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A Proofs

A.1 Proof of Prop 1

Note, Assumption 4 implies that E (⌧i|�i 6= 1, Xi = x) >= 0 for all x 2 X . Therefore, from the law of total

expectation, for all x 2 X ,

E (⌧i|Xi = x) = P (�i = 1|Xi = x)E (⌧i|Xi = x, �i = 1) + [1� P (�i = 1|Xi = x)]E (⌧i|Xi = x, �i 6= 1)

= P (�i = 1|Xi = x)E (⌧i|Xi = x, �i = 1) .

Therefore,

Z

X
fXi|�i

(x|�i = 1) [E (⌧i|Xi = x, �i = 1)� E (⌧i|Xi = x)] dx

=

Z

X
fXi|�i

(x|�i = 1) [1� P (�i = 1|Xi = x)]E (⌧i|Xi = x, �i = 1) dx

� 0.

A.2 Proof of Lemma 1

LATE� ITT = E (⌧i|�i = 1)� E (⌧i)

=

Z

X
fXi|�i

(x|�i = 1)E (⌧i|Xi = x, �i = 1) dx�
Z

X
fXi(x)E (⌧i|Xi = x) dx

=

Z

X
fXi|�i

(x|�i = 1)E (⌧i|Xi = x, �i = 1) dx�
Z

X
fXi(x)E (⌧i|Xi = x) dx

+

Z

X
fXi|�i

(x|�i = 1)E (⌧i|Xi = x) dx�
Z

X
fXi|�i

(x|�i = 1)E (⌧i|Xi = x) dx

=

Z

X
fXi|�i

(x|�i = 1) [E (⌧i|Xi = x, �i = 1)� E (⌧i|Xi = x)] dx

+

Z

X
E (⌧i|Xi = x)

⇥
fXi|�i

(x|�i = 1)� fXi(x)
⇤
dx
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A.3 Proof of Lemma 2

First, re-write the CPW estimator as the di↵erence between two ratios of sample means:

\CPW =
NX

i=1

(ZiYi � (1� Zi)Yi)

"
ZiP̂N (�i = 1|Xi)PN

j=1 ZjP̂N (�j = 1|Xj)
�

PN
i=1(1� Zi)P̂N (�i = 1|Xi)PN
j=1(1� Zj)P̂N (�j = 1|Xj)

#

=

PN
i=1 YiZiP̂N (�i = 1|Xi)PN
j=1 ZjP̂N (�j = 1|Xj)

�
PN

i=1 Yi(1� Zi)P̂N (�i = 1|Xi)PN
j=1(1� Zj)P̂N (�j = 1|Xj)

=
(1/

PN
i=1 Zi)

PN
i=1 YiZiP̂N (�i = 1|Xi)

(1/
PN

i=1 Zi)
PN

j=1 ZjP̂N (�j = 1|Xj)
�

(1/
PN

i=1(1� Zi))
PN

i=1 Yi(1� Zi)P̂N (�i = 1|Xi)

(1/
PN

i=1(1� Zi))
PN

j=1(1� Zj)P̂N (�j = 1|Xj)

=
ÊN

h
YiP̂N (�i = 1|Xi)|Zi = 1

i

ÊN

h
P̂N (�i = 1|Xi)|Zi = 1

i �
ÊN

h
YiP̂N (�i = 1|Xi)|Zi = 0

i

ÊN

h
P̂N (�i = 1|Xi)|Zi = 0

i .

Note, in the above, I have used subscripting with N to denote quantities that depend on the size of the

sample. So, ÊN (·) represents the sample mean of the given quantity and P̂N (�i = 1|Xi) is the estimated

probability that �i = 1. Note that Ê ()N is a linear function and is therefore continuous. Since P̂N (�i = 1|Xi)

is consistent (Assumption 7) and Ê ()N converges to E(·) by the law of large numbers, by the continuous

mapping theorem, their composition will converge to the composition of their limits. Therefore:

ÊN

h
P̂N (�i = 1|Xi)|Zi = z

i
p����!

N!1
E [P (�i = 1|Xi)|Zi = z]

= E [P (�i = 1|Xi]

= P (�i = 1) .

for any z 2 {0, 1}. Similarly,

ÊN

h
YiP̂N (�i = 1|Xi)|Zi = z

i
p����!

N!1
E [YiP (�i = 1|Xi)|Zi = z] .

Again, for any z 2 {0, 1}. Therefore, from Slutksy’s theorem:
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ÊN

h
YiP̂N (�i = 1|Xi)|Zi = z

i

ÊN

h
P̂N (�i = 1|Xi)|Zi = z

i p����!
N!1

E [YiP (�i = 1|Xi)|Zi = z]

P (�i = 1)

= E

Yi(z)

P (�i = 1|Xi)

P (�i = 1)

�

=

Z

X
E [Yi(z)|Xi = x]

P (�i = 1|Xi = x)

P (�i = 1)
fXi(Xi = x)dx

=

Z

X
E [Yi(z)|Xi = x] fXi|�i

(Xi = x|�i = 1)dx.

Where the first equality follows from Assumption 1, the second from the law of iterated expectation, and

the third from Bayes theorem.

Now substituting this identity into the formula for the CPW estimator:

\CPW p����!
N!1

Z

X
E [Yi(1)|Xi = x] fXi|�i

(Xi = x|�i = 1)dx�
Z

X
E [Yi(0)|Xi = x] fXi|�i

(Xi = x|�i = 1)dx

=

Z

X
E [Yi(1)� Yi(0)|Xi = x] fXi|�i

(Xi = x|�i = 1)dx

=

Z

X
E [⌧i|Xi = x] fXi|�i

(Xi = x|�i = 1)dx.

Which completes the proof of the first identity in the lemma. For the second, note that, from the previous

result,

LATE� \CPW p����!
N!1

E (⌧i|�i = 1)�
Z

X
fXi|�i

(Xi = x|�i = 1)E (⌧i|Xi = x) dx

=

Z

X
fXi|�i

(Xi = x|�i = 1)E (⌧i|Xi = x, �i = 1) dx�
Z

X
fXi|�i

(Xi = x|�i = 1)E (⌧i|Xi = x) dx

=

Z

X
fXi|�i

(Xi = x|�i = 1) [E (⌧i|Xi = x, �i = 1)� E (⌧i|Xi = x)] dx.

A.4 Proof of Prop 3

First consider the case when 8x 2 X , E(⌧i|Xi = x, �i = 1) � E (⌧i|Xi = x) � 0 (condition a. from the

Assumption 1). Note that this implies that E (⌧i|�i) � 0,
R
X fXi|�i

(Xi = x|�i = 1)E (⌧i|Xi = x) dx � 0, and
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R
X fXi|�i

(Xi = x|�i = 1) [E (⌧i|Xi = x, �i = 1)� E (⌧i|Xi = x)] dx � 0. This establishes that case (a) implies

Assumption 8, so the conclusion of Proposition 2: limN!1 P (|LATE| � |\CPW|) = 1, will hold.

Now consider the case when, 8x 2 X , E(⌧i|Xi = x, �i = 1)  E (⌧i|Xi = x)  0 (condition b from

Assumption 1). Note that this implies that E (⌧i|�i)  0,
R
X fXi|�i

(Xi = x|�i = 1)E (⌧i|Xi = x) dx  0, and
R
X fXi|�i

(Xi = x|�i = 1) [E (⌧i|Xi = x, �i = 1)� E (⌧i|Xi = x)] dx  0. So

|LATE|� |\CPW| p����!
N!1

|E (⌧i|�i = 1) |�
����
Z

X
fXi|�i

(Xi = x|�i = 1)E (⌧i|Xi = x) dx

����

= �E (⌧i|�i = 1) +

Z

X
fXi|�i

(Xi = x|�i = 1)E (⌧i|Xi = x) dx

= �

E (⌧i|�i = 1)�

Z

X
fXi|�i

(Xi = x|�i = 1)E (⌧i|Xi = x) dx

�

= �
✓Z

X
fXi|�i

(Xi = x|�i = 1) [E (⌧i|Xi = x, �i = 1)� E (⌧i|Xi = x)] dx

◆

� 0.

B Additional Simulation Results

B.1 Varying Compliance Rate

One limitation of the simulations in the main paper is that they do not allow the percent of the sample that

are compliers to vary. To address this shortcoming, the simulation results presented in this subsection add

an o↵set term to the equation that defines compliance probability so that, µi = Logit�1(X 0
i� + ↵). Recall

that µi is the probability that unit i is a complier, so positive values of ↵ increase the fraction of the sample

that is a complier, while negative values decrease it. The plots below provide simulation results when ↵ is

set equal to -1 and 1. Note that the e↵ect of alpha depends on �. When � is large, Xi is a strong predictor

of �i so changing alpha will not impact the ultimate distribution of �i as much. When ↵ = 1, the fraction

of compliers is .74, .63, and .498 for � set to 0, 1, and 10, respectively. The equivalent values for ↵ = �1 are

.28, .361, and .478 instead. Although other details of the simulations are the same as those presented in the

main text.

Figure B.2 presents the results of this analysis. The patterns generally match those seen in the main

text. The CPW estimator does best when X is strongly predictive of �i while the performance of the IV

estimator remains dependent on the magnitude of the exclusion restriction violation.
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Figure B.1: Simulation Results With Varying Compliance Rates
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Note: Figure presents results from simulations comparing e�cacy of the ITT, IV, and CPW estimators.
The vertical facets identify the value of � while the horizontal facets identify the value of ⌧NC . Each point
represents the results from 100 simulations with those parameters. Top panels show the results when
↵ = 1, while bottom panels present the case when ↵ = �1
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B.2 Varying K

This subsection presents additional simulation results where the dimensionality of the Xi, K, is allowed to

vary from 10. In particular, I consider the case when K = 2 and K = 50. The results seen here suggest that

the rate of convergence of the estimator decreases as K increases, but the main results about the asymptotic

conservatism of the CPW estimator still hold.
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Figure B.2: Simulation Results With Varying K
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Note: Figure presents results from simulations comparing e�cacy of the ITT, IV, and CPW estimators.
The vertical facets identify the value of � while the horizontal facets identify the value of ⌧NC . Each point
represents the results from 100 simulations with those parameters. Top panels show the results when
K = 2. Bottom panel shows reuslts when K = 50
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B.3 Assumption 8 Fails

Simulations can also be used to consider the consequences of the failure of Assumption 8. In particular, I

accomplish this by setting ⌧NC equal to two in the simulation set up from the main text, which implies that

the e↵ect of assignment to treatment on the outcome is larger for non-compliers than it is for compliers.

Figure B.3 presents the results of this analysis, which show that while the bias of the CPW estimator is now

positive, it actually still delivers a lower RMSE than the other estimators considered
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Figure B.3: Simulation Results When the E↵ect of Assignment to Treatment Is Larger For Non-Compliers
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Note: Figure presents results from simulations comparing e�cacy of the ITT, IV, and CPW estimators.
The vertical facets identify the value of � while the horizontal facets identify the value of ⌧NC . Each point
represents the results from 100 simulations with those parameters.

B.4 Parametric Approaches to Estimating the Probability of Compliance

The simulation results presented in the main paper only consider one model for estimating the probability

of compliance. In this section, I present results which instead use the estimator proposed by Aronow and

Carnegie (2013). This estimator di↵ers from that used in the main paper principally in that it is based

on a parametric linear model of compliance probability, while the estimator used in the main paper is

non-parametric. This estimator can also easily estimate the probability of compliance even in the face of

two-sided non-compliance, while the approach used in the main paper assumes one-sided non-compliance.

Figure B.4 presents the results of this analysis under the same simulation set up used in the main paper

when the model used to estimate the probability that each unit is a complier is correctly specified. Overall,

it shows that the results generally match those seen in the same paper, although the estimator is somewhat

more e�cient, likely due to its ability to capitalize on the correctly specified linear model.

The results presented in Figure B.5 consider the performance of this parametric estimator when the

model is incorrectly specified. Specifically, I tweak the data generating process so that the probability

that each unit is a complier is generated as a linear function of all pairwise interactions between each

element of Xi (i.e. µi = Logit�1(
PK

j=1

PK
l=1 XijXil�il) where � is a matrix of independent standard normal

draws). Unsuprisingly, the CPW estimator’s performance is worse under these circumstances; however, it
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Figure B.4: Simulation Results Using Correctly Specified Linear Model For Compliance Probability
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Note: Figure presents results from simulations comparing e�cacy of the ITT, IV, and CPW estimators.
The vertical facets identify the value of � while the horizontal facets identify the value of ⌧NC . Each point
represents the results from 100 simulations with those parameters.

still performs well and the bias is still towards 0.
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Figure B.5: Simulation Results Using Incorrectly Misspecified Linear Model For Compliance Probability
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Note: Figure presents results from simulations comparing e�cacy of the ITT, IV, and CPW estimators.
The vertical facets identify the value of � while the horizontal facets identify the value of ⌧NC . Each point
represents the results from 100 simulations with those parameters.

B.5 Two Sided Non-Compliance

One limitation of the non-parametric approach to estimating the probability that each unit is a complier

used in the main paper is that it assumes non-compliance is one sided. This Assumption can be weakened by

instead using the parametric estimator proposed by Aronow and Carnegie (2013). To explore this possibility,

I tweaked the simulation set up so that the probability that a unit was a complier was generated in the same

way as before (µi = Logit�1(X 0
i�)); however, I assigned units to be defiers with probability (1 � µi)/2,

and always and never takers each with probability (1 � µi)/4. I assumed that the e↵ect of assignment to

treatment for always and never takers was ⌧NC , which I allowed to vary, but was always �1 (ie, the negative

LATE) for defiers. Note that this setup still satisfies all of the Assumptions required for the conservatism of

the CPW estimator.

Figure B.6 presents the results of this analysis and shows the CPW estimator still performs as expected

with the general pattern of results matching that seen in the main paper.
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Figure B.6: Simulation Results Under Two Sided Non-Compliance
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Note: Figure presents results from simulations comparing e�cacy of the ITT, IV, and CPW estimators.
The vertical facets identify the value of � while the horizontal facets identify the value of ⌧NC . Each point
represents the results from 100 simulations with those parameters.
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