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A Algorithm
Algorithm 1 summarizes the estimation strategy. We first randomly split the sample into K folds
for cross-fitting. Next, we employ the “probability forest” and “quantile forest”—both are variants
of grf—to estimate the nuisance parameters, using (K − 1) folds from the sample. Then, we rely on
the remaining fold to estimate either the conditional or the aggregated bounds, with the previously
estimated nuisance parameters plugged in. The aggregated bounds can be directly estimated by
the sample analogues of their orthogonalized moment conditions. For the conditional ones, we first
estimate θ(x) = (θL1 (x), θU1 (x), θ0(x)) by applying the “regression forest,” another variant of grf, to
their orthogonalized moment conditions, and then calculate the bounds according to their definition.

Algorithm 1: Honest inference for the covariate-tightened trimming bounds
1 Define the set of covariates X = (X1, . . . , XP ) and evaluation points X (all sample

values for aggregate bounds or specified evaluation points for conditional bounds).
2 Randomly split the sample into K sets (I1, I2, . . . , IK) with approximately equal size.
3 for each k ∈ {1, 2, . . . , K} do
4 Fit the q(X) model using the probability forests on I−k = ∪j 6=kIj.
5 For any x ∈ X , treat q(x) as fixed and fit the models (yq(x)(X), y1−q(x)(X)) using

the quantile forests on I−k.
6 Treat q(x), yq(x)(x) and y1−q(x)(x) as pre-fixed, construct orthogonalized moment

conditions, and fit them on Ik.
7 Calculate estimates for the conditional bounds (τ̂UCTB,x(1, 1), τ̂LCTB,x(1, 1)) or

aggregated bounds (τ̂UCTB(1, 1), τ̂LCTB(1, 1)) using the orthogonalized moment
conditions.

8 Take the average over the K estimates.

In the next section of the Appendix, we show formally that following Algorithm 1 yields
estimates of either the conditional bounds, (τ̂UCTB,x(1, 1), τ̂LCTB,x(1, 1)), or the aggregated bounds,
(τ̂UCTB(1, 1), τ̂LCTB(1, 1)), that are consistent and asymptotically Normal. Inference based on this
algorithm is honest by the definition of Athey and Imbens (2016), because it accounts for the
uncertainties caused by estimating nuisance parameters properly. For the conditional bounds, the
standard error estimates are available from the regression forest output. For the aggregated bounds,
we can calculate their standard errors from the variance of the orthogonalized moment conditions.
We can then use normal approximation to construct asymptotically valid confidence intervals for
either the conditional or the aggregated bounds. Note that they are not confidence intervals for the
average always-responder effect per se, but rather for the bounds, and hence tend to be conservative
in covering the true always-responder effect (Imbens and Manski, 2004; Stoye, 2009).
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B Proofs
B.1 Improvement from incorporating covariates
Here we show how incorporating the information from covariates reduces the length of the partially
identified set (i.e., the length of the interval between the bounds). We first re-state a lemma from
Lee (2002):
Lemma B.1. Suppose fY (y) = qf †Y (y) + (1− q)f ‡Y (y), then

1
q

∫ yq

−∞
yfY (y)dy ≤

∫
yf †Y (y)dy,

1
1− q

∫ ∞
y1−q

yfY (y)dy ≥
∫
yf ‡Y (y)dy,

where
∫ yq

−∞ fY (y)dy = q.

Proof. Let’s denote
∫∞
yq
f †Y (y)dy as κ, then

1
κ

[1
q

∫ yq

−∞
yfY (y)dy −

∫
yf †Y (y)dy

]
=
∫ yq

−∞
y
fY (y)/q − f †Y (y)

κ
dy −

∫ ∞
yq

y
f †Y (y)
κ

dy.

Note that
∫ yq

−∞
fY (y)/q−f†Y (y)

κ dy = 1
κ −

1−κ
κ = 1 and

∫∞
yq

f†Y (y)
κ dy = 1, hence the first term is the

expectation of Y over [−∞, yq] and the second is the expectation of Y over [yq,∞]. As the first
support is below the second one, the first expectation is always smaller than the second as long as
f †Y (y) is not degenerate. The other inequality can be similarly proved.

For the lower bound, we define
f †Y |D=0,S=1,X=x(y) = fY |D=0,S=1,X=x(y)1{y ≤ yq(x)(x)}/q(x)

f ‡Y |D=0,S=1,X=x(y) = fY |D=0,S=1,X=x(y)1{y ≥ yq(x)(x)}/(1− q(x))

f †Y |D=0,S=1(y) =
∫
f †Y |D=0,S=1,X=x(y)q(x)

q
fX|D=0,S=1(x)dx

f ‡Y |D=0,S=1(y) =
∫
f ‡Y |D=0,S=1,X=x(y)1− q(x)

1− q fX|D=0,S=1(x)dx.

Then, by definition,

fY |D=0,S=1(y) =
∫
fY |D=0,S=1,X=x(y)fX|D=0,S=1(x)dx

=
∫
f †Y |D=0,S=1,X=x(y)q(x)fX|D=0,S=1(x)dx

+
∫
f ‡Y |D=0,S=1,X=x(y)(1− q(x))fX|D=0,S=1(x)dx

=q
∫
f †Y |D=0,S=1,X=x(y)q(x)

q
fX|D=0,S=1(x)dx

+ (1− q)
∫
f ‡Y |D=0,S=1,X=x(y)1− q(x)

1− q fX|D=0,S=1(x)dx

=qf †Y |D=0,S=1(y) + (1− q)f ‡Y |D=0,S=1(y)
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From Lemma B.1, we know that

E[Yi|Di = 0, Si = 1, Yi ≤ yq] = 1
q

∫ yq

−∞
yfY |D=0,S=1(y)dy

≤
∫
yf †Y |D=0,S=1(y)dy =

∫ ∫
yf †Y |D=0,S=1,X=x(y)q(x)

q
fX|D=0,S=1(x)dxdy

=
∫
θL0 (x)q(x)

q
fX|D=0,S=1(x)dx

=
∫
θL0 (x)fX|D=1,S=1(x)dx

=E[E[Yi|Di = 0,Xi = x, Yi ≤ yq(x)(x)]]

The second to the last equality holds since by definition

q(x) =P [S = 1, D = 1|X = x]
p(x) = P [S = 1, D = 1,X = x]

p(x)P [X = x]

=P [X = x|S = 1, D = 1]P [S = 1, D = 1]
p(x)P [X = x]

=
fX|D=1,S=1(x)P [S = 1, D = 1]

p(x)fX|D=0,S=1(x)

=
qfX|D=1,S=1(x)
fX|D=0,S=1(x) .

From the derivation, we see that

E[Yi|Di = 0, Si = 1, Yi ≤ yq]− E[E[Yi|Di = 0,Xi = x, Yi ≤ yq(x)(x)]]

=1
q

∫ yq

−∞
yfY |D=0,S=1(y)dy −

∫
θL0 (x)q(x)

q
fX|D=0,S=1(x)dx

=
∫
θL0 fX|D=0,S=1(x)dx−

∫
θL0 (x)q(x)

q
fX|D=0,S=1(x)dx

=
∫
θL0 q − θL0 (x)q(x)

q
fX|D=0,S=1(x)dx

Therefore, the improvement is more pronounced when the θL0 q − θL0 (x)q(x) is small where
fX|D=0,S=1(x) is small.

Let’s consider a simple case where X takes two values {1, 2} with equal probability (0.5). Suppose
q(1) = 0.2, q(2) = 0.4, then q = 0.3. Note that

fY |D=0,S=1(y) = 0.5 ∗ fY |D=0,S=1,X=1(y) + 0.5 ∗ fY |D=0,S=1,X=2(y).

We illustrate why the CTB lead to a smaller identified set using Figure 1. The top-left plot shows
how we construct the lower bound using the basic method, where the trimming probability equals
0.3 for both values of X. We take expectation of Yi(1) over the shaded region under each condition
distribution and their average equals the lower bound of the treated outcome. The top-right plot
shows the idea behind the CTB, where the trimming probability equals 0.2 when X = 1 and 0.4
when X = 2. We follow the same steps, taking conditional expectations first and then calculating
their average. Note that in the two plots, the total area of the shaded region is the same. But the
value of Yi(1) is strictly larger in the top-right plot, as illustrated by the plot at the bottom. This
explains where the improvement comes from under the CTB.
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Figure 1: An illustration of the CTB
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B.2 Moment conditions
We start from the scenario where Assumptions 1 and 2 are satisfied. It is equivalent to conditioning
on the set X+ under Assumption 3. Following the terminology in the generalized method of
moments, we denote ν(x) = c(q0(x), q1(x), yq(x)(x), y1−q(x)(x)) as the nuisance parameters and
θ(x) = c(θ0(x), θL1 (x), θU1 (x)) as the target parameters. Note that q(x) = q0(x)

q1(x) and p(x) =
P (D = 1|X = x). To facilitate illustration, we focus on the modified target parameters θ̃(x) =
c(θ̃0(x), θ̃L1 (x), θ̃U1 (x)) = c(q0(x)θ0(x), q0(x)θL1 (x), q0(x)θU1 (x)). We use the superscript 0 to denote
the true value of a parameter. From their definition, we can see that the nuisance parameters satisfy
the following local moment conditions:

E
[
m(1)(Oi; ν(x))|Xi = x

]
= E [Si(1−Di)− q0(x)(1− p(x))|Xi = x] ,

E
[
m(2)(Oi; ν(x))|Xi = x

]
= E [SiDi − q1(x)p(x)|Xi = x] ,

E
[
m(3)(Oi; ν(x))|Xi = x

]
= E

[
SiDi1{Yi ≤ yq(x)(x)} − q0(x)p(x)|Xi = x

]
,

E
[
m(4)(Oi; ν(x))|Xi = x

]
= E

[
SiDi1{Yi ≥ y1−q(x)(x)} − q0(x)p(x)|Xi = x

]
.

For the target parameters, we can show that under Assumptions 1 and 2, they satisfy the following
local moment conditions:

E
[
ψ(1)(Oi; θ̃(x), ν(x))|Xi = x

]
= E

[
Si(1−Di)Yi − (1− p(x))θ̃0(x)|Xi = x

]
=(1− p(x))

[
q0

0(x)
∫
yfY |D=0,S=1,X=x(y)dy − θ̃0(x)

]
,

E
[
ψ(2)(Oi; θ̃(x), ν(x))|Xi = x

]
= E

[
SiDiYi1{Yi ≤ yq(x)(x)} − p(x)θ̃L1 (x)|Xi = x

]
=p(x)

[
q0

1(x)
∫ yq(x)(x)

−∞
yfY |D=1,S=1,X=x(y)dy − θ̃L1 (x)

]
,

E
[
ψ(3)(Oi; θ̃(x), ν(x))|Xi = x

]
= E

[
SiDiYi1{Yi ≥ y1−q(x)(x)} − p(x)θ̃U1 (x)|Xi = x

]
=p(x)

[
q0

1(x)
∫ ∞
y1−q(x)(x)

yfY |D=1,S=1,X=x(y)dy − θ̃U1 (x)
]
.

When X is discrete or low-dimensional, we can approximate each of the moment conditions with
stratification or kernel regression (Lee, 2009; Olma, 2020). We then solve ν(x) from their moment
conditions and plug their values into the moment conditions above to solve θ(x). Nevertheless, with
a large number of covariates, this approach suffers from the “curse of dimensionality” (Robins and
Ritov, 1997). Therefore, we adopt the generalized random forest algorithm (grf ) (Wager and Athey,
2018; Athey et al., 2019) to approximate each moment condition with the following expression:

E[ψθ(x),ν(x)(Oi)|Xi = x] ≈
N∑
i=1

αi(x)ψθ(x),ν(x)(Oi)

where ψ(·) represents the moment function, Oi = (Yi, Si, Di), and αi(x) is an adaptive kernel that
weights the contribution of each observation i to the moment condition evaluated at x. The grf
estimation of αi(x) is “honest” in the sense that only half of each sub-sample is used to train the
tree and the other half is reserved for making predictions. We can estimate any parameter by
minimizing its approximated local moment condition’s L2 norm, ||

∑N
i=1 αi(x)ψθ(x),ν̂(x)(Oi)||2.
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Nevertheless, as illustrated in the main text, using the same sample to estimate both ν(x)
and θ(x) leads to the regularization bias. It can be avoided if we implement both cross-fitting
and Neyman orthogonalization (Belloni et al., 2017; Chernozhukov et al., 2018). The idea behind
Neyman orthogonalization is to adjust the local moment conditions for θ(x) such that they are
invariant to small perturbations of the estimated ν(x). To be more precise, If a moment condition
ψ(·) satisfies Neyman orthogonality, then the following two equations must hold:

E[ψθ0(x),ν0(x)(Oi)|Xi = x] = 0,

and
∂

∂ν
E[ψθ0(x),ν(x)(Oi)|Xi = x]|ν(x)=ν0(x) = 0.

The process of modifying a moment condition such that it satisfies the two equations is termed as
Neyman orthogonalization.

Note that our algorithm is essentially a three-step process: we first estimate q(x), then
(yq(x)(x), y1−q(x)(x)), finally the conditional or aggregated bounds, with the estimates of nuisance
parameters plugged in. Therefore, to conduct Neyman orthogonalization, we first orthogonalize
m(3)(Oi; ν(x)) and m(4)(Oi; ν(x)), and then ψ(2)(Oi; θ̃(x), ν(x)) and ψ(3)(Oi; θ̃(x), ν(x)) with re-
gards to the nuisance parameters. We use m̃(3)(Oi; ν(x)), m̃(4)(Oi; ν(x)), ψ̃(2)(Oi; θ̃(x), ν(x)), and
ψ̃(3)(Oi; θ̃(x), ν(x)) to denote the orthogonalized moments. We have

m̃(3)(Oi; ν(x)) = m(3)(Oi; ν(x))− p(x)
1− p(x)m

(1)(Oi; ν(x))

=SiDi1{Yi ≤ yq(x)(x)} − Si(1−Di)p(x)
1− p(x)

m̃(4)(Oi; ν(x)) = m(4)(Oi; ν(x))− p(x)
1− p(x)m

(1)(Oi; ν(x))

=SiDi1{Yi ≥ y1−q(x)(x)} − Si(1−Di)p(x)
1− p(x)

ψ̃(2)(O; θ̃(x), ν(x)) = ψ(2)(O; θ̃(x), ν(x))− y0
q(x)(x)m̃(3)

i (Oi; ν(x))

=SiDi(Yi − y0
q(x)(x))1{Yi ≤ yq(x)(x)} − p(x)θ̃L1 (x) +

y0
q(x)(x)p(x)Si(1−Di)

1− p(x)
ψ̃(3)(O; θ̃(x), ν(x)) = ψ(3)(O; θ̃(x), ν(x))− y0

1−q(x)(x)m̃(4)
i (Oi; ν(x))

=SiDi(Yi − y0
1−q(x)(x))1{Yi ≥ y1−q(x)(x)} − p(x)θ̃U1 (x) +

y0
1−q(x)(x)p(x)Si(1−Di)

1− p(x) .

As each of the orthogonalized moments is a linear combination of two original moments, the first
requirement is satisfied. To verify that the second requirement is also satisfied, first note that
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m̃(3)(Oi; ν(x)) and m̃(4)(Oi; ν(x)) no longer depend on q(x). Furthermore,

∂E
[
ψ̃(2)(Oi; θ̃(x), ν(x))|Xi = x

]
∂yq(x)(x)

∣∣∣∣∣
ν(x)=ν0(x)

=
∂E

[
ψ(2)(Oi; θ̃(x), ν(x))|Xi = x

]
∂yq(x)(x)

∣∣∣∣∣
ν(x)=ν0(x)

− y0
q(x)(x)

∂E
[
m̃(3)(Oi; ν(x))|Xi = x

]
∂yq(x)(x)

∣∣∣∣∣
ν(x)=ν0(x)

=p(x)q0
1(x)y0

q(x)(x)fY |D=1,S=1,X=x(y0
q(x)(x))− y0

q(x)(x)p(x)q0
1(x)fY |D=1,S=1,X=x(y0

q(x)(x)) = 0

∂E
[
ψ(3)(Oi; θ̃(x), ν(x))|Xi = x

]
∂y1−q(x)(x)

∣∣∣∣∣
ν(x)=ν0(x)

=
∂E

[
ψ(3)(Oi; θ̃(x), ν(x))|Xi = x

]
∂y1−q(x)(x)

∣∣∣∣∣
ν(x)=ν0(x)

− y0
1−q(x)(x)

∂E
[
m̃(4)(Oi; ν(x))|Xi = x

]
∂y1−q(x)(x)

∣∣∣∣∣
ν(x)=ν0(x)

=− p(x)q0
1(x)y0

1−q(x)(x)fY |D=1,S=1,X=x(y0
1−q(x)(x))

+ y0
1−q(x)(x)p(x)q0

1(x)fY |D=1,S=1,X=x(y0
1−q(x)(x)) = 0.

Hence, m̃(3)(Oi; ν(x)), m̃(4)(Oi; ν(x)), ψ̃(2)(Oi; θ̃(x), ν(x)), and ψ̃(3)(Oi; θ̃(x), ν(x)) all satisfy Ney-
man orthogonality, which justifies our algorithm in the main text. It is worth noting that
E
[
Si(1−Di)

1−p(x) |Xi = x
]

= q0
0(x). Thus, Neyman orthogonalization does not affect the estimation

of yq(x)(x) or y1−q(x)(x). For the conditional lower bound θ̃L1 (x), we know that

E
[
ψ̃(2)(O; θ̃(x), ν(x))|Xi = x

]
=E

[
SiDi(Yi − y0

q(x)(x))1{Yi ≤ yq(x)(x)} − p(x)θ̃L1 (x) + y0
q(x)(x)p(x)q0

0(x)|Xi = x
]

=E
[
(Yi − y0

q(x)(x))1{Yi ≤ yq(x)(x)}|Si = 1, Di = 1,Xi = x
]
p(x)q0

1(x)

− p(x)θ̃L1 (x) + y0
q(x)(x)p(x)q0

0(x).

Therefore,

θL1 (x) =
E
[
(Yi − y0

q(x)(x))1{Yi ≤ yq(x)(x)}|Si = 1, Di = 1,Xi = x
]

q0(x) + y0
q(x),

and a similar formula holds for θU1 (x).
For the aggregated bounds, we conduct Neyman orthogonalization on the unconditional moments,

which leads to the following score functions:

sL(Xi) =
SiDi(Yi − ŷq̂(Xi)(Xi))1{Yi ≤ ŷq̂(Xi)(Xi))}

p(Xi)
−
Si(1−Di)(Yi − ŷq̂(Xi)(Xi))

1− p(Xi)

sU (Xi) =
SiDi(Yi − ŷ1−q̂(Xi)(Xi))1{Yi ≥ ŷ1−q̂(Xi)(Xi)}

p(Xi)
−
Si(1−Di)(Yi − ŷ1−q̂(Xi)(Xi))

1− p(Xi)
.

Then,

τ̂LCTB(1, 1) =
1
N

∑N
i=1 s

L(Xi)
q̂0

, τ̂UCTB(1, 1) =
1
N

∑N
i=1 s

U (Xi)
q̂0

,
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where q̂0 = 1
N

∑N
i=1

Si(1−Di)
1−p(Xi) .

When the propensity scores need to be estimated, we have an extra moment condition

E
[
m(0)(Oi; ν(x))|Xi = x

]
= E[Di − p(x)|Xi = x] = 0.

We need to orthogonalize our moment conditions to account for the estimation error from m(0)(·).
It turns out that there will be an extra correction term in ψ̃(1)(·), ψ̃(2)(·), and ψ̃(3)(·), which are
θ̃0(x)[Di − p(x)], yq(x)q0(x)

[
Di
p(x) −

1−Di
1−p(x)

]
− θ̃L1 (x)[Di − p(x)] and y1−q(x)q0(x)

[
Di
p(x) −

1−Di
1−p(x)

]
−

θ̃U1 (x)[Di − p(x)], respectively.
If the assumption of monotonic selection holds for the other direction: Si(0) ≥ Si(1), then the

moment conditions m(3)(Oi; ν(x)), m(4)(Oi; ν(x)), and ψ(O; θ̃(x), ν(x)) become:

E
[
m

(3)
i (Oi; ν(x))

]
= E

[
Si(1−Di)1{Yi ≤ yq(x)(x)} − q0

1(x)(1− p(x))|Xi = x
]
,

E
[
m

(4)
i (Oi; ν(x))

]
= E

[
Si(1−Di1){Yi ≥ y1−q(x)(x)} − q0

1(x)(1− p(x))|Xi = x
]

E
[
ψ(1)(O; θ̃(x), ν(x))

]
= E

[
SiDiYi − p(x)θ̃1(x)|Xi = x

]
= p(x)

[
q0

1(x)
∫
yfY |D=1,S=1,X=x(y)dy − θ̃1(x)

]
,

E
[
ψ(2)(O; θ̃(x), ν(x))

]
= E

[
Si(1−Di)Yi1{Yi ≤ yq(x)(x)} − (1− p(x))θ̃L0 (x)|Xi = x

]
= (1− p(x))

[
q0

0(x)
∫ yq(x)(x)

−∞
yfY |D=0,S=1,X=x(y)dy − θ̃L0 (x)

]
,

E
[
ψ(3)(O; θ̃(x), ν(x))

]
= E

[
Si(1−Di)Yi1{Yi ≥ y1−q(x)(x)} − (1− p(x))θ̃U0 (x)|Xi = x

]
= (1− p(x))

[
q0

0(x)
∫ ∞
y1−q(x)(x)

yfY |D=0,S=1,X=x(y)dy − θ̃U0 (x)
]
.

We can similarly obtain the orthogonalized moment conditions:

ψ̃(2)(Oi; θ̃(x), ν(x))

=Si(1−Di)(Yi − y0
q(x)(x))1{Yi ≤ yq(x)(x)} − (1− p(x))θ̃L1 (x) +

(1− p(x))y0
q(x)(x)SiDi

p(x)
ψ̃(3)(O; θ̃(x), ν(x))

=Si(1−Di)(Yi − y0
1−q(x)(x))1{Yi ≥ y1−q(x)(x)} − (1− p(x))θ̃U1 (x)

+
(1− p(x))y0

1−q(x)(x)SiDi

p(x) .

When we have conditionally monotonic selection, Si(0) ≤ Si(1) for certain units and Si(0) ≥ Si(1)
for the others. We define a binary variable directioni := 1{Xi ∈ X+}. When Xi ∈ X+, we have
score functions sL,help(Xi) and sU,helpi (Xi). When Xi ∈ X−, we have sL,hurt(Xi) and sU,hurti (Xi).
Finally, sL(Xi) = directioni ∗ sL,help(Xi) + (1− directioni) ∗ sL,hurt(Xi) and sU (Xi) = directioni ∗
sU,help(Xi) + (1− directioni) ∗ sU,hurt(Xi).

B.3 Statistical theory
We first derive the asymptotic behavior of the estimator for the aggregated bounds, using Theorem
3.1 in Chernozhukov et al. (2018). Our moment conditions are linear in the target parameters
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and satisfy Neyman orthogonality, hence Assumption 3.1 required by the theorem holds. Another
required assumption, Assumption 3.2, is ensured by the convergence rate of the grf algorithm.
Therefore, under monotonic selection, we know that

1√
N

N∑
i=1

[
sL(Xi)− q0τ

L
CTB(1, 1)

]
→ N (0, V L

s )

1√
N

N∑
i=1

[
sU (Xi)− q0τ

U
CTB(1, 1)

]
→ N (0, V U

s )
√
N(q̂0 − q0)→ N (0, Vq0),

Using the Delta method, we can obtain

1√
N

N∑
i=1

(
τ̂LCTB(1, 1)− τLCTB(1, 1)

)
→ N (0, V L)

1√
N

N∑
i=1

(
τ̂UCTB(1, 1)− τUCTB(1, 1)

)
→ N (0, V U ),

We can estimate V L via its sample analogue:

V̂ L =
(

1
q̂0
− τ̂L

CT B(1,1)
q̂0

)( V̂ L
s Ĉov(sL,q0)

Ĉov(sL,q0) V̂q0

) 1
q̂0

− τ̂L
CT B(1,1)

q̂0

 ,
where

V̂ L
s = 1

N2

N∑
i=1

[
sL(Xi)−

1
N

N∑
i=1

sL(Xi)
]2

, V̂q0 = 1
N2

N∑
i=1

[
Si(1−Di)
1− p(Xi)

− q̂0

]2
,

Ĉov(sL,q0) = 1
N2

N∑
i=1

[
sL(Xi)−

1
N

N∑
i=1

sL(Xi)
] [
Si(1−Di)
1− p(Xi)

− q̂0

]
.

Similar results hold under conditionally monotonic selection, as the estimate is a weighted average
of two estimates under monotonic selection.

For the conditional bounds, it is easy to verify that the moment conditions for ν(x) satisfy
all the assumptions imposed in Athey et al. (2019). These assumptions require that the moment
conditions are sufficiently smooth in the parameters and the parameters are smooth functions of the
data. Example 2 in Athey et al. (2019) verified each of the assumptions for conditional quantiles.
Therefore, ν̂(x) are consistent and asymptotically Normal, according to Theorem 5 in the paper. In
addition, the theorem guarantees that these estimates converge to their true values at a sufficiently
fast rate (higher than 1/N

1
4 ). Since our algorithm incorporates both Neyman orthogonalization and

cross-fitting, it is honest for the estimation of the target parameters. Consequently, the consistency
and asymptotically Normality of θ̂(x) and the conditional bounds, (τ̂UCTB,x(1, 1), τ̂LCTB,x(1, 1)), can
be similarly derived from Theorem 5 in Athey et al. (2019). To summarize, we have the following
formal results:

Theorem B.1. Under regularity conditions required by Theorem 5 in Athey et al. (2019), estimates
of τLCTB,x(1, 1), τUCTB,x(1, 1), τLCTB(1, 1), and τUCTB(1, 1) from Algorithm 1 are consistent and
asymptotically Normal:

τ̂LCTB,x(1, 1)− τLCTB,x(1, 1)√
V ar(τ̂LCTB,x(1, 1))

→ N (0, 1) ,
τ̂UCTB,x(1, 1)− τUCTB,x(1, 1)√

V ar(τ̂UCTB,x(1, 1))
→ N (0, 1),
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τ̂LCTB(1, 1)− τLCTB(1, 1)√
V ar(τ̂LCTB(1, 1))

→ N (0, 1) , τ̂
U
CTB(1, 1)− τUCTB(1, 1)√

V ar(τ̂UCTB(1, 1))
→ N (0, 1).

Theorem B.1 allows us to construct valid confidence intervals for either the conditional bounds
or the aggregated bounds using estimates from our algorithm. One may also construct confidence
intervals for the ATE on the always-responders following the approach developed by Imbens and
Manski (2004) and Stoye (2009). Intuitively, this approach utilizes the idea that the ATE on the
always-responders cannot appear on both ends of the identified set simultaneously. Therefore, as
the width of the identified set increases, the critical value for a two-sided 95% confidence interval
surrounding τ(1, 1) will approach that of a one-sided 95% confidence interval surrounding the
bounds. For the conditional bounds, the standard error estimates are available in the output of the
regression forest. This is due to the fact that our moment conditions for the target parameters have
been orthogonalized and accounted for the extra uncertainties caused by the estimation of ν(x) in
the first stage. Finally, if we only have conditionally monotonic selection, some extra conditions
are needed to ensure that we can predict X+ and X− accurately. Details of these conditions are
discussed in Semenova (2020).
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C Extensions
In this section, we discuss extensions to unit-level missing data, binary outcomes, and estimated
propensity scores (e.g., for non-experimental data).

C.1 Unit-level missing data
In practice, we sometimes do not even have covariate information on subjects who do not respond.
This will happen, for instance, if we collect the information on (Yi, Di,Xi) only in a post-treatment
survey. If so, it will be no longer feasible to estimate q(x) directly, since we do not know the value of
Xi when Si = 0. However, under Assumption 1 from the main text, we can use Bayes’ rule to show

q(x) =P (Si(1) = Si(0) = 1|Xi = x, S = 1, D = 1)

=P (Si(0) = 1|D = 1,Xi = x)
P (Si(1) = 1|D = 1,Xi = x)

=P (Si(0) = 1|Xi = x)
P (Si(1) = 1|Xi = x)

= p(x)P (D = 0|S = 1,Xi = x)
(1− p(x))P (D = 1|S = 1,Xi = x)

= p(x)P (D = 0|S = 1,Xi = x)
(1− p(x))(1− P (D = 0|S = 1,Xi = x))

where the last equality comes from

1− P (D = 0|S = 1,Xi = x) =P (D = 1|S = 1,Xi = x)

=P (S = 1|D = 1,Xi = x)P (D = 1|Xi = x)
P (S = 1|Xi = x)

=P (Si(1) = 1|D = 1,Xi = x) p(x)
P (S = 1|Xi = x)

=P (Si(1) = 1|Xi = x) p(x)
P (S = 1|Xi = x) ,

P (D = 0|S = 1,Xi = x) =P (S = 1|D = 0,Xi = x)P (D = 0|Xi = x)
P (S = 1|Xi = x)

=P (Si(0) = 1|D = 0,Xi = x) 1− p(x)
P (S = 1|Xi = x)

=P (Si(0) = 1|Xi = x) 1− p(x)
P (S = 1|Xi = x) .

1− p(x) =P (Di = 0|Xi = x)
=P (Di = 0|Si(1) = 1, Si = 1,Xi = x)P (Si(1) = 1|Si = 1,Xi = x)+
P (Di = 0|Si(1) = 0, Si = 1,Xi = x)P (Si(1) = 0|Si = 1,Xi = x)

=P (Di = 0|A,Xi = x, Si = 1)P (A|Si = 1,Xi = x) + P (Si(1) = 0|Si = 1,Xi = x)

=P (Di = 0, A|Xi = x, Si = 1)
P (A|Si = 1,Xi = x) P (A|Si = 1,Xi = x) + P (Si(1) = 0|Si = 1,Xi = x)

=P (Di = 0|Xi = x, Si = 1) + P (Si(1) = 0|Si = 1,Xi = x).

Therefore, we can infer the value of q(x) from the estimate of P (Di = 0|Xi = x, Si = 1), which only
involves observations with Si = 1 and can be estimated with the probability forest.
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C.2 Binary outcome
The outcome variable is often binary rather than continuous, in which case the conditional quantile
is no longer continuous in X, as it can only be either 0 or 1. Nevertheless, we can still estimate the
bounds based on similar ideas as for continuous outcomes. Supposing that the observed mean is
between 0 and 1, the upper bound would be based, essentially, on trimming the appropriate share
of 0 outcomes, and the lower bound on trimming the appropriate share of 1 outcomes. Figure 2
provides a visual illustration. Formally, define ξ(x) = Pr(Yi = 0|Di = 1, Si = 1,Xi = x). In the
case where 1 − q(x) ≤ ξ(x) ≤ q(x), for instance, the lower bound equals q(x)−ξ(x)

q(x) and the upper
bound equals 1−ξ(x)

q(x) . In general, we have the following expressions for the lower and upper bound
at point x:

τ̂LCTB,x(1, 1) = (q̂(x)− ξ̂(x))1{ξ̂(x) ≤ q̂(x)}
q̂(x) − θ̂0(x),

τ̂UCTB,x(1, 1) = q̂(x) + (1− q̂(x)− ξ̂(x))1{ξ̂(x) ≥ 1− q̂(x)}
q̂(x) − θ̂0(x).

We can use the probability forest to estimate ξ(x) and obtain estimates for the conditional bounds.
Estimates for the aggregated bounds can be constructed by aggregating these conditional bounds.

C.3 Estimated propensity scores
In observational studies, the treatment propensity score p(X) is unknown and has to be estimated
from data. Since p(X) affects all the moment conditions derived above, we need to orthogonalize
them with regard to this extra nuisance parameter. This generalization is illustrated at the end of
the analysis in section B.2 of the previous section. We also generate an extra split of data for the
estimation of p(X).
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Figure 2: Trimming Bounds with Binary Outcome
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Note: These plots demonstrate how to construct the trimming bounds when the outcome variable is binary.
The top-left plot shows the distribution of Yi(1). The dashed line indicates the value of ξ(x). In the rest three
plots, the dotted lines mark the values of q(x) and 1− q(x). The rectangle with a blue border represents
θL

1 (x) and the rectangle with a red border represents θU
1 (x). From top-right to bottom-right, the plots show

cases where q(x) ≤ ξ(x) ≤ 1− q(x), ξ(x) ≤ q(x) ≤ 1− q(x), and 1− q(x) ≤ ξ(x) ≤ q(x).
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D Extra results
D.1 Extra results from simulation
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Figure 3: Simulated Data

Note: The left plot presents how Yi(0) (in white) and Yi(1) (in black) vary across the value of the first
covariate for all the units in the simulated sample. The middle plot shows realized outcome for all the units
under one assignment, with missing outcome values marked by red spots. The right plots shows outcome
values that can be observed by the researcher.

Figure 4: Estimates of Nuisance Parameters
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Note: These plots compare the estimated nuisance parameters with their true values. The x-axis is X1, the
only observable covariate that affects the response rates. Left: trimming probability q0(x)/q1(x); Middle:
lower quantile yqx(x); Right: upper quantile y1−qx(x).
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Figure 5: Asymptotic Performance of Methods (Increasing Sample Size)

Note: Plots on the left show how the MSE and coverage rate of the lower bound estimates vary with
sample sizes. Plots on the right show the same for the upper bound estimates. The solid lines represent the
performance of the proposed method, with both Neyman orthogonalization and cross-fitting. The dashed lines
represent the performance of the method with Neyman orthogonalization but without cross-fitting. The dotted
lines represent the performance of the method with cross-fitting but without Neyman orthogonalization. The
dash-dotted lines represent the performance of the LASSO method proposed by Semenova (2020). The gray
lines on the bottom mark the nominal level of coverage, 95%. We can see that the proposed method’s MSE
declines to zero as the sample size grows, and its coverage rate remains at the level of 95%. It outperforms
the LASSO-based approach under small samples, although the difference diminishes gradually. Without
either Neyman orthogonalization or cross-fitting, the results are affected by the regularization bias hence do
not lead to accurate inference.
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Figure 6: Asymptotic Performance of Methods (Increasing Number of Covariates)

Note: Plots on the left show how the MSE and coverage rate of the lower bound estimates vary with the
number of irrelevant covariates. Plots on the right show the same for the upper bound estimates. The
solid lines represent the performance of the proposed method, with both Neyman orthogonalization and
cross-fitting. The dashed lines represent the performance of the method with Neyman orthogonalization but
without cross-fitting. The dotted lines represent the performance of the method with cross-fitting but without
Neyman orthogonalization. The dash-dotted lines represent the performance of the LASSO method proposed
by Semenova (2020). The gray lines on the bottom mark the nominal level of coverage, 95%. We can see that
the proposed method’s MSE declines to zero and its coverage rate remains at the level of 95%, even when
the number of covariates is large. In contrast, the coverage rate of the LASSO-based approach falls below
95% when there are more than 15 covariates. Without either Neyman orthogonalization or cross-fitting, the
results are affected by the regularization bias hence do not lead to accurate inference.
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Figure 7: Coverage Rate of the Imbens-Manski Confidence Interval
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Note: These two plots demonstrate how the coverage rates of confidence intervals based on the Imbens-Manski
(IM) method (Imbens and Manski, 2004) vary over both sample size and the number of irrelevant covariates.
We can see that they remain above the nominal level of 95%.

Table 1: CTB Running Time (seconds)

N \ P 5 10 20 50 100
500 2.3 2.6 4 5.1 5.9
1000 4.7 7.1 12.1 17.6 19.6
2000 15.2 25.2 45.9 67 77.8
5000 90.5 167.4 318.8 476.2 554.7
10000 393.6 771 1516.6 2314.4 2739.6

Notes: The table above shows running time for the CTB algorithm using the grf package. Each row
represents the number of observations (N) in the simulation, while each column represents the number of
features (P). We set cross-validation to a default value of 5 folds. We also set “regression spliting” to be false,
which is the default choice of grf and uses specialized splits for quantile estimation. We run the simulation
with version 2.3.0 of the grf package and version 4.3.1 of R on a Macbook Air laptop with Apple M2 processor
and 16 GB RAM.
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Figure 8: Performance with Unknown Propensity Scores
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Note: This plot shows the estimated covariates-tightened trimming bounds (CTB, in squares) and basic
trimming bounds (TB, in triangles) in simulation, when the propensity scores have to be estimated from
data. It also compares the results with the estimated covariates-tightened trimming bounds under the true
propensity scores (CTB (oracle), in squares). Lower bound estimates are in blue and upper bounds estimates
are in red. The segments represent the 95% confidence intervals for the estimates. The results are averaged
across 1,000 treatment assignments. The red and blue dotted lines mark the true values of the CTB. The
black dotted line represents the true ATE and the black dash-dotted line represents the true ATE for the
always-responders. We can see that the averages of the CTB estimates are close to their true values even
when the propensity scores are unknown.
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We demonstrate the utility of the conditionally monotonic selection assumption using a simulation
exercise. There is one covariate Xi ∈ {0, 1}. When Xi = 0, τi = 5 + 1.8 ∗ Ui + 3 ∗ sin(−0.7), and
Si = 1{1 − Ui + 2.2 ∗ Di ∗ Ui + νi ≥ 0}. When Xi = 1, τi = 10 + 6 ∗ Ui + 3 ∗ sin(−0.7),
and Si = 1{1 + 1.2 ∗ Ui − 2.2 ∗ Di ∗ Ui + νi ≥ 0}. Ui ∼ Unif [0, 3], ν ∼ Normal(0, 1), and
Di ∼ Bernoulli(0.5). Clearly, Si(1) ≥ Si(0) if Xi = 0 and Si(1) ≤ Si(0) otherwise. Monotonic
selection is violated yet conditionally monotonic selection still holds. From Figure 9, we can see
that basic trimming bounds that assume monotonic selection do not cover the ATE on the always-
responders, while both basic trimming bounds and CTB under the assumption of conditionally
monotonic selection generate valid results. We also compare results from methods based on missing
at random with results from our approach. When Ui is observable to the researcher, MAR is satisfied,
and the IPW estimator (which we denote as IPW (oracle) on Figure 9) results in a consistent
estimate of the ATE. But in reality, Ui is unobservable hence MAR does not hold. In this case, the
IPW estimator is inconsistent yet our method remains informative.

Figure 9: Performance under Conditionally Monotonic Selection
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Note: This plot shows the estimated covariates-tightened trimming bounds (CTB, in squares) and basic
trimming bounds (TB (cond. mono.), in triangles) under conditionally monotonic selection, as well as basic
trimming bounds under monotonic selection (TB (mono.), in triangles), when only conditionally monotonic
selection is satisfied. It also compares the results with those from the IPW estimator with and without Ui

being observable to the researcher (IPW (oracle) and IPW, in circles). Lower bound estimates are in blue and
upper bounds estimates are in red. The segments represent the 95% confidence intervals for the estimates.
The results are averaged across 1,000 treatment assignments. The red and blue dotted lines mark the true
values of the CTB. The black dotted line represents the true ATE and the black dash-dotted line represents
the true ATE for the always-responders.

20



D.2 Extra results from application in main text

Figure 10: Trimming Probability Estimates in Santoro and Broockman (2022)
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Note: The left plot presents the distribution of the estimated conditional response rate under treatment
(q1(x), in red) or under control (q0(x), in blue). The right plot presents the distribution of the estimated
conditional trimming probability (q(x) = q0(x)/q1(x)).

Figure 11: Conditional Bounds in Santoro and Broockman (2022)
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Note: These plots show the estimates of the conditional covariates-tightened trimming bounds across 9
observations whose demographic attributes are fixed at the sample mean or mode while their pre-treatment
warmth toward outpartisan voters or ideology varies across its quantiles. The red and blue dots represent
upper and lower bound estimate, respectively. The dotted lines around them are the 95% confidence intervals.
The dash-dotted curve depicts the conditional trimming probability.
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D.3 Replication results of Blattman and Annan (2010) (observa-
tional study)

Blattman and Annan (2010) is an observational study investigating the consequences of being
abducted into a rebel organization as a youth in Northern Uganda. The authors argue that
conditional on personal characteristics, whether an individual was abducted (Di) was a random
event. This motivates an identification strategy based on covariate conditioning. To conduct the
study, they constructed a roster of household members in 1996 from 1,100 households across eight
rural sub-counties of Uganda. Then, a random sample of 1,216 males born between 1975 and 1991
was drawn from the roster. For each subject in the sample, the authors collaborated with the
household head to determine his treatment status—whether they were abducted by the rebels—as
well as their relevant demographic characteristics. Among these 1,216 males, 346 had died or not
returned from abduction when the study was conducted. The survey enumerators succeeded in
tracking 741 males among the remaining 870 and asked them to complete the survey questionnaire.
Analysis shows that while abductees exhibited “resilience” on certain dimensions, abduction affected
these subjects negatively along various dimensions: they have fewer years of education, worse labor
market performance, and a higher level of distress.

Blattman and Annan note that selection rates differed by treatment status: “abductees are
half as likely to be unfound migrants, twice as likely to have perished, and comprise all of those
who did not return from abduction” (p. 888). The authors applied several techniques to gauge the
potential influence of sample selection on their findings, including re-weighting the subjects with
the estimated probability of attrition, a sensitivity analysis, and basic trimming bounds. We use
our proposed covariate-adjusted bounds to evaluate the robustness of their findings.

We focus on two outcome variables: years of education and the level of psychological distress.
We observe years of education for all 870 males that returned from abduction (household heads
were able to provide information in case the subject himself was unreachable for interview), but
psychological distress is measured only for the 741 males that were reachable for interview. We use
the covariates from Blattman and Annan’s original analysis that do not contain any missing values,
such as the age and location of each male, as well as the wealth level of his household. We estimate
the treatment propensity score using the probability forest on the entire sample. We adjust our
moment conditions accordingly following the discussion in Section 6 of the main text.

Estimates are presented in Figure 12. At the very bottom are “causal forest” estimates that
model outcomes in the treated and control group as a function of covariates using generalized
random forest (“CF (no correction)”). Above those are causal forest estimates that are also weighted
by the inverse probability of attrition (“CF”). These are more elaborate specifications than in the
original paper, which only used linear regression specifications for the covariates. Nonetheless, the
findings are similar to what the original paper found. Above the causal forest estimates are the
basic trimming bounds, assuming monotonic selection. When we check for monotonicity using the
approach discussed in Section 6 of the main text, we find evidence against it. Thus, we also show
basic trimming bounds that allow for the direction of the monotonicity to vary by covariate-defined
subgroups (“TB (cond. mono.)”). Doing so yields extremely wide bounds. When we implement the
full covariate-adjusted bound (“CTB”), which allows for conditional monotonicity, we obtain results
that are more informative, and much more so for psychological distress.
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Figure 12: Covariate-tightened Trimming Bounds in Blattman and Annan (2010)
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Note: In the left plot, the outcome variable is years of education, while in the right one, it is psychological
distress. From top to bottom, the plots show the estimated covariates-tightened trimming bounds (CTB,
in crosses), basic trimming bounds under monotonicity (TB (mono.), in squares) and under conditional
monotonicity (TB (cond. mono.), in triangles), the ATE estimate using causal forest on the non-missing
sample weighted by the inverse probability of attrition (CF, in circles), and the same estimate without
re-weighting (CF (no correction), in circles). Lower bound estimates are in blue and upper bound estimates
are in red. The ATE estimates are in black. The segments represent the 95% confidence intervals for the
estimates. Black segments between the red and blue ones represent the 95% confidence intervals for the ATE
for always-responders, using the Imbens-Manski approach.
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Figure 13: Trimming Probability Estimates in Blattman and Annan (2010)
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Note: The left plots present the distribution of the estimated conditional response rate under treatment
(q1(x), in red) or under control (q0(x), in blue). The right plots present the distribution of the estimated
conditional trimming probability (q(x) = q0(x)/q1(x)).
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Table 2: Summary of Results

CTB TB (mono.) TB (cond. mono.) OLS IPW
Panel A: Simulation (ATE for the always-responders = 3.114)

τ̂L(1, 1) 0.559 -0.482 - - -
[0.050, 1.068] [-0.960, -0.005] - - -

τ̂U (1, 1) 4.346 5.724 - - -
[3.985, 4.707] [5.287, 6.162] - - -

τ̂ - - - 2.620 2.606
- - - [2.135, 3.105] [2.200, 3.012]

N 693/1,000 693/1,000 693/1,000 693/1,000 693/1,000
Panel B: Santoro and Broockman (2022)

τ̂L(1, 1) 0.272 0.022 -0.758 - -
[0.060, 0.484] [-0.213, 0.257] [-0.996, -0.521] - -

τ̂U (1, 1) 0.355 0.466 1.086 - -
[0.156, 0.554] [0.227, 0.706] [0.913, 1.258] - -

τ̂ - - - 0.340 -
- - - [0.218, 0.463] -

N 469/986 469/986 469/986 469/986 469/986
Panel C: Blattman and Annan (2010), Education

τ̂L(1, 1) -1.366 -1.200 -1.678 - -
[-1.883 , -0.849] [-1.540, -0.860] [-2.025, -1.331] - -

τ̂U (1, 1) 0.093 0.109 0.271 - -
[-0.465, 0.652] [-0.253, 0.471] [-0.136, 0.678] - -

τ̂ - - - -0.799 -0.588
- - - [-1.229, -0.369] [-1.106, -0.070]

N 870/1,216 870/1,216 870/1,216 870/1,216 870/1,216
Panel D: Blattman and Annan (2010), Distress

τ̂L(1, 1) 0.477 0.424 -0.842 - -
[0.005, 0.948] [0.109, 0.740] [-1.163, -0.522] - -

τ̂U (1, 1) 0.627 0.645 1.937 - -
[0.177, 1.077] [0.147, 1.143] [1.615, 2.260] - -

τ̂ - - - 0.376 0.545
- - - [-0.070, 0.821] [0.209, 0.881]

N 741/1,216 741/1,216 741/1,216 741/1,216 741/1,216

Note: This table summarizes the results from our simulation study (panel A), replication of
Santoro and Broockman (2022) (Panel B), and replication of Blattman and Annan (2010)
(Panels C and D). Numbers in the brackets are the endpoints of the 95% confidence intervals.
The first number in the last row of each panel is the sample size with observed outcome values
and the second number is the total sample size.
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D.4 Revisiting the Job Corps experiment
We apply our method to estimate the intensive margin effect of job training on wages using data
from the Job Corps program, the original example investigated by Lee (2009). It is one of the
largest federal-funded job training programs in the U.S., in which disadvantaged youth aged 16-24
years were offered residence at a Job Corps center and about 1100 hours of vocational and academic
training. In the mid-1990s, the program conducted lottery-based admission to assess its effect on
the basis of randomization. The sample consists of 9,145 Job Corps applicants. Among them,
5,977 applicants in the control group were embargoed from the program for 3 years, while the
remaining ones (the treatment group) could enroll in Job Corps as usual. The data includes the
lottery outcome, hours worked, and wages for 208 consecutive weeks after randomization of each
applicant, as well as their background information, such as educational attainment, employment
record, recruiting experience, household composition, income, drug use, and arrest record.

To be consistent with Lee (2009), we focus the intensive margin effect generated by the program,
which is defined as the effect on wages among those who would be employed regardless of the access
to Job Corps.1 Such an effect is not identified by randomization alone, since whether applicants
are employed may result from other unobservable factors. Lee (2009) constructed bounds for the
intensive margin effect on the logarithm of wage in week 208 under the assumption of monotonic
selection: treated applicants are more likely to be employed. Yet as pointed out by Semenova (2020),
this assumption may not always hold in the data. We replicate Lee’s analysis using all the available
covariates in the dataset and focus on the wage level in both week 90 and week 208.

Figure 14: Covariate-tightened Trimming Bounds in JobCorps
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Note: In the left plot, the outcome variable is weekly wage in week 90, while in the right one it is weekly
wage in week 208. From top to bottom, the plots show the estimated covariates-tightened trimming bounds
(CTB, in squares), basic trimming bounds under monotonic selection (TB (mono.), in triangles) and under
conditionally monotonic selection (TB (cond. mono.), in triangles), and the ATE estimate using OLS on
the non-missing sample (OLS, in circles). Lower bound estimates are in blue and upper bounds estimates
are in red. The ATE estimates are in black. The segments represent the 95% confidence intervals for the
estimates. Black segments between the red and blue ones represent the 95% confidence intervals for the ATE
for always-responders, using the Imbens-Manski approach.

1This is distinct from the extensive margin effect, which applies to those whose employment status is
affected by the program.
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The replication results are presented in Figure 14. Again, we find that the assumption of
monotonic selection is violated and has to be replaced by conditionally monotonic selection. It
turns out that X̂− includes about one third of all the observations. Under conditionally monotonic
selection, the basic trimming bounds become much wider and cover zero. However, under the same
assumption, our bounds are still informative. They are even narrower than the Lee bounds under
monotonic selection. Both the lower bound and the upper bound are positive for wage level in week
90, although the former is not statistically significant at the level of 5%.2 Overall, the replication
confirms the necessity of allowing for conditionally monotonic selection and the superiority of the
proposed method to the basic trimming bounds.

2Semenova (2020) reports a significantly positive estimate for the lower bound. But her analysis relies on
covariates that are unavailable in the original dataset.
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D.5 Replication results of Kalla and Broockman (2022) (binary
outcome)

To demonstrate how to apply our method when the outcome variable is binary, we replicate the
results in Kalla and Broockman (2022), a field experiment that aims to test the impacts of televised
issue advertisements on American voters. We focus on one of the treatments in the experiment
(“Prosperous Future” and “MariCruz/Kandy”), which consists of two immigration ads, one about
how a white woman changed her view on the immigration system and the other showing that
undocumented workers also pay taxes. The outcome we are interested in is whether subjects recall
the content of the ads at the end of the experiment. In the baseline survey, there were 20,937 subjects
in the control group and the treatment group of interest. But the number dropped to 10,650 in the
endline survey. We calculate the basic trimming bounds and the aggregated covariate-tightened
trimming bounds using the moment conditions presented in Section 4 of the main text. The standard
error estimates of the basic trimming bounds are obtained from bootstrap.3

Figure 15: Covariate-tightened Trimming Bounds in Kalla and Broockman (2022)
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Note: From top to bottom, we have the estimated covariates-tightened trimming bounds (CTB, in squares),
basic trimming bounds under monotonicity (TB (mono.), in triangles) and under conditionally monotonic
selection (TB (cond. mono.), in triangles), and the ATE estimate using OLS on the non-missing sample (OLS,
in circles). Lower bound estimates are in blue and upper bounds estimates are in red. The ATE estimate is
in black. The segments represent the 95% confidence intervals for the estimates. Black segments between
the red and blue ones represent the 95% confidence intervals for the ATE for always-responders, using the
Imbens-Manski approach.

3It is straightforward to show that the nuisance parameters, ν(x) = (q0(x), q1(x), ξ(x)), converge to a
joint normal distribution, using the same arguments in Lee (2009). Hence, the target parameters are also
asymptotically normal, which justifies using bootstrap for inference.
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