
Online Appendix
What to Observe When Assuming

Selection on Observables

Kevin M. Quinn∗ Guoer Liu† Lee Epstein‡ Andrew D. Martin§

December 3, 2024

∗Emory University
†University of California, San Diego
‡Washington University in St. Louis
§Washington University in St. Louis

1



Contents

A Preliminaries 3

B Regression Estimator Weights 3
B.1 Regression Estimators are WATE Estimators . . . . . . . . . . . . . . . . . . 3
B.2 Properties of Regression WATE Weights . . . . . . . . . . . . . . . . . . . . 8

C WATE Weights for 1:M Matching with Replacement 13

D Effective Sample Size Derivations 15

E Calculating DFBETA for Hájek-Type Estimators 19
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A Preliminaries

In Section 2.1 of the manuscript we noted that ATE and ATT can be expressed as Weighted
Average Treatment Effects (WATEs) (Li et al., 2018). The Hájek-type estimator of WATE
that we consider in the main body of the manuscript is:

τ̂h =

∑n
i=1w

(1)
h (xi)ZiYi∑n

i=1 w
(1)
h (xi)Zi

−
∑n

i=1 w
(0)
h (xi)(1− Zi)Yi∑n

i=1w
(0)
h (xi)(1− Zi)

. (A.1)

B Regression Estimator Weights

In this section, we consider the MRI estimators (Chattopadhyay and Zubizarreta, 2023) for
ATE and ATT:

τ̂ regATE =
1

n

n∑
i=1

(m̂1(xi)− m̂0(xi)) (B.1)

τ̂ regATT =
1

n(1)

∑
i:Zi=1

(Yi − m̂0(xi)) (B.2)

where m̂1(x) is the ordinary least squares (OLS) regression estimator of E[Y |X = x, Z = 1]
constructed by subsetting the data to the Z = 1 units and fitting an OLS regression to
those data and m̂0(x) is the OLS regression estimator of E[Y |X = x, Z = 0] constructed by
subsetting the data to the Z = 0 units and fitting an OLS regression to those data.

We will also consider the OLS estimator of τ in the regression

y = Xβ + zτ + ϵ. (B.3)

Following Chattopadhyay and Zubizarreta (2023), we refer to this latter regression estimator
as the URI estimator.

B.1 Regression Estimators are WATE Estimators

Chattopadhyay and Zubizarreta (2023) proved that the MRI estimators τ̂ regATE and τ̂ regATT are
Hájek-type estimators in the form of Equation A.1 and, in doing so, they derived expressions
for the corresponding weights.

We build on this result with a slightly different proof. The resulting weights are identical
to the Chattopadhyay and Zubizarreta (2023) weights up to a different normalizing con-
stant. The fact that these two slightly different versions of the MRI weights sum to different
constants does not affect Equation A.1 because of the normalization of the weights in the
denominators.

We begin by showing how to write the estimator τ̂ regATE as a Hájek-type estimator in the
form of Equation A.1.

Let X denote the n× (k+1) matrix of covariates including a constant. Similarly, let X1

and X0 denote the submatrices that correspond to the portions of X from the treated and
control units respectively. To make indexing easier, we assume that the data have been sorted
so that the first n(1) rows of X correspond to the treated units and the last n(0) = n − n(1)
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rows correspond to the control units. The treatment indicator, Z, is not included in X, X0,
or X1. Relatedly, let y denote the n× 1 vector of outcomes for the full sample and y1 and
y0 be the observed outcomes for the treated and control units respectively.

Proposition B.1 (The MRI Estimator of ATE is a Hájek-Type Estimator
(Chattopadhyay and Zubizarreta, 2023) ).

τ̂ regATE =
1

n

n∑
i=1

(m̂1(xi)− m̂0(xi)) =

∑n
i=1wiZiYi∑n
i=1wiZi

−
∑n

i=1 wi(1− Zi)Yi∑n
i=1wi(1− Zi)

where w = (w(1)′ ,w(0)′)′, w(1)′ = 1′
nX (X′

1X1)
−1X′

1 and w(0)′ = 1′
nX (X′

0X0)
−1X′

0. In
words, the MRI estimator of ATE in Equation B.1 can be written as the Hájek-Type estimator
in Equation A.1.

Proof. Let m̂1(X) be the n-vector formed by stacking m̂1(xi) for i = 1, . . . , n with m̂0(X)
defined similarly. Note that m̂1(X) = P1y1 where P1 = X (X′

1X1)
−1X′

1 and m̂0(X) = P0y0

where P0 = X (X′
0X0)

−1X′
0.

Define w(1)′ = 1′
nP1 and w(0)′ = 1′

nP0 where 1n is an n-vector of ones. Further, let
w = (w(1)′ ,w(0)′)′ be the n-vector formed by concatenating w(1) and w(0). wi is the ith
element of w. We can now write Equation B.1 as

τ̂ regATE =
1

n

n∑
i=1

(m̂1(xi)− m̂0(xi))

=
1

n
(1′

nP1y1 − 1′
nP0y0)

=
1

n

n∑
i=1

wiZiYi −
1

n

n∑
i=1

wi(1− Zi)Yi

=

∑n
i=1wiZiYi∑n
i=1wiZi

−
∑n

i=1 wi(1− Zi)Yi∑n
i=1wi(1− Zi)

where the last line follows from the fact that w(1) and w(0) both sum to n by construction
(see Proposition B.4). Thus the MRI estimator of ATE in Equation B.1 can be written as the
Hájek-type estimator in Equation A.1 where the weights are w(1)′ = 1′

nP1 and w(0)′ = 1′
nP0.

Note that these weights can be negative.
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Proposition B.2 (The MRI Estimator of ATT is a WATE Estimator
(Chattopadhyay and Zubizarreta, 2023) ).

τ̂ regATT =
1

n(1)

∑
i:Zi=1

(Yi − m̂0(xi)) =

∑n
i=1wiZiYi∑n
i=1 wiZi

−
∑n

i=1wi(1− Zi)Yi∑n
i=1wi(1− Zi)

where w = (w(1)′ ,w(0)′)′, w(1) = 1n(1), and w(0)′ = 1′
n(1)X1 (X

′
0X0)

−1X′
0. In words, the MRI

estimator of ATT in Equation B.2 can be written as the Hájek-type estimator in Equation
A.1.

Proof.

τ̂ regATT =
1

n(1)

∑
i:Zi=1

(Yi − m̂0(xi))

=
1

n(1)
z′y − 1

n(1)
1′
n(1)X1 (X

′
0X0)

−1
X′

0y0

=

∑n
i=1wiZiYi∑n
i=1wiZi

−
∑n

i=1wi(1− Zi)Yi∑n
i=1wi(1− Zi)

where w = (w(1)′ ,w(0)′)′, w(1) = 1n(1) , and w(0)′ = 1′
n(1)X1 (X

′
0X0)

−1X′
0. The last line

follows from the fact that w(1) and w(0) both sum to n(1) by construction (see Corollary
B.4).

More generally, we conjecture that any regression estimator in the form of Equation B.1
that constructs the estimates m̂1(·) and m̂0(·) with linear smoothers1 can be rewritten in the
form of Equation A.1.

Chattopadhyay and Zubizarreta (2023) also showed that the OLS estimator of τ in Equa-
tion B.3 (the URI estimator) is equivalent to the Hájek-type estimator in Equation A.1.
Again, we build on that work with a slightly different proof. The resulting weights are iden-
tical to the Chattopadhyay and Zubizarreta (2023) URI weights up to a different normalizing
constant.

1For instance, see the discussion on p. 159 of Bishop (2006).
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Begin by defining U = (X, z) to be the n× (k + 2) matrix formed by concatenating the
vector of treatment indicators z to the right of the matrix of pre-treatment covariates X. U1

and U0 are similarly defined to be U1 = (X,1n) and U0 = (X,0n) where 0n is an n-vector
of 0s.

Proposition B.3 (The URI Estimator is a WATE Estimator
(Chattopadhyay and Zubizarreta) ). The OLS estimator, τ̂ , of τ in

y = Xβ + zτ + ϵ

is:

τ̂ =

∑n
i=1 wiZiYi∑n
i=1wiZi

−
∑n

i=1wi(1− Zi)Yi∑n
i=1 wi(1− Zi)

where the n-vector of weights is:

w = w(1) ◦ z + w(0) ◦ (1n − z)

where ◦ denotes the Hadamard (element-by-element) product,

w(1)′ = 1′
nU1(U

′U)−1U′ − 1′
nU0(U

′U)−1U′,

and

w(0)′ = 1′
nU0(U

′U)−1U′ − 1′
nU1(U

′U)−1U′.

Proof. Define m̂(1) = U1(U
′U)−1U′y and m̂(0) = U0(U

′U)−1U′y and note that

τ̂ =
1

n

n∑
i=1

(
m̂

(1)
i − m̂

(0)
i

)
.
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Then write:

τ̂ =
1

n

n∑
i=1

(
m̂

(1)
i − m̂

(0)
i

)

=
1

n

(
1′
nU1(U

′U)−1U′y − 1′
nU0(U

′U)−1U′y
)

=
1

n

(
w̃(1)′y − w̃(0)′y

)
=

1

n

((
w̃(1) − w̃(0)

)′
y
)

=
1

n

(
n∑

i=1

(
w̃

(1)
i − w̃

(0)
i

)
ZiYi +

n∑
i=1

(
w̃

(1)
i − w̃

(0)
i

)
(1− Zi)Yi

)

=
1

n

(
n∑

i=1

(
w̃

(1)
i − w̃

(0)
i

)
ZiYi −

n∑
i=1

(
w̃

(0)
i − w̃

(1)
i

)
(1− Zi)Yi

)

=
1

n

n∑
i=1

wiZiYi −
1

n

n∑
i=1

wi(1− Zi)Yi

=

∑n
i=1 wiZiYi∑n
i=1wiZi

−
∑n

i=1wi(1− Zi)Yi∑n
i=1 wi(1− Zi)

where

wi =


(
w̃

(1)
i − w̃

(0)
i

)
if Zi = 1(

w̃
(0)
i − w̃

(1)
i

)
if Zi = 0.

Note that the last line in the derivation follows because, as we prove in Proposition B.4,
n =

∑n
i=1 wiZi and n =

∑n
i=1 wi(1− Zi).

In other words, the n-vector of weights is:

w = w(1) ◦ z + w(0) ◦ (1n − z)

where ◦ denotes the Hadamard (element-by-element) product,

w(1)′ = 1′
nU1(U

′U)−1U′ − 1′
nU0(U

′U)−1U′,

and

w(0)′ = 1′
nU0(U

′U)−1U′ − 1′
nU1(U

′U)−1U′.
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B.2 Properties of Regression WATE Weights

Chattopadhyay and Zubizarreta (2023) proved a number properties of the MRI and URI
weights. We exactly restate some of those results (the results regarding the perfect mean
covariate balance produced by these weights), restate some results in a very slightly modified
form (the results related to the sums of the weights), and present new results for our measures
of extrapolation.

We begin by looking at the weights for the MRI estimator of ATE in Equation B.1—
τ̂ regATE. We assume that X, X1, and X0 are as defined above. In addition, we define:

EXTRAP(0) =

∑n
i=1 |w

(0)
i |I(w(0)

i < 0)(1− zi)∑n
i=1 w

(0)
i I(w(0)

i ≥ 0)(1− zi)

and

EXTRAP(1) =

∑n
i=1 |w

(1)
i |I(w(1)

i < 0)zi∑n
i=1w

(1)
i I(w(1)

i ≥ 0)zi

as in the body of the paper.

Proposition B.4 (Properties of the Regression Weights for ATE). The weights, w =
(w(1)′ ,w(0)′)′ in the following estimator:

τ̂ regATE =
1

n

n∑
i=1

(m̂1(xi)− m̂0(xi)) =

∑n
i=1wiZiYi∑n
i=1wiZi

−
∑n

i=1 wi(1− Zi)Yi∑n
i=1wi(1− Zi)

where w(1)′ = 1′
nX (X′

1X1)
−1X′

1 and w(0)′ = 1′
nX (X′

0X0)
−1X′

0, have the following proper-
ties:

1.
∑n(0)

i=1 w
(0)
i = n

2.
∑n(1)

i=1 w
(1)
i = n

3. 0 ≤ EXTRAP(0) < 1

4. 0 ≤ EXTRAP(1) < 1

5. ASMD(x) = 0 for all x variables included in X

6. TASMD(x(0)) = 0 for all x variables included in X

7. TASMD(x(1)) = 0 for all x variables included in X
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Proof. Recall that for this estimator, P1 = X (X′
1X1)

−1X′
1, P0 = X (X′

0X0)
−1X′

0, w
(1)′ =

1′
nP1 and w(0)′ = 1′

nP0 where 1n is an n-vector of ones.
Looking at w(1)′ (the weights applied to the treated units) we have:

w(1)′ = 1′
nP1

= 1′
n(X (X′

1X1)
−1

X′
1).

Transposing both sides we get:

w(1) = (X (X′
1X1)

−1
X′

1)
′1n

= X1 (X
′
1X1)

−1
X′1n.

Premultiplying both sides by X′
1 we get:

X′
1w

(1) = X′
1X1 (X

′
1X1)

−1
X′1n

X′
1w

(1) = X′1n = s

Analogous arguments give us X′
0w

(0) = X′1n = s. We thus have:

X′
1w

(1) = X′
0w

(0) = X′1n = s (B.4)

Note that s is the (k + 1) × 1 vector holding the column sums of X. Two facts follow
from Equation B.4.

First, since the first columns of X, X1, and X0 are all vectors of ones, w
(1) and w(0) must

both sum to n. This proves the first two properties. Chattopadhyay and Zubizarreta (2023)
prove an analogous result for MRI weights that are proportional to our w(1) and w(0) but
that sum to 1.

The fact that w(1) and w(0) both sum to n > 0 implies that the denominators of
EXTRAP(0) and EXTRAP(1) are positive and that the numerators are less than the re-
spective denominators. This, together with the absolute value function in the numerators
ensures that properties 3 and 4 are true.

Finally, Chattopadhyay and Zubizarreta (2023) have proved versions of properties 5, 6,
and 7 for their MRI weights. Those results obviously carry over to our weights which are
proportional to theirs.

One can also demonstrate this directly with our notation. With w = (w(1)′ ,w(0)′)′ we
have ∑n

i=1 wizixik∑n
i=1wizi

=

∑n
i=1wi(1− zi)xik∑n
i=1wi(1− zi)

=
1

n

n∑
i=1

xik

where wi is the ith element of w and xik is the value of the kth column of X for the ith
unit. In words, the weighted mean of any column of X1 is equal to the weighted mean of
the same column of X0 (with weights w(1) and w(0) respectively); and both are equal to the
simple sample mean of the same column of X. In other words, the regression estimator, by
construction, will always produce perfect weighted mean balance on all measured covariates
included in X—both in terms of ASMD and TASMD. This proves properties 5, 6, and 7.
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We next look at the weights for the MRI estimator of ATE in Equation B.1— τ̂ regATE.

Corollary B.4 (Properties of the MRI Weights for ATT). The weights, w = (w(1)′ ,w(0)′)′

in the following estimator:

τ̂ regATT =
1

n(1)

∑
i:Zi=1

(Yi − m̂0(xi)) =

∑n
i=1wiZiYi∑n
i=1 wiZi

−
∑n

i=1wi(1− Zi)Yi∑n
i=1wi(1− Zi)

where w(1) = 1n(1), and w(0)′ = 1′
n(1)X1 (X

′
0X0)

−1X′
0. have the following properties:

1.
∑n(0)

i=1 w
(0)
i = n(1)

2.
∑n(1)

i=1 w
(1)
i = n(1)

3. 0 ≤ EXTRAP(0) < 1

4. 0 ≤ EXTRAP(1) < 1

5. ASMD(x) = 0 for all x variables included in X

6. TASMD(x(0)) = 0 for all x variables included in X

7. TASMD(x(1)) = 0 for all x variables included in X

Proof. Again, Chattopadhyay and Zubizarreta (2023) have proven essential the same results
with the exception of 3 and 4 which reference our measure of extrapolation.

It is also straightforward to deduce these results using logic analogous to that in the proof
of Proposition B.4.

Begin with w(0)′ .
w(0)′ = 1′

n(1)X1 (X
′
0X0)

−1
X′

0

Transposing both sides we get:

w(0) = (X1 (X
′
0X0)

−1
X′

0)
′1n(1)

= X0 (X
′
0X0)

−1
X′

11n(1) .

Premultiplying both sides by X′
0 we get:

X′
0w

(0) = X′
0X0 (X

′
0X0)

−1
X′

11n(1)

X′
0w

(0) = X′
11n(1) = s1

In words, the weighted column sums of X0 (with weights equal to w(0)) equal the weighted
column sums of X1 (with weights equal to w(1) = 1n(1)) which are the same as the unweighted
column sums of X1. Logic similar to that in the proof of Proposition B.4 completes the
proof.
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Finally, Chattopadhyay and Zubizarreta (2023) have proved a number of related results
for the URI estimator. We restate those results2 in our notation and also provide additional
results related to our measure of extrapolation. In doing so, we use the same notation as used
earlier in this section and write the URI regression estimator in the form of the Hájek-type
estimator from Proposition B.3.

Proposition B.5 (Properties of the URI Estimator). The weights, w, in the following
estimator:

τ̂ =

∑n
i=1 wiZiYi∑n
i=1wiZi

−
∑n

i=1wi(1− Zi)Yi∑n
i=1 wi(1− Zi)

where the n-vector of weights is:

w = w(1) ◦ z + w(0) ◦ (1n − z)

where ◦ denotes the Hadamard (element-by-element) product,

w(1)′ = 1′
nU1(U

′U)−1U′ − 1′
nU0(U

′U)−1U′,

and
w(0)′ = 1′

nU0(U
′U)−1U′ − 1′

nU1(U
′U)−1U′.

have the following properties:

1.
∑n(0)

i=1 w
(0)
i = n

2.
∑n(1)

i=1 w
(1)
i = n

3. 0 ≤ EXTRAP(0) < 1

4. 0 ≤ EXTRAP(1) < 1

5. ASMD(x) = 0 for all x variables included in X

6. If the estimand is ATE, TASMD(x(0)) = 0 for all x variables included in X

7. If the estimand is ATE, TASMD(x(1)) = 0 for all x variables included in X

Proof. Recall from the proof of Proposition B.3 that

w̃(1)′ = 1′
nU1(U

′U)−1U′

2Results 1 and 2 about the sum of the weights look different, but are effectively the same as the Chat-
topadhyay and Zubizarreta (2023) results once one realizes that the weights are differently normalized in
their paper and our paper.
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Transposing both sides we get:

w̃(1) = (U1 (U
′U)

−1
U′)′1n

= U (U′U)
−1

U′
11n.

Premultiplying both sides by U′ we get:

U′w̃(1) = U′U (U′U)
−1

U′
11n

U′w̃(1) = U′
11n = s1

An analogous argument gives
U′w̃(0) = U′

01n = s0

Since the last column of U is z, the last column of U1 is 1n, and the last column of U0 is 0n,
these expressions tell us that z′w̃(1) = n and z′w̃(0) = 0. Thus z′w = z′(w̃(1) − w̃(0)) = n.
In words, w(1) sums to n. An analogous argument can be used to show that (1n − z)′w =
(1n − z)′(w̃(0) − w̃(1)) = n. In words, w(0) sums to n. This proves properties 1 and 2.

The fact that w(1) and w(0) both sum to n > 0 implies that the denominators of
EXTRAP(0) and EXTRAP(1) are positive and that the numerators are less than the re-
spective denominators. This, together with the absolute value function in the numerators
ensures that properties 3 and 4 are true.

Finally, note that since U, U1 and U0 only differ on their last column (which corresponds
to the observed or hypothetical value of z) and because z′w̃(0) = 0 and (1n − z)′w̃(1) = 0 it
will be the case that

x′
k(w ◦ z) = x′

k(w̃
(1) ◦ z)− x′

k(w̃
(0) ◦ z) = x′

k(w̃
(1) ◦ z) = x′

k1n

and

x′
k(w ◦ (1n − z)) = x′

k(w̃
(0) ◦ (1n − z))− x′

k(w̃
(1) ◦ (1n − z)) = x′

k(w̃
(0) ◦ (1n − z)) = x′

k1n

where xk is an arbitrary column of X. This, along with the fact that w(1) and w(0) each sum
to n, implies: ∑n

i=1wizixik∑n
i=1wizi

=

∑n
i=1wi(1− zi)xik∑n
i=1wi(1− zi)

=
1

n

n∑
i=1

xik

where wi is the ith element of w and xik is the value of the kth column of X for the ith
unit. In words, the weighted mean of any column of X1 is equal to the weighted mean of
the same column of X0 (with weights w(1) and w(0) respectively); and both are equal to the
simple sample mean of the same column of X. In other words, the constant effects regression
estimator, by construction, will always produce perfect weighted mean balance on all mea-
sured covariates included in X in terms of ASMD. If the estimand is ATE, TASMD(x(1)) and
TASMD(x(0)) will also be equal to 0 for all x variables included in X. This proves properties
5, 6, and 7.
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C WATE Weights for 1:M Matching with Replacement

In this appendix, we derive the Hájek-type estimator weights for 1:M matching with replace-
ment. The algorithm used to create the matches does not affect the results below.

Following Abadie and Imbens (2006) we define

Ŷi(0) =


Yi if Zi = 0

1
M
∑
j∈Ji

Yj if Zi = 1

and

Ŷi(1) =


Yi if Zi = 1

1
M
∑
j∈Ji

Yj if Zi = 0

where Ji is the set of M unit indices of the units matched to unit i. Define

Ki =
n∑

l=1

I(i ∈ Jl)

to be the number of times that unit i is used as a match. Since we are considering matching
with replacement, Ki can be greater than 1.

Following Abadie and Imbens (2006, p. 241), the 1:M matching estimator of ATE can
be written as:

τ̂MATE =
1

n

n∑
i=1

(
Ŷi(1)− Ŷi(0)

)

=
1

n

n∑
i=1

(2Zi − 1)

(
1 +

Ki

M

)
Yi

=
1

n

∑
i:Zi=1

(
1 +

Ki

M

)
Yi −

1

n

∑
i:Zi=0

(
1 +

Ki

M

)
Yi

=
1

n

n∑
i=1

(
1 +

Ki

M

)
ZiYi −

1

n

n∑
i=1

(
1 +

Ki

M

)
(1− Zi)Yi

=

∑n
i=1w

(1)
i ZiYi∑n

i=1w
(1)
i Zi

−
∑n

i=1w
(0)
i (1− Zi)Yi∑n

i=1 w
(0)
i (1− Zi)

where w
(1)
i = w

(0)
i =

(
1 + Ki

M

)
and the last line follows from the fact that

∑n
i=1

(
1 + Ki

M

)
Zi =∑n

i=1

(
1 + Ki

M

)
(1 − Zi) = n. Thus, this matching estimator can be rewritten as the Hájek-

type estimator in Equation A.1.
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Relatedly, the 1:M matching estimator of ATT can be written as:

τ̂MATT =
1

n(1)

∑
i:Zi=1

(
Yi − Ŷi(0)

)

=
1

n(1)

n∑
i=1

(
Zi − (1− Zi)

Ki

M

)
Yi

=
1

n(1)

∑
i:Zi=1

Yi −
1

n(1)

∑
i:Zi=0

Ki

M
Yi

=
1

n(1)

n∑
i=1

ZiYi −
1

n(1)

n∑
i=1

Ki

M
(1− Zi)Yi

=

∑n
i=1 w

(1)
i ZiYi∑n

i=1w
(1)
i Zi

−
∑n

i=1w
(0)
i (1− Zi)Yi∑n

i=1w
(0)
i (1− Zi)

where w
(1)
i = 1 if Zi = 1 and w

(0)
i = Ki

M
if Zi = 0 and the last line follows from the fact that∑n

i=1 Zi =
∑n

i=1

(
Ki

M

)
(1 − Zi) = n(1). Thus, this matching estimator can also be rewritten

as the Hájek-type estimator in Equation A.1.
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D Effective Sample Size Derivations

Rewrite Equation A.1 as:

τ̂h =

∑
i:Zi=1w

(1)
hi Yi∑

i:Zi=1w
(1)
hi

−
∑

i:Zi=0 w
(0)
hi Yi∑

i:Zi=0w
(0)
hi

.

Assume that
V[Y |Z = 1] = V[Y |Z = 0] = V[Y ] = σ2.

The variance of τ̂h given the weights is:

V [τ̂h] =

∑
i:Zi=1

(w
(1)
hi )

2V [Yi]( ∑
i:Zi=1

w
(1)
hi

)2 +

∑
i:Zi=0

(w
(0)
hi )

2V [Yi]( ∑
i:Zi=0

w
(0)
hi

)2

=

σ2
∑

i:Zi=1

(w
(1)
hi )

2

( ∑
i:Zi=1

w
(1)
hi

)2 +

σ2
∑

i:Zi=0

(w
(0)
hi )

2

( ∑
i:Zi=0

w
(0)
hi

)2

=
σ2

n
(1)
eff

+
σ2

n
(0)
eff

=
σ2n

(0)
eff + σ2n

(1)
eff

n
(1)
eff n

(0)
eff

= σ2n
(0)
eff + n

(1)
eff

n
(1)
eff n

(0)
eff

Note that the validity of this expression does not depend on the weights being positive.
By analogy to V[Ȳ ] = V[Y ]/n, where Ȳ is the sample mean of Y (see Kish (1965)), we

say that the effective sample size for this weighted estimator is

neffw =
n
(1)
eff n

(0)
eff

n
(0)
eff + n

(1)
eff

(D.1)

where

n
(0)
eff =

( ∑
i:Zi=0

w
(0)
hi

)2

∑
i:Zi=0

(w
(0)
hi )

2
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and

n
(1)
eff =

( ∑
i:Zi=1

w
(1)
hi

)2

∑
i:Zi=1

(w
(1)
hi )

2
.

Note that n
(0)
eff , n

(1)
eff , and thus neffw do not change if the weights are rescaled by a constant

term.3

A special case of the above occurs when the weights are constant within the treated and
control groups. This situation is equivalent to the difference of conditional means estimator

τ̂ =
1

n(1)

∑
i:Zi=1

Yi −
1

n(0)

∑
i:Zi=0

Yi

where n(1) =
∑n

i=1 Zi and n(0) =
∑n

i=1(1 − Zi) are the number of treated and control units
respectively. Again assuming

V[Y |Z = 1] = V[Y |Z = 0] = V[Y ] = σ2.

we calculate the variance of this estimator as

V [τ̂ ] =
σ2

n(1)
+

σ2

n(0)

=
σ2n(0) + σ2n(1)

n(1)n(0)

= σ2n
(0) + n(1)

n(1)n(0)

By analogy to the variance of the sample mean (V[Ȳ ] = V[Y ]/n), we say that the effective
sample size for this estimator is

n(1)n(0)

n(0) + n(1)
.

Note the similarity to the expression for neffw in Equation D.1.
A special case of this occurs when there are equal numbers of treated and control units:

n(1) = n(0) = n/2. Substituting and simplifying, we get get an effective sample size of n/4.

We next prove the claim made in the main body of the manuscript that:

0 < n
(0)
eff ≤ n(0)

0 < n
(1)
eff ≤ n(1)

3Removing unnecessary superscripts and subscripts, we have (
∑

i cwi)
2
/
(∑

i (cwi)
2
)

=

(c
∑

i wi)
2
/
(∑

i c
2w2

i

)
=
(
c2(
∑

i wi)
2
)
/
(
c2
∑

i w
2
i

)
= (

∑
i wi)

2
/
(∑

i w
2
i

)
for an arbitrary constant

c.
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and

0 < neffw ≤ n(1)n(0)

n(0) + n(1)
≤ n/4.

We begin with a lemma.

Lemma D.1. Let n be an integer greater than or equal to 1 and let wi ∈ R, i = 1, . . . , n be
a sequence of weights with at least one wi ̸= 0. Then

n∗ =
(
∑n

i=1 wi)
2∑n

i=1w
2
i

≤ n.

Proof. Let w = (w1, . . . , wn)
′ and let 1n be an n-vector of 1s. Then write

n∗ =
(w′1n)

2

w′w

By the Cauchy-Schwarz inequality we know

(w′1n)
2 ≤ (w′w) (1′

n1n) .

Thus

n∗ =
(w′1n)

2

w′w
≤ 1′

n1n = n.

which completes the proof.
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Proposition D.2 (Bounds on the Effective Sample Size). Let n be an integer greater than
or equal to 2, n(1) be a positive integer less than n, and n(0) = n− n(1). Further, let wi ∈ R
such that

∑n(1)

i=1 wi ̸= 0 and
∑n

i=(n(1)+1)wi ̸= 0. Define

neffw
=

n
(1)
eff n

(0)
eff

n
(0)
eff + n

(1)
eff

where

n
(0)
eff =

(∑n
i=(n(1)+1) wi

)2∑n
i=(n(1)+1) w

2
i

and

n
(1)
eff =

(∑n(1)

i=1 wi

)2
∑n(1)

i=1 w
2
i

.

Then:
0 < n

(0)
eff ≤ n(0) (D.2)

0 < n
(1)
eff ≤ n(1) (D.3)

0 < neffw
≤ n(1)n(0)

n(0) + n(1)
≤ n/4. (D.4)

Proof. Inequalities D.2 and D.3 follows directly from Lemma D.1.
For inequality D.3, begin by considering how to choose n(0) and n(1) to maximize

n(1)n(0)

n(0) + n(1)
=

(n− n(0))n(0)

n
.

If we treat n as fixed and n(0) as continuous, elementary calculus reveals that this expression
is maximized when n(0) = (1/2)n = n(1). From Lemma D.1 we know that n

(0)
eff ≤ n(0)

and n
(1)
eff ≤ n(1). Thus the maximum value of neffw is n/4 when n

(0)
eff = n(0) = (1/2)n and

n
(1)
eff = n(1) = (1/2)n.

To show that n(1)n(0)

n(0)+n(1) ≥ neffw for values of n(1) and n(0) other than (1/2)n, consider n
(1)
eff

fixed and write

f(n
(0)
eff ) =

n
(1)
eff n

(0)
eff

n
(0)
eff + n

(1)
eff

.

After some simplification, the first derivative can be written as:

f ′(n
(0)
eff ) =

n
(1)
eff

n
(1)
eff + n

(0)
eff

− n
(1)
eff

n
(1)
eff + n

(0)
eff

× n
(0)
eff

n
(1)
eff + n

(0)
eff
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This will be strictly greater than 0 as long as n
(1)
eff and n

(0)
eff are positive which is guaranteed

by the assumption that
∑n(1)

i=1 wi ̸= 0 and
∑n

i=(n(1)+1) wi ̸= 0. Thus, when n
(1)
eff is fixed, the

maximum value of neffw is obtained by setting n
(0)
eff equal to its maximum possible value of

n(0). By symmetry, when n
(0)
eff is fixed, the maximum value of neffw is obtained by setting n

(1)
eff

equal to its maximum possible value of n(1). Thus, for given values of n(0) and n(1) we have
neffw ≤ n(1)n(0)

n(0)+n(1) .

Finally, because n
(1)
eff and n

(0)
eff are positive (again, guaranteed by the assumption that∑n(1)

i=1 wi ̸= 0 and
∑n

i=(n(1)+1) wi ̸= 0), we know that 0 < neffw

E Calculating DFBETA for Hájek-Type Estimators

The following is based on Li and Valliant (2011).
Recall from the main body of the paper that the Hájek-type estimator of τ̂h in Equa-

tion A.1 is equivalent to the weighted least squares (WLS) estimator of τh in the following
bivariate regression of the observed outcomes on the treatment indicator (Imbens, 2004):

Yi = β0 + Ziτh + ϵi, i = 1, . . . , n (E.1)

with the ith regression weight equal to:

ωi = Ziw
(1)
h (xi) + (1− Zi)w

(0)
h (xi).

Define Ω to be the n× n diagonal matrix with

ωii =

{
w

(1)
hi if Zi = 1

w
(0)
hi if Zi = 0

and let X̃ be the n×2 matrix with 1s in the first column and Z in the second column. Then

β̂ =
(
X̃′ΩX̃

)−1

X̃′Ωy

ϵ̂ = y − X̃β̂

A = X̃′ΩX̃

DFBETAi =
A−1xiϵ̂iωii

1− hi

where
hi = ωii

(
x̃′
iA

−1x̃i

)
and ωii is the ith diagonal element of Ω (Li and Valliant, 2011).
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F Application I: Promotion-Seeking Judges

In this section, we present additional results from our re-analysis of Black and Owens (2016).
First, following Figure 1 in the main text, Figure A1 shows the diagnostic plots for non-
contender judges.

TASMD

Circuit med

Court reversal

Ideo. Distance

JCS score

Panel JCS

SC med

0.0 0.2 0.4 0.6 0.8

Raw Data
Regression (MRI)
Regression (URI)
PScores
Ebal
NNmatch
CEM

(a) Non-contender Judges: TASMD

KS Statistics

Circuit med

Court reversal

Ideo. Distance

JCS score

Panel JCS

SC med

0.0 0.1 0.2 0.3 0.4

Raw Data
Regression (MRI)
Regression (URI)
PScores
Ebal
NNmatch
CEM

(b) Non-contender Judges: KS

Figure A1: Weighted Mean Covariate Balance (Assessed by TASMD) and KS Test Statis-
tic for Control Units Using Multiple ATT Estimation Methods in the Re-analysis of Black
and Owens (2016) for Non-contender Judges. In TASMD plots, each symbol shows the
standardized difference between the weighted mean of the control and treated data for each
covariate and method. The gray vertical line marks where the TASMD value is 0.1. In KS
test statistic plots, each symbol shows the maximum absolute difference in the empirical
cumulative distribution functions (ECDFs) of the control and treated groups, using both
raw and weighted control data. The gray vertical line marks KS statistics at 0. SC med is
the JCS score of the median Supreme Court justice; Panel JCS is the ideological distance
between a judge and the remaining panelists; JCS score is each judge’s JCS score; Ideo.
Distance is the ideological distance between the judge and the president; Court reversal

is whether the circuit court reversed the lower court; Circuit med is the JCS score of the
median judge on the circuit.

Second, Table A1 presents estimates of ATE and diagnostics from several estimation
methos. In each case, the results do not support the authors’ hypotheses about promotion
seeking judges.
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ATE SE Effective Effective DFBETA Minimum DFBETA Maximum Extrapolation
Estimate Sample Sample Size Value Judge Value Judge Control Treatment

Size Ratio Units Units
The Contender Judges
Regression (MRI) 0.098 0.012 1527.0 0.609 -0.001 Cornelia G. Kennedy 0.000 Amalya Lyle Kearse 0.002 0.026
Regression (URI) 0.068 0.011 1823.6 0.727 -0.000 Cornelia G. Kennedy 0.000 Merrick Garland 0.027 0.000
Propensity Score Weighting 0.066 0.013 1252.8 0.500 -0.002 Cornelia G. Kennedy 0.002 Cornelia G. Kennedy
Entropy Balancing 0.095 0.010 1356.0 0.541 -0.002 Harrie B. Chase 0.001 Amalya Lyle Kearse
Nearest-Neighbor Matching 0.051 0.007 521.3 0.208 -0.007 Edith Clement 0.006 Cornelia G. Kennedy

The Non-Contender Judges
Regression (MRI) 0.029 0.009 3223.8 0.928 -0.000 NA 0.000 NA 0.000 0.000
Regression (URI) 0.040 0.009 3413.8 0.983 -0.000 NA 0.000 NA 0.000 0.000
Propensity Score Weighting 0.032 0.009 3114.6 0.897 -0.000 NA 0.000 NA
Entropy Balancing 0.031 0.008 3217.2 0.926 -0.000 NA 0.000 NA
Nearest-Neighbor Matching 0.026 0.004 2306.1 0.664 -0.001 NA 0.002 NA

Table A1: Re-analysis of Black and Owens (2016) with Multiple Approaches to Estimating
ATE. The Regression (MRI) rows correspond to the MRI estimator of ATE. The Regression
(URI) rows correspond to the URI estimator. The Propensity Score Weighting rows corre-
spond to the propensity score weighting estimator of ATE in which the propensity scores are
estimated via logistic regression. The Entropy Balancing rows correspond to the entropy bal-
ancing estimator of ATE as implemented in the WeightIt R package. The Nearest-Neighbor
Matching rows correspond to 1:1 nearest neighbor propensity score matching using the Match
function in the Matching R package and the same estimated propensity scores as above. The
minimum and maximum DFBETA values actually correspond to votes by particular judges
on particular cases (the units in the study). The listed judge names are the names of the
judges from those influential judge-case combinations. Judge names were not reported in
the non-contender dataset.

G Application II: Wealth-Maximizing Politicians

Following Figure 3 in the main text, Figure A2 shows the TASMD and KS statistics di-
agnostic plots for the treated and control units separately using multiple ATE estimation
methods.
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(b) Conservative Losers (Control): TASMD

KS Statistics (Treated)
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Figure A2: Weighted Mean Covariate Balance (Assessed by TASMD) and KS Test Statis-
tic All Units Using Multiple ATE Estimation Methods in the Re-analysis of Eggers and
Hainmueller (2009). In TASMD plots, each symbol represents the standardized difference
between the weighted mean of the control units and the sample mean, and weighted mean of
the treated units and the sample mean for each covariate and method. The gray vertical line
marks where the TASMD value is 0.1. In KS test statistic plots, each symbol represents the
maximum absolute difference in the empirical cumulative distribution functions (ECDFs)
between the control and the sample mean, and between the treated group and the sample
mean. The gray vertical line marks KS statistics at 0.
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