SLB Solomon Islands
FIN Finland SLE Sierra Leone
FJI Fiji SLV El Salvador
FRA France SOM Somalia
GAB Gabon SRB Serbia
GBR United Kingdom SSD South Sudan
GEO Georgia SUR Suriname
GHA Ghana SVK Slovakia
GIN Guinea SVN Slovenia
GMB The Gambia SWE Sweden
GNB Guinea-Bissau SWZ Eswatini
GNQ Equatorial Guinea SYR Syria
GRC Greece TCD Chad
GTM Guatemala TGO Togo
GUY Guyana THA Thailand
HND Honduras TJK Tajikistan
HRV Croatia TKM Turkmenistan
HTI Haiti TLS Timor-Leste
HUN Hungary TTO Trinidad and Tobago
IDN Indonesia TUN Tunisia
IND India TUR Turkey
IRL Ireland TWN Taiwan
IRN Iran TZA Tanzania
IRQ Iraq UGA Uganda
ISR Israel UKR Ukraine
ITA Italy URY Uruguay
JAM Jamaica USA United States of America
JOR Jordan UZB Uzbekistan
JPN Japan VDR Republic of Vietnam
KAZ Kazakhstan VEN Venezuela
KEN Kenya VNM Vietnam
KGZ Kyrgyzstan XKX Kosovo
KHM Cambodia YEM Yemen

Continued on next page...
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Table SI 5.2 (Continued)
Countries

KOR South Korea YMD South Yemen
KWT Kuwait
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SI 6 Google Ngram for Democratic Backsliding
In order to determine a cut-off for for the backsliding period we need to determine when
backsliding started. There are various time points mentioned in the literature. Usding a
Google Ngram, we can see that the academic literature started to pick up the topic more
frequently around the 2000s and had significant jumps in 2005 and 2010 (allowing for some
lag in the time it takes to publish research). Based on this we have set the cut off in our
manuscript for 2000 but also included replications with the year 2005 (see SI 7) and 2010
(see SI 8) .

Figure SI 6.1: Google Ngram for Democratic Backsliding
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SI 7 Cut off at 2005
In this appendix we demonstrate that our conclusions are robust to using the year 2005 as a
cut off for the pre-backsliding period.

Figure SI 7.1: Cut off at 2005 for Polyarchy

Figure SI 7.2: Cut off at 2005 for Polity2

Figure SI 7.3: Cut off at 2005 for Freedom House
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SI 8 Cut off at 2010
In this appendix we demonstrate that our conclusions are robust to using the year 2010 as a
cut off for the pre-backsliding period.

Figure SI 8.1: Cut off at 2010 for Polyarchy

Figure SI 8.2: Cut off at 2010 for Polity2

Figure SI 8.3: Cut off at 2010 for Freedom House
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SI 9 Global means of democracy indicators

Figure SI 9.1: Global means of democracy indicators
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SI 10 Annual changes in democracy scores of countries

Figure SI 10.1: Annual changes in democracy scores of countries

Table SI 10.3: Annual Change Statistics

Polyarchy Polity2 Freedom House
1900-2022 1972-2022 1900-2018 1972-2018 1972-2022

Mean 0.003 0.004 0.003 0.006 0.002
Std. Dev. 0.046 0.045 0.082 0.079 0.067
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SI 11 Freedom House predictions for different periods

Figure SI 11.1: Predicting 1988-2004

Figure SI 11.2: Predicting 1972-1988
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SI 12 Predicting the interwar period

Figure SI 12.1: Polyarchy for the interwar period

Figure SI 12.2: Polity2 for the interwar period

32



SI 13 Predicting the 1970s

Figure SI 13.1: Polyarchy for the 1970s

Figure SI 13.2: Polity2 for the 1970s
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SI 14 Restricting the Polyarchy and Polity2 sample to
1972

Figure SI 14.1: Polyarchy since 1972

Figure SI 14.2: Polity2 since 1972
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SI 15 Reversed prediction
In this appendix we are training our model on the (potential) backsliding period (2000-) and
predict the pre-backsliding period (1979-1999).

Figure SI 15.1: Polyarchy prediction reversed
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Figure SI 15.2: VIP Polyarchy prediction reversed
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SI 16 Methodology
Our research methodology revolves around the utilization of random forests, which represent
an ensemble learning approach. Unlike traditional single-model methods such as decision trees,
random forests amalgamate multiple models to enhance robustness and accuracy. Random
forests build upon decision trees, forming a collective of individual trees that work in synergy.
In this section, we delve into a comprehensive explanation of decision trees and random
forests, contextualizing their application in the realm of political science. We initiate by
elucidating the fundamental concepts behind decision trees, the transition from individual
trees to a forest, and reference seminal work by Guyon et al. (1997) along with subsequent
research that has evolved around her contributions in the field of random forest analysis.

SI 16.1 The starting point: Decision Trees

Random forests serve as a machine learning algorithm rooted in the principles of decision trees.
Decision trees, a category of supervised learning algorithms, find utility in both classification
and regression tasks. They operate by recursively segmenting input data into subsets based
on specific feature values, constructing a tree-like model that maps decisions to their potential
outcomes. Within this framework, internal nodes within the tree represent features, while leaf
nodes correspond to either a class or a regression value. The process of making predictions for
new data points commences at the root node, with traversal along the appropriate branches
guided by the values of relevant features, ultimately concluding at a leaf node that furnishes
the associated class or regression value (Hastie, Tibshirani, and Friedman 2013; also see
McAlexander and Mentch 2020 or Hill and Jones 2014 for applications in political science).

The essence of decision trees lies in their ability to construct a sequence of binary decisions
predicated on input features (independent variables), culminating in predictions of the output
class (dependent variable). Each decision manifests as a split in the tree, giving rise to distinct
branches that lead to different sets of decisions or predictions. In essence, a decision tree can
be conceptualized as a succession of if-then statements, culminating in a final prediction.

Decision trees share a foundational data structure with conventional statistical methods in
the social sciences, involving an outcome variable and a collection of predictor or explanatory
variables. The decision tree algorithm scrutinizes this data to identify the optimal data split
(Step 1), selects the input feature that most effectively segregates the data, typically based
on criteria such as information gain, gain ratio, or the Gini index (Step 2). Following the
selection of the optimal split, the algorithm generates a new node within the tree (Step 3)
that encapsulates the decision based on the chosen input feature. Subsequently, the data is
partitioned into two branches, each representing one of the possible outcomes of the decision.

This process iterates recursively, with split selection and node creation repeated for each
of the two branches generated in Step 3. This continues until predefined stopping criteria are
met, which might include reaching a maximum tree depth, achieving a minimum number of
data points in a leaf node, or obtaining a minimum information gain. Each branch in the
tree encapsulates a sequence of decisions that collectively yield a prediction of the output
variable.

Once the decision tree is fully constructed, making predictions for new data points involves
traversing the tree from the root node to a leaf node, guided by the values of the input
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features. At each node, a decision based on the input feature is made, and traversal continues
down the corresponding branch until a leaf node is reached. The value contained in the leaf
node represents the predicted output variable value (Hastie, Tibshirani, and Friedman 2013;
Greenwell 2022).

SI 16.2 From a tree to a forest

Decision trees are susceptible to a phenomenon known as overfitting, particularly when
they become excessively deep or intricate. In such cases, decision trees tend to capture the
idiosyncrasies of the training data too closely, hindering their ability to generalize effectively
to new, unseen data. To mitigate this challenge, random forests employ an ensemble approach,
leveraging multiple decision trees to yield more robust and accurate predictions when applied
to data not seen during training.

Within a random forest, each tree is trained using a randomly selected subset of the
training data. Additionally, only a random subset of features is considered at each split. This
strategy reduces correlation between the trees and diversifies their predictions while still
preserving their individual strengths. The final prediction of the random forest is determined
by either majority voting (for classification tasks) or the mean (for regression tasks) of the
predictions from all constituent trees (Greenwell 2022).

In summary, decision trees constitute the foundational elements of random forests, serving
as the building blocks for making individual predictions. Random forests, in turn, aggregate
predictions from multiple decision trees to yield a more dependable and generalizable prediction
(e.g., Muchlinski et al. 2016; also see responses by Wang 2019 and Muchlinski et al. 2019).

SI 16.3 Random Forest model application

In the context of random forest analysis, data is typically divided into several subsets, each
serving a distinct purpose. These subsets include a training set, a validation set, cross-
validation folds, and a test set (Guyon 1997, Dubbs 2021, and Aria 2023; in political science,
see Hill and Jones 2014 or McAlexander and Mentch 2020).

1. Training set: This subset of data is utilized to train the random forest model. The
model leverages the training set to comprehend the relationships between input features
and target variable(s). The size of the training set should be sufficient to encompass
data variability but not so extensive as to hinder training or induce overfitting.

2. Validation set: A subset of the data is earmarked for evaluating the model’s performance
during training. This set plays a crucial role in tuning the model’s hyperparameters,
such as the number of trees, maximum tree depth, and minimum samples required for
node splitting. The validation set should be substantial enough to provide a reliable
performance estimate without overfitting hyperparameters.

3. Cross-validation: Cross-validation is a technique for estimating model performance by
dividing data into multiple folds. The model is trained on each fold and evaluated on the
remaining folds. Cross-validation serves to estimate the model’s generalization error and
facilitates the selection of the best model from a set of candidate models. The number
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of folds used in cross-validation depends on data size and available computational
resources. Typically, 5-10 folds are used for small to medium-sized datasets, while 3-5
folds suffice for larger datasets. Cross-validation is conducted exclusively within the
training set.

4. Test set: This subset of the data is reserved for evaluating the final model’s perfor-
mance after training and hyperparameter tuning. It serves to estimate the model’s
generalization error and allows for performance comparison against other models. The
test set should be substantial enough to yield a reliable performance estimate without
causing computational issues or significantly diminishing the size of the training set.

The determination of data split sizes in random forest analysis depends on several factors,
including data size, model complexity, and computational resources. It is worth noting
that split selection decisions are also contingent on the data distribution and necessitate
ensuring that key data features are adequately represented in training, validation, and test
data subsets.

1. Training set: The training set should be large enough to capture the variability in the
data and to prevent overfitting, but not so large that it slows down the training process.
A common rule of thumb is to use 60-80% of the data for training.

2. Validation set: The validation set should be large enough to provide a reliable estimate
of the model’s performance during training, but not so large that it overfits the
hyperparameters. A common rule of thumb is to use 10-20% of the data for validation.

3. Cross-validation: The number of folds used in cross-validation depends on the size of
the data and the computational resources available. A common rule of thumb is to use
5-10 folds for small to medium-sized data sets, and 3-5 folds for large data sets.

4. Test set: The test set should be large enough to provide a reliable estimate of the
model’s generalization error, but not so large that it’s computationally prohibitive. A
common rule of thumb is to use 20-30% of the data for testing.

SI 16.4 Our model specification

Our model specifications are based on a hyper-parameter grid-search. We build 300 decision
trees in the random forest, select three features randomly to be considered at each split of the
tree, and use 70% of all available features for each tree. Across all models this specification
has the highest predicitive power in the cross-validation. An important aspect of our data
are temporal connections between country-years of a given country. We stratify our data
by country, meaning that all country-year observations of a specific country are assigned
either to the training, cross-validation, or test set. We do this in order to prevent “leakage”
from the training data into the cross-validation or test data set. Leakage occurs when
information from the training data set can “leak” into the other data sets and influence the
model performance. Since country observations are likely highly correlated over the years
having some country-years in the training and other country-years in the cross-validation or
test set could be a problem. We use six-fold cross-validation for our training data (-2012).
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We split the data into a training and a test set based on theoretical expectations. We
want to train our model on data that is very unlikely to be influenced by potential backsliding
biases by coders. In order to do so we set the cut-off at 2000. All country-years before
2000 are assumed to be free of backsliding coder bias and in this data our model learns the
relationship between the democracy scores and our features. We then use this model, that
was trained on the pre-backsliding period, to predict the backsliding period and examine the
differences between observed and predicted democracy scores. We argue that small differences
should be due to uncertainty in the predictions of the random forest and larger differences
should be due to changes in the underlying data generating process between the training and
the test data. Hence, if we observe large changes we take it to mean that the way democracy
scores were coded before and after 2000 has changed in some systematic way. In order to
make sure that our results are not a feature of our cut-off at 2000 we implement a series of
robustness checks by setting the cut-off at 2005 and 2010. The results remain very similar
and our conclusions remain.
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