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1 Monte Carlo Simulation with Regular Lattice Data: Data Generation Pro-

cess

We designed the seed for a random sample in a matrix of 27 rows by 3 columns with the following

possible variable values: 0, 1, −, in which − represents a non-observation. The 3 columns represent

the three variables present for each location, which we conceptualize as dependent variable, inde-

pendent variable 1, and independent variable 2. We visualize them in the matrix format below as an

example.



0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1
− − −
− − 0
− − 1
− 0 −
− 1 −
0 − −
1 − −
− 0 0
− 0 1
− 1 0
− 1 1
0 − 0
0 − 1
1 − 0
1 − 1
0 0 −
0 1 −
1 0 −
1 1 −


27×3

From these 27 variations, we drew a random sample of 10,000 rows, with replacement, to create a

100 rows by 100 columns square matrix. In other words, we created a grid with an array of (1 row

× 3 columns ) × 100 rows × 100 columns. Using this square grid, we can generate square spatial

units of various sizes (4 locations, 16 locations, 25 locations, 100 locations) to examine the effects of

the scale sub-problem and shift them across the larger grid to simulate the zoning sub-problem of the

MAUP. We draw using both a uniform random sample distribution, and a distribution with unknown
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properties.

1.1 Summary Statistics

Tables A.1, A.2, and A.3 offer the summary statistics of the first value (which we designate as the

dependent variable), the second value (IV1), and the third value (IV2), in a randomly selected row.

A couple of things are worth noting. First, the mean for the uniform sample hovers closely around

0.5 across all of the mappings, as expected for random data, while the mean for this variable in

the non-uniform sample has a mean closer to 0.4 across all mappings. The consistent mean values

with changes to the aggregation and zone are consistent with the nature of the MAUP and with the

findings of previous simulation exercises (Amrhein 1995). We see differences in other properties of

this variable: the minimum, maximum, and skew increase as the aggregation and zoning changes, but

not in a linear fashion, and spatial autocorrelation is also inconsistent across the mappings.1

1.2 Correlation in Simulated Data

Figure A.1 plots the first outcome of our simulations–the Pearson correlation coefficients to estimate

the strength of a linear association between each pair of variables: the first variable (DV), the second

variable (IV1), and the third variable (IV2, or “control variable”). On the left side, we show results

from the uniform probability simulation, and on the right side of the non-uniform probability simu-

lation. The top figures show results when the locations are aggregated to different values (scaling)

and then shifted in the eastward direction on our grid map (zoning). The bottom figures show the

aggregations and shifts in a southward direction. In all figures, the farther away from the left side of

the figure, the larger the scale (we move from 1 to 4 to 16 to 25 to 100 units), and the more shifted the

zone from its original location.

1For Moran’s I statistics and their p-values against the null of spatial autocorrelation, we used grid

mappings to generate a matrix of inverse Euclidean distance weights.
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Table A.1: Distributions of Simulated Data (Dependent Variable)
Modified Areal Units Uniform Sampling Probability Non-uniform Sampling Probability

N Mean Std.Dev. Min Max Skew Moran’s I N Mean Std.Dev. Min Max Skew Moran’s I

Monte Carlo Simulated Data 10,000 10,000
1 Grid 6721 0.506 0.500 0.000 1.000 -0.024 0.000 7138 0.413 0.492 0.000 1.000 0.354 -0.000

4 Grids (Aggregated) 2483 0.510 0.331 0.000 1.000 -0.025 -0.000 2485 0.412 0.310 0.000 1.000 0.273 0.000
4 Grids (+1 Shift Eastward) 2470 0.506 0.330 0.000 1.000 -0.018 -0.001 2477 0.416 0.312 0.000 1.000 0.288 -0.000
4 Grids (+1 Shift Southward) 2469 0.507 0.325 0.000 1.000 -0.021 -0.000 2478 0.412 0.306 0.000 1.000 0.256 -0.000

16 Grids (Aggregated) 625 0.507 0.159 0.091 1.000 0.000 -0.002 625 0.415 0.152 0.000 0.875 0.160 -0.003
16 Grids (+1 Shift Eastward) 625 0.507 0.161 0.000 1.000 -0.070 -0.004 625 0.414 0.151 0.000 1.000 0.301 -0.001
16 Grids (+1 Shift Southward) 625 0.506 0.155 0.000 1.000 0.016 -0.001 625 0.414 0.146 0.000 0.875 0.230 -0.001
16 Grids (+2 Shifts Eastward) 625 0.506 0.160 0.000 0.917 -0.186 -0.003 625 0.413 0.151 0.000 0.889 0.021 -0.001
16 Grids (+2 Shifts Southward) 625 0.506 0.156 0.091 0.923 0.028 -0.002 625 0.414 0.143 0.000 0.778 0.093 -0.001
16 Grids (+3 Shifts Eastward) 625 0.506 0.158 0.000 1.000 0.046 -0.001 625 0.414 0.149 0.667 0.900 0.252 -0.002
16 Grids (+3 Shifts Southward) 625 0.507 0.157 0.000 0.900 0.067 -0.003 625 0.414 0.146 0.091 0.900 0.248 -0.000

25 Grids (Aggregated) 400 0.507 0.129 0.118 0.889 0.061 -0.002 400 0.412 0.118 0.067 0.765 0.113 -0.002
25 Grids (+1 Shift Eastward) 400 0.506 0.125 0.063 0.857 -0.069 -0.006 400 0.413 0.121 0.056 0.750 0.110 -0.002
25 Grids (+1 Shift Southward) 400 0.506 0.123 0.188 0.867 -0.061 -0.001 400 0.413 0.116 0.143 0.789 0.258 -0.002
25 Grids (+2 Shifts Eastward) 400 0.507 0.120 0.118 0.867 -0.045 -0.002 400 0.413 0.115 0.063 0.706 0.011 0.001
25 Grids (+2 Shifts Southward) 400 0.507 0.127 0.167 0.875 0.022 -0.001 400 0.414 0.115 0.150 0.750 0.270 -0.002
25 Grids (+3 Shifts Eastward) 400 0.507 0.126 0.125 0.875 -0.009 -0.006 400 0.413 0.117 0.071 0.765 0.064 -0.001
25 Grids (+3 Shifts Southward) 400 0.507 0.125 0.125 0.818 -0.036 -0.001 400 0.414 0.116 0.125 0.737 0.191 -0.002
25 Grids (+4 Shifts Eastward) 400 0.507 0.126 0.133 0.867 0.014 -0.003 400 0.413 0.116 0.125 0.733 0.050 0.001
25 Grids (+4 Shifts Southward) 400 0.507 0.127 0.111 0.833 -0.166 -0.002 400 0.413 0.113 0.125 0.737 0.209 0.000

100 Grids (Aggregated) 100 0.506 0.066 0.338 0.698 0.542 -0.016 100 0.412 0.056 0.222 0.547 0.020 -0.014
100 Grids (+1 Shift Eastward) 100 0.506 0.061 0.388 0.662 0.613 -0.015 100 0.412 0.055 0.234 0.556 0.121 -0.014
100 Grids (+1 Shift Southward) 100 0.506 0.066 0.328 0.671 0.358 -0.012 100 0.413 0.056 0.250 0.548 0.003 -0.009
100 Grids (+2 Shifts Eastward) 100 0.506 0.059 0.380 0.667 0.413 -0.013 100 0.413 0.054 0.266 0.526 -0.207 -0.008
100 Grids (+2 Shifts Southward) 100 0.506 0.068 0.333 0.708 0.532 -0.016 100 0.413 0.058 0.262 0.548 -0.071 -0.006
100 Grids (+3 Shifts Eastward) 100 0.506 0.059 0.380 0.667 0.413 -0.013 100 0.413 0.054 0.266 0.526 -0.207 -0.008
100 Grids (+3 Shifts Southward) 100 0.506 0.068 0.333 0.708 0.532 -0.016 100 0.413 0.058 0.262 0.548 -0.071 -0.006
100 Grids (+4 Shifts Eastward) 100 0.506 0.055 0.375 0.667 0.304 -0.010 100 0.413 0.055 0.284 0.541 -0.191 -0.005
100 Grids (+4 Shifts Southward) 100 0.506 0.067 0.313 0.688 0.429 -0.008 100 0.413 0.061 0.234 0.543 -0.243 -0.010
100 Grids (+5 Shifts Eastward) 100 0.506 0.055 0.351 0.661 0.039 -0.011 100 0.413 0.057 0.277 0.541 -0.300 0.000
100 Grids (+5 Shifts Southward) 100 0.506 0.068 0.338 0.689 0.326 -0.007 100 0.412 0.063 0.266 0.600 0.290 -0.005
100 Grids (+6 Shifts Eastward) 100 0.506 0.058 0.342 0.639 -0.128 -0.003 100 0.413 0.056 0.271 0.563 -0.159 -0.002
100 Grids (+6 Shifts Southward) 100 0.506 0.063 0.353 0.681 0.267 -0.003 100 0.412 0.066 0.242 0.577 0.202 -0.010
100 Grids (+7 Shifts Eastward) 100 0.506 0.060 0.333 0.646 -0.101 -0.003 100 0.413 0.058 0.271 0.559 -0.116 -0.007
100 Grids (+7 Shifts Southward) 100 0.506 0.062 0.368 0.667 0.365 -0.000 100 0.413 0.061 0.258 0.577 0.107 -0.012
100 Grids (+8 Shifts Eastward) 100 0.506 0.065 0.343 0.692 0.214 -0.003 100 0.413 0.055 0.264 0.528 -0.119 -0.009
100 Grids (+8 Shifts Southward) 100 0.506 0.060 0.389 0.672 0.391 0.008 100 0.413 0.059 0.278 0.583 0.253 -0.013
100 Grids (+9 Shifts Eastward) 100 0.506 0.067 0.365 0.692 0.323 -0.003 100 0.413 0.055 0.217 0.534 -0.204 -0.008
100 Grids (+9 Shifts Southward) 100 0.506 0.059 0.378 0.689 0.361 -0.003 100 0.412 0.055 0.281 0.568 0.499 -0.007

Note: Moran’s I statistics range from -1 (perfect clustering of dissimilar values) through 0 (no spatial autocorrelation) to 1 (perfect clustering of similar
values).
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Table A.2: Distributions of Simulated Data (Independent Variable 1)
Modified Areal Units Uniform Sampling Probability Non-uniform Sampling Probability

N Mean Std.Dev. Min Max Skew Moran’s I N Mean Std.Dev. Min Max Skew Moran’s I

Monte Carlo Simulated Data 10,000 10,000
1 Grid 6602 0.508 0.500 0.000 1.000 -0.033 0.000 6691 0.541 0.498 0.000 1.000 -0.166 0.000

4 Grids (Aggregated) 2475 0.511 0.327 0.000 1.000 -0.025 0.000 2465 0.538 0.325 0.000 1.000 -0.121 -0.000
4 Grids (+1 Shift Eastward) 2467 0.512 0.331 0.000 1.000 -0.021 0.000 2463 0.540 0.327 0.000 1.000 -0.144 0.001
4 Grids (+1 Shift Southward) 2462 0.506 0.330 0.000 1.000 -0.014 -0,000 2468 0.540 0.327 0.000 1.000 -0.149 0.000

16 Grids (Aggregated) 625 0.509 0.158 0.000 1.000 0.001 -0.000 625 0.541 0.155 0.083 1.000 -0.006 -0.000
16 Grids (+1 Shift Eastward) 625 0.511 0.155 0.091 0.917 0.083 -0.001 625 0.541 0.155 0.100 0.917 -0.128 0.001
16 Grids (+1 Shift Southward) 625 0.508 0.156 0.091 1.000 0.095 -0.000 625 0.542 0.155 0.000 1.000 -0.143 0.002
16 Grids (+2 Shifts Eastward) 625 0.508 0.157 0.000 0.923 -0.133 -0.001 625 0.540 0.156 0.083 0.909 -0.124 0.002
16 Grids (+2 Shifts Southward) 625 0.507 0.157 0.000 1.000 -0.037 -0.000 625 0.540 0.154 0.091 1.000 -0.141 0.002
16 Grids (+3 Shifts Eastward) 625 0.511 0.160 0.091 1.000 0.117 -0.001 625 0.540 0.159 0.000 1.000 -0.082 0.001
16 Grids (+3 Shifts Southward) 625 0.507 0.159 0.091 1.000 0.048 -0.001 625 0.540 0.156 0.083 0.917 -0.107 0.001

25 Grids (Aggregated) 400 0.508 0.124 0.111 0.909 0.014 0.001 400 0.540 0.121 0.154 0.875 -0.100 0.002
25 Grids (+1 Shift Eastward) 400 0.509 0.129 0.118 0.857 -0.012 0,000 400 0.541 0.123 0.167 0.867 -0.159 0.004
25 Grids (+1 Shift Southward) 400 0.508 0.124 0.133 0.882 0.035 -0.001 400 0.540 0.127 0.167 0.857 -0.328 0.002
25 Grids (+2 Shifts Eastward) 400 0.510 0.128 0.188 0.929 0.088 0.001 400 0.540 0.123 0.188 0.875 -0.211 0.006
25 Grids (+2 Shifts Southward) 400 0.508 0.125 0.167 0.857 -0.004 -0.001 400 0.540 0.122 0.167 0.857 -0.195 0.001
25 Grids (+3 Shifts Eastward) 400 0.509 0.126 0.176 0.889 0.137 -0.001 400 0.540 0.127 0.133 0.857 -0.332 0.004
25 Grids (+3 Shifts Southward) 400 0.508 0.128 0.176 0.923 0.068 -0.004 400 0.541 0.121 0.125 0.833 -0.227 0.002
25 Grids (+4 Shifts Eastward) 400 0.510 0.124 0.118 1.000 0.079 0.002 400 0.541 0.128 0.158 0.938 -0.120 0.002
25 Grids (+4 Shifts Southward) 400 0.508 0.125 0.154 0.882 0.047 -0.001 400 0.540 0.117 0.222 0.875 0.067 0.004

100 Grids (Aggregated) 100 0.508 0.058 0.377 0.692 0.141 0.015 100 0.541 0.065 0.381 0.738 0.134 -0.004
100 Grids (+1 Shift Eastward) 100 0.508 0.061 0.379 0.691 -0.103 -0,009 100 0.541 0.067 0.393 0.750 0.192 -0.003
100 Grids (+1 Shift Southward) 100 0.508 0.057 0.391 0.677 0.290 0,014 100 0.541 0.064 0.400 0.672 -0.083 0.002
100 Grids (+2 Shifts Eastward) 100 0.508 0.063 0.328 0.682 -0.236 -0.007 100 0.541 0.068 0.368 0.699 -0.232 0.001
100 Grids (+2 Shifts Southward) 100 0.509 0.060 0.373 0.682 0.217 -0.010 100 0.541 0.066 0.415 0.690 0.186 0.001
100 Grids (+3 Shifts Eastward) 100 0.508 0.063 0.328 0.682 -0.236 -0.007 100 0.541 0.068 0.368 0.699 -0.232 0.001
100 Grids (+3 Shifts Southward) 100 0.509 0.060 0.373 0.682 0.217 -0.010 100 0.541 0.066 0.415 0.690 0.186 0.001
100 Grids (+4 Shifts Eastward) 100 0.509 0.059 0.338 0.672 -0.270 -0.003 100 0.541 0.070 0.362 0.704 -0.190 -0.001
100 Grids (+4 Shifts Southward) 100 0.508 0.063 0.377 0.688 0.405 -0.014 100 0.542 0.065 0.391 0.696 0.036 -0.001
100 Grids (+5 Shifts Eastward) 100 0.509 0.061 0.323 0.672 -0.232 -0.002 100 0.541 0.069 0.343 0.692 -0.315 -0.001
100 Grids (+5 Shifts Southward) 100 0.508 0.063 0.375 0.672 0.241 -0.012 100 0.542 0.058 0.409 0.691 0.106 0.005
100 Grids (+6 Shifts Eastward) 100 0.509 0.061 0.323 0.667 -0.046 -0.002 100 0.540 0.069 0.345 0.687 -0.213 -0.001
100 Grids (+6 Shifts Southward) 100 0.508 0.062 0.373 0.644 0.076 -0.010 100 0.542 0.059 0.411 0.701 -0.011 0.011
100 Grids (+7 Shifts Eastward) 100 0.509 0.062 0.338 0.672 0.346 0.001 100 0.541 0.067 0.366 0.657 -0.344 0.009
100 Grids (+7 Shifts Southward) 100 0.508 0.062 0.375 0.641 -0.031 -0.007 100 0.542 0.059 0.386 0.676 -0.113 0.007
100 Grids (+8 Shifts Eastward) 100 0.509 0.064 0.333 0.701 0.451 -0.010 100 0.540 0.068 0.362 0.667 -0.450 0.020
100 Grids (+8 Shifts Southward) 100 0.509 0.063 0.353 0.661 -0.091 -0.003 100 0.541 0.059 0.403 0.688 -0.080 0.007
100 Grids (+9 Shifts Eastward) 100 0.509 0.059 0.358 0.703 0.499 0.005 100 0.541 0.067 0.339 0.692 -0.314 0.022
100 Grids (+9 Shifts Southward) 100 0.509 0.061 0.393 0.738 0.434 0.013 100 0.541 0.062 0.406 0.697 0.052 -0.004

Note: Moran’s I statistics ranges from -1 (perfect clustering of dissimilar values) through 0 (no spatial autocorrelation) to 1 (perfect clustering of similar
values).
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Table A.3: Distributions of Simulated Data (Independent Variable 2)
Modified Areal Units Uniform Sampling Probability Non-uniform Sampling Probability

N Mean Std.Dev. Min Max Skew Moran’s I N Mean Std.Dev. Min Max Skew Moran’s I

Monte Carlo Simulated Data 10,000 10,000
1 Grid 6611 0.494 0.500 0.000 1.000 0.026 0.001** 6901 0.447 0.497 0.000 1.000 0.214 0.000

4 Grids (Aggregated) 2464 0.489 0.336 0.000 1.000 0.024 0.000 2476 0.441 0.317 0.000 1.000 0.175 0.001
4 Grids (+1 Shift Eastward) 2463 0.494 0.337 0.000 1.000 0.001 0.002 2472 0.449 0.322 0.000 1.000 0.151 -0.000
4 Grids (+1 Shift Southward) 2465 0.494 0.333 0.000 1.000 0.034 0.001 2477 0.445 0.324 0.000 1.000 0.174 0.000

16 Grids (Aggregated) 625 0.495 0.160 0.000 1.000 0.041 0.001 625 0.446 0.149 0.000 0.900 -0.047 0.001
16 Grids (+1 Shift Eastward) 625 0.494 0.161 0.000 1.000 0.072 0.003 625 0.447 0.153 0.000 0.889 -0.137 -0.001
16 Grids (+1 Shift Southward) 625 0.494 0.155 0.000 1.000 0.000 0.005 625 0.446 0.153 0.000 0.875 0.061 0.004
16 Grids (+2 Shifts Eastward) 625 0.493 0.159 0.071 1.000 0.103 0.002 625 0.447 0.154 0.000 0.900 -0.067 -0.001
16 Grids (+2 Shifts Southward) 625 0.494 0.158 0.100 1.000 0.226 0.001 625 0.446 0.154 0.000 1.000 0.114 0.003
16 Grids (+3 Shifts Eastward) 625 0.493 0.155 0.077 1.000 -0.027 0.005 625 0.449 0.151 0.000 0.900 -0.010 -0.001
16 Grids (+3 Shifts Southward) 625 0.495 0.160 0.077 1.000 0.111 0.005 625 0.448 0.155 0.000 0.900 0.116 -0.001

25 Grids (Aggregated) 400 0.493 0.127 0.063 0.875 -0.059 0.004 400 0.447 0.136 0.000 0.824 0.103 -0.002
25 Grids (+1 Shift Eastward) 400 0.494 0.128 0.125 0.917 0.104 0.005 400 0.447 0.128 0.063 0.824 0.102 -0.001
25 Grids (+1 Shift Southward) 400 0.494 0.127 0.118 0.923 0.129 0.005 400 0.447 0.126 0.000 0.846 0.007 0.005
25 Grids (+2 Shifts Eastward) 400 0.493 0.129 0.125 0.813 -0.006 0.004 400 0.446 0.127 0.067 0.857 0.009 -0.002
25 Grids (+2 Shifts Southward) 400 0.494 0.126 0.063 1.000 0.275 0.006 400 0.446 0.128 0.083 0.818 0.032 0.004
25 Grids (+3 Shifts Eastward) 400 0.493 0.130 0.083 0.813 -0.115 0.006 400 0.446 0.126 0.067 0.813 -0.022 -0.002
25 Grids (+3 Shifts Southward) 400 0.494 0.130 0.143 0.867 0.054 0.004 400 0.446 0.131 0.118 0.750 -0.050 -0.002
25 Grids (+4 Shifts Eastward) 400 0.494 0.130 0.118 0.875 -0.067 0.002 400 0.446 0.128 0.063 0.857 0.046 -0.003
25 Grids (+4 Shifts Southward) 400 0.492 0.123 0.176 0.833 0.037 0.009 400 0.447 0.133 0.059 0.786 -0.144 -0.002

100 Grids (Aggregated) 100 0.494 0.064 0.338 0.654 0.245 0.011 100 0.446 0.065 0.288 0.563 -0.313 -0.008
100 Grids (+1 Shift Eastward) 100 0.494 0.065 0.333 0.660 0.129 0.019 100 0.446 0.062 0.274 0.588 -0.308 -0.009
100 Grids (+1 Shift Southward) 100 0.494 0.065 0.343 0.671 0.214 0.006 100 0.447 0.061 0.292 0.582 -0.150 0.002
100 Grids (+2 Shifts Eastward) 100 0.494 0.065 0.319 0.671 0.027 0.026 100 0.446 0.063 0.267 0.638 -0.206 -0.017
100 Grids (+2 Shifts Southward) 100 0.494 0.064 0.309 0.667 -0.024 0.013 100 0.446 0.064 0.268 0.594 -0.127 0.005
100 Grids (+3 Shifts Eastward) 100 0.494 0.065 0.319 0.671 0.027 0.026 100 0.446 0.063 0.267 0.638 -0.206 -0.017
100 Grids (+3 Shifts Southward) 100 0.494 0.064 0.309 0.667 -0.024 0.013 100 0.446 0.064 0.268 0.594 -0.127 0.005
100 Grids (+4 Shifts Eastward) 100 0.494 0.067 0.286 0.662 -0.010 0.023 100 0.446 0.063 0.284 0.618 -0.085 -0.017
100 Grids (+4 Shifts Southward) 100 0.494 0.066 0.296 0.639 -0.148 0.008 100 0.446 0.061 0.260 0.569 -0.415 -0.001
100 Grids (+5 Shifts Eastward) 100 0.494 0.070 0.310 0.673 0.085 0.009 100 0.447 0.065 0.265 0.642 0.270 -0.015
100 Grids (+5 Shifts Southward) 100 0.493 0.064 0.314 0.690 0.111 0.021 100 0.447 0.063 0.229 0.592 -0.367 -0.000
100 Grids (+6 Shifts Eastward) 100 0.494 0.070 0.322 0.662 -0.100 0.001 100 0.447 0.069 0.306 0.681 0.584 -0.016
100 Grids (+6 Shifts Southward) 100 0.493 0.064 0.304 0.667 0.026 0.018 100 0.446 0.068 0.261 0.597 -0.061 -0.007
100 Grids (+7 Shifts Eastward) 100 0.494 0.068 0.354 0.682 0.166 0.001 100 0.447 0.067 0.301 0.682 0.588 -0.016
100 Grids (+7 Shifts Southward) 100 0.493 0.067 0.279 0.667 -0.018 0.001 100 0.446 0.062 0.265 0.583 -0.227 -0.004
100 Grids (+8 Shifts Eastward) 100 0.493 0.067 0.313 0.651 -0.031 -0.002 100 0.447 0.068 0.274 0.662 0.346 -0.019
100 Grids (+8 Shifts Southward) 100 0.493 0.067 0.303 0.639 -0.083 0.003 100 0.446 0.063 0.300 0.587 -0.047 -0.003
100 Grids (+9 Shifts Eastward) 100 0.494 0.066 0.328 0.644 -0.068 0.009 100 0.447 0.062 0.306 0.583 -0.135 -0.011
100 Grids (+9 Shifts Southward) 100 0.494 0.064 0.353 0.636 0.176 0.014 100 0.446 0.067 0.268 0.569 -0.392 -0.014

Note: Moran’s I statistics range from -1 (perfect clustering of dissimilar values) through 0 (no spatial autocorrelation) to 1 (perfect clustering of similar
values).
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Figure A.1: The MAUP in Bivariate Correlation, by Sampling Probability Type

(a). Uniform Probability (b). Non-uniform Probability

Notes: Stars represent the Pearson correlation between IV1 and the DV. Circles represent the correlation between IV2 and
DV. Hollow triangles represent the correlation between IV1 and IV2. Dotted vertical lines separate different scale sizes (e.g.,
1 grid cell, 4 grid cells, 16 grid cells, 100 grid cells). The x-axis tick labels show zonal changes within each set of analyses at
a given scale.
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In all four quadrants of Figure A.1, we can see the impacts of the MAUP. The bivariate correlations

at the aggregate level are substantively affected by how we combine data despite the fact that they

are based on the same underlying values of the individual locations. Starting from a correlation of

approximately zero with our locations for all variables, we see the correlations change, in both positive

and negative directions, as the scale and zoning change. Importantly, the effects of the MAUP do not

seem to increase or decrease monotonically with scaling or zoning, although more aggregated units

show more variance than smaller units. These unpredictable effects are apparent both in the uniform

probability samples and in the samples based on non-uniform probabilities. Thus, depending on the

set of borders we use to divide our 10,000 locations into aggregate units, we would obtain different

results for the correlations between these three variables. This finding confirms existing scholarship

on the MAUP that shows in a simulation setting that correlations are unstable based on changes to

both scaling and zoning (Amrhein 1995; Openshaw 1984).
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2 Monte Carlo Simulation with Irregular Lattice Data & Spatial Dependence

We also examine the impact of the MAUP in settings with spatially dependent real-world data across

irregularly shaped units (such as administrative or electoral boundaries) (Bisbee and Zilinsky 2023;

Briant et al. 2010; Fotheringham and Wong 1991; Hipp 2007; Wilson 2013). We explore the boundary

data of 58 counties and 53 Congressional districts in California. We pick California because the

number of counties and Congressional districts is similar, so results are less likely to be driven by

differences in scale. We treat these administrative and electoral units as irregularly shaped polygons.

See Figure A.2 for comparison of boundary patterns. Figure A.3 reports the ‘baseline scenario’ of

OLS bivariate regression, which shows that changing the boundaries of the units we use (from counties

to Congressional districts) can have large effects on Pearson correlations and regression results.

We also build on this ‘baseline scenario’ by drawing a random sample, iterating from the real

value range of three socioeconomic measures – Democratic presidential vote share, median household

income, and population share working from home. We chose these two independent variables because

the first (median household income) is expected to be highly correlated with Democratic presidential

vote share (subfigure a) but the second (population share working from home) is not (subfigure c).

We apply a Monte Carlo simulation of random sampling over 100 trials. These models account

for spatial lag dependence (Figure A.4) and spatial error dependence (Figure A.5) with alternative

specifications of neighboring connectivity weights: K-nearest, distance-decay, and queen contiguity.

As discussed in the main text, the results show the MAUP is present in all models, including the

baseline scenario and the models accounting for spatial lag dependence and spatial error dependence.

The simulation results are indicated with point estimates and standard error bars. The highlighted

results in the figures are those for which values for the county are significantly different from those

calculated for the Congressional district.
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Figure A.2: Application of Irregular Lattice Data (Geographic Polygons: California)

Note: Democratic vote share for the presidential election of 2016 for California counties is
available from Amlani and Algara (2021).
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Figure A.3: Unit Selection and Changes in Pearson Correlation

Counties Congressional Districts

Notes: Each graph marks an OLS bivariate regression fit with the confidence intervals (pur-
ple bands). We then develop a multivariate model for which we regress Democratic presi-
dential vote share (DV) on two socioeconomic factors: median household income (IV1) and
population share working from home (IV2). The county-level and Congressional district-
level data for these socioeconomic characteristics are 5-year estimates (2015-2019) avail-
able from the American Community Survey from the US Census.
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Figure A.4: Monte Carlo Analysis of the MAUP in Spatial Lag Model Regression with Neighboring
Connectivity Weights

Notes: Our analysis treats California’s democratic vote share in the 2016 presidential elec-
tion as a function of median household income (IV1) and population share working from
home (IV2) at the county and Congressional district levels. All weight matrices for regres-
sion analysis are row-standardized.
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Figure A.5: Monte Carlo Analysis of the MAUP in Spatial Error Model Regression with Neighboring
Connectivity Weights
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3 Replications: Results of Reanalysis and Discussion

Our replications focus on the consequences of scaling and zoning changes on results and inferences

from analyses. As we discuss in the main text, scholars may face complications in choosing appropri-

ate spatial units for analyses due to imprecision in theories or limits to data availability. To show the

issues at stake in these choices, we re-analyze two prominent articles using different areal units and

explore the implications for the inferences drawn from their findings.

3.1 Unit Scale and the Determinants of Support for Brexit

Colantone and Stanig (2018) argue that support for Brexit should be understood as a reaction by

individuals to “the general economic situation of their region” (p.201), especially the extent of im-

port competition. Regions that are “left behind areas of globalization” (p.203) see higher support for

Brexit. Using the shock from Chinese imports as an index for the impact of globalization (and an

instrumental variable approach in some models) the authors show that “support for Leave is system-

atically higher in regions that are falling behind in relative terms” (p.204).

The spatial unit used to operationalize ‘region’ in the original analysis is Level 3 of the Euro-

stat NUTS (Nomenclature of Units for Territorial Statistics) framework, which is intended to capture

“small regions for specific diagnoses” (p.204).2 This spatial unit plausibly captures the concept of

economic ‘region’ that the authors have in mind, although they do not align in most cases with formal

political or administrative unit in the United Kingdom (Schraff et al. 2023). Yet it is not definitively

the only spatial scale appropriate to explore the dynamics of sociotropic economic voting at the heart

of their argument. We suggest that a somewhat larger scale could also be a plausible operational-

ization of the economic region. Indeed, the authors themselves argue that the objective impact of

2The European Union’s NUTS system identifies three hierarchically nested levels: NUTS-1 (large

regions), NUTS-2 (basic regions for regional development policies, equivalent to US states), and

NUTS-3 (smaller regions, equivalent to US counties but typically smaller). Whether these units are

administrative or politically meaningful varies by country.
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import competition is not limited to specific industries but to “entire communities” (p.203), and the

boundaries of these communities may plausibly be larger than the NUTS-3 regions. The broader

scholarship on the sociotropic determinants of support for Brexit has explored these relationships at

the larger NUTS-2 level (Arnorsson and Zoega 2018; Los et al. 2017) and both the NUTS-3 and

NUTS-2 levels (Huggins 2018; Brautzsch and Holtemöller 2021).3

We therefore suggest that the NUTS-2 level also provides a plausibly valid spatial mapping of

the ‘region’ affected by an import shock, in terms of both objective economic effects and voters’

perceptions. The NUTS 2 borders align with political constituencies in the UK (Schraff et al. 2023).

In our reanalysis, we show that the results generated by analyzing support for Brexit at this larger

scale would lead us to different inferences about its determinants. Since both of these spatial oper-

ationalizations of the region are, we suggest, plausibly valid, inconsistency across them should call

into question what we actually know about the determinants of support for Brexit.

The central finding in Colantone and Stanig (2018) is that an import shock in a region is associated

with increased support for the 2016 Brexit referendum. This finding is robust to the inclusion of a

wide range of regional control variables (p.211). Figure A.6 shows the core results of our reanalysis,

using their data but aggregating to the NUTS-2 level. We find that the baseline results shown in

Figure A.6(a) do not substantively change when we move to a larger scale, though some have weaker

statistical significance. However, our re-analyses of the robustness checks that account for a wide

range of regional characteristics display some important differences; these are shown in Figure A.6(b).

We find that the import shock variable loses significance in two of the six models from the original

paper.

We also explore results for the effect of immigration on support for Brexit. Here, we find even

stronger evidence for Colantone and Stanig’s argument for the primacy of import competition over

3While we explore the possibility that a larger administrative boundary might provide a valid spatial

mapping, there is no reason to believe that the spatial units on which people base their subjective

evaluations must be bounded by administrative borders. Many additional spatial mappings might

therefore be plausibly valid.
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Figure A.6: Region-level Reanalysis Results (Colantone and Stanig 2018)
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(b). Robustness (Linear Models)

Notes: Replicated results for core variables of Colantone and Stanig (2018-210-11) with 95% CIs. For subfigure (a), addi-
tional information is available from OA Table A.4. For subfigure (b), refer to OA Table A.5.
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Table A.4: Region-level Results (Colantone and Stanig 2018)

 VARIABLES  
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 Model 10 Model 11 Model 12 

CS† MAUP  CS† MAUP CS† MAUP CS† MAUP CS† MAUP CS† MAUP 
             

Import Shock 12.233 38.739 12.225 18.919 12.965 40.838 12.085 28.902 11.073 17.564 12.299 33.074 
 (4.763) (18.546) (4.091) (10.793) (4.543) (18.558) (3.890) (8.023) (3.861) (9.472) (3.726) (10.276) 

Immigrant Share        -0.490 -0.077 -0.513 -0.338 -0.491 -0.114 
       (0.165) (0.456) (0.155) (0.400) (0.154) (0.400) 

Immigrant Arrivals       -0.066 -2.427 0.496 -1.519 -0.058 -2.128 
       (0.741) (2.677) (0.801) (2.445) (0.691) (2.362) 
             

Model  Linear Linear Hierarchical Hierarchical IV IV Linear Linear Hierarchical Hierarchical IV IV 
             

NUTS-1  
   Fixed Effects 

Yes No Yes No Yes No Yes No Yes No Yes No 

NUTS-2  
   Random Intercepts  

No No Yes No No No No No Yes No No No 

NUTS-1 
   Random Intercepts 

No No No Yes No No No No No Yes No No 

             

Clustered Std. Err    
    NUTS Level 

Yes 
NUTS-2 

Yes 
NUTS-1 

No 
 

No 
 

Yes 
NUTS-2 

Yes 
NUTS-1 

Yes 
NUTS-2 

Yes 
NUTS-1 

No 
 

No 
 

Yes 
NUTS-2 

Yes 
NUTS-1 

             

Observations 167 39 167 39 167 39 167 39 167 39 167 39 
R-squared 0.573 0.210   0.573 0.209 0.646 0.449   0.646 0.447 
Kleibergen-Paaap 
   F Statistic 

 
   662.7 1669     614 2134 

Number of groups   39  11     39 11   
             

Dependent Variable: 
 

NUTS-3 
Leave 
Share 
(%) 

NUTS-2 
Leave 
Share 
(%) 

NUTS-3 
Leave  
Share 
(%) 

NUTS-2 
Leave  
Share 
 (%) 

NUTS-3 
Leave 
Share 
(%) 

NUTS-2 
Leave 
Share 
(%) 

NUTS-3 
Leave 
Share 
(%) 

NUTS-2 
Leave 
Share  
(%) 

NUTS-3 
Leave 
 Share 

(%) 

NUTS-2 
Leave 
 Share 

(%) 

NUTS-3 
Leave 
Share 
(%) 

NUTS-2 
Leave 
Share 
(%) 

             
 

Notes: 
† Colantone and Stanig (2018), Table 1. See page 210. 
Emboldened digits are statistically significant coefficient estimates.  
Constant estimates are not reported here.  
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Table A.5: Region-level Robustness (Colantone and Stanig 2018)

  
VARIABLES  

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 Model 10 Model 11 Model 12 
CS† MAUP ⸹ CS† MAUP ⸹ CS† MAUP ⸹ CS† MAUP ⸹ CS† MAUP ⸹ CS† MAUP ⸹ 

                    
Import Shock 9.391 25.534 14.920 26.372 9.460 23.460 10.592 33.210 9.765 13.322 7.997 22.431  

(3.858) (9.616) (6.061) (21.839) (4.084) (10.752) (4.075) (14.478) (4.125) (8.814) (4.011) (7.089) 
Immigrant Share -0.328 -0.048 -0.282 -0.080 -0.592 0.194 -0.617 0.153 -0.462 0.039 -0.529 -0.453  

(0.130) (0.377) (0.123) (0.350) (0.178) (0.375) (0.183) (0.421) (0.163) (0.336) (0.147) (0.437) 
Immigrant Arrivals -1.141 -6.421 -1.434 -7.963 -0.083 -5.082 0.025 -4.692 -0.102 -2.471 0.309 0.273  

(0.822) (2.529) (0.751) (2.373) (0.777) (2.342) (0.809) (2.640) (0.713) (2.086) (0.652) (2.563) 
EU Accession Immigrants 
(2001) 

-12.045 8.388 -10.301 37.572         
(5.824) (8.944) (8.104) (15.608)         

EU Accession Immigrants 
Growth (2001-2011) 

1.527 4.023 2.431 2.872         
(0.549) (1.277) (1.286) (3.187)         

EU Accession Immigrants 
* Import Shocks  

  -15.685 -130.073         
  (34.567) (58.350)         

EU Accession Immigrants 
Growth * Import Shock 

  -1.831 11.860         
  (3.745) (8.047)         

Fiscal Cuts     0.022 0.014 0.014 -0.011      
    (0.006) (0.010) (0.013) (0.031)     

Cancer Treated in 62_days     -0.591 -7.036 -0.503 -7.324      
    (0.596) (1.442) (0.616) (1.513)     

Public Employment 
Growth 

    0.813 -2.590 0.910 -2.681     
    (0.519) (1.782) (0.536) (1.711)     

Fiscal Cuts * Import Shock       0.028 0.089      
      (0.031) (0.084)     

EU Economic Dependence         0.683 1.195    
        (0.384) (0.433)   

Change in Relative Income 
vs. Median Region 

          -0.225 -0.422 
          (0.059) (0.122)  
            

Model Linear Linear Linear Linear Linear Linear Linear Linear Linear Linear Linear Linear 
NUTS-1 Fixed Effects Yes No Yes No Yes No Yes No Yes No Yes No 
Clustered Std. Err (NUTS) NUTS-2 NUTS-1 NUTS-2 NUTS-1 NUTS-2 NUTS-1 NUTS-2 NUTS-1 NUTS-2 NUTS-1 NUTS-2 NUTS-1 
Observations 167 39 167 39 167 39 167 39 167 39 167 39 
R-squared 0.677 0.521 0.680 0.549 0.698 0.678 0.700 0.683 0.659 0.590 0.692 0.559 
Dependent Variables: 
Regional Vote Share (%) 

NUTS-3 
 

NUTS-2 
 

NUTS-3 
 

NUTS-2 
 

NUTS-3 
 

NUTS-2 
 

NUTS-3 
 

NUTS-2 
 

NUTS-3 
 

NUTS-2 
 

NUTS-3 
 

NUTS-2 
 

             
 
Notes:   
† Colantone and Stanig (2018), Table 2. 
Emboldened digits are statistical significant coefficient estimates. 
Constant estimates are not reported here.  
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immigration as a predictor for anti-Brexit public sentiments than what they produced at the NUTS-3

level, shown in Figure A.6(b). Whereas Colantone and Stanig found that increased immigrant share

has a negative and significant (yet minuscule) impact on support for Brexit – NUTS-3 areas with

more foreign-born residents as a share of the local population in 2015 were less supportive of Brexit

- analysis at the NUTS-2 level finds that immigrant share has no effect on support for ‘Leave’ once

the import shock is taken into consideration. Moreover, against the literature that emphasizes the role

of immigration in driving support for Brexit, our results at the NUTS-2 level for immigrant arrivals

(the inflow of immigrant workers as a share of the total working-age population of the region in 2015)

actually show that immigrant arrivals have a negative effect on support for Brexit. This relationship

was found to be insignificant in the original, NUTS-3 level analysis.

Our claim is not that we have uncovered the true relationships between import competition, immi-

gration, and support for Brexit. Nor do we suggest that Colantone and Stanig’s findings are incorrect.

Instead, we have shown that changing the scale at which economic and social context is operational-

ized alters some of the findings - in particular, it is unclear whether the import shock is a consistent

predictor of Brexit support, or whether immigrant arrivals drove support for leaving the EU. Unless

we have a clear justification for why a particular scale is more valid than another for operationalizing

the spatial concept at the heart of the theory, the conclusions we should reach about the causes of

support for Brexit are less clear.

A skeptical reader might suggest that the changes we observe in our reanalysis are simply the

result of the aggregation effect: since we have re-analyzed at a larger spatial scale, estimates are less

precise simply by virtue of the fact that we have a smaller number of observations, and this makes

us more likely to find null relationships. Yet in some cases, we actually found stronger statistical

relationships when we analyzed at a larger scale: this was the case for the finding that immigrant

arrivals in the region are negatively associated with support for Brexit.

In the analyses shown in Figure A.6, both dependent and independent variables were unit aggre-

gates. Examining the individual level analysis in Colantone and Stanig (2018) allows us to see how

spatially aggregated independent variables (Import Shock, Immigrant Share, and Immigrant Arrivals)

impact individual-level Brexit support. The upper left quadrant of Table A.6 shows how the unit af-
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Table A.6: Individual-level Results (Colantone and Stanig 2018)

Independent Variables 

Binary Dependent Variable: 
1 = The respondent declares the intention to vote for the Leave option. 
0 = Otherwise. 

 Categorical Dependent Variable 
The respondent's perception: Immigration change 
(l= Getting a lot lower, 5=Getting a lot higher). 

Model 1 
CS† 

Model 2 
MAUP 

Model 3 
MAUP 

Model 4 
CS‡ 

Model 5 
MAUP 

Model 6 
MAUP 

 Model 7 
CS⸹ 

Model 8 
MAUP 

Model 9 
MAUP 

           

Regional Level Indicators NUTS-3 NUTS-2 NUTS-1 NUTS-3 NUTS-2 NUTS-1  NUTS-3 NUTS-2 NUTS-1 
  Import Shock  0.246  0.338  1.062  0.322  0.310  1.012   0.125  0.168  0.463 
 (0.104) (0.210) (0.527) (0.119) (0.217) (0.574)  (0.064) (0.121) (0.284) 
  Immigrant Share -0.006 -0.010 0.064 -0.006 -0.010 0.065   0.008  0.010  0.044 
 (0.005) (0.011) (0.058) (0.005) (0.010) (0.059)  (0.003) (0.005) (0.020) 
  Immigrant Arrivals  0.011 -0.027 -0.423  0.012 -0.024 -0.427  -0.055 -0.067 -0.292 
 (0.024) (0.051) (0.399) (0.024) (0.051) (0.400)  (0.014) (0.030) (0.138) 
Individual Level Indicators           
  Age (15-93)  0.014  0.014  0.014  0.015  0.015  0.016   0.012  0.013  0.013 
  (0.001) (0.001) (0.001) (0.001) (0.001) (0.002)  (0.000) (0.000) (0.000) 
  Gender (1=Male) -0.050 -0.050 -0.048 -0.048 -0.048 -0.046   0.055  0.055  0.056 
 (0.028) (0.030) (0.026) (0.028) (0.030) (0.027)  (0.012) (0.012) (0.012) 
  1. Education (GCSE D-G) -0.097 -0.095 -0.087 -0.107 -0.104 -0.097  -0.055 -0.054 -0.054 
 (0.085) (0.081) (0.085) (0.085) (0.081) (0.088)  (0.033) (0.033) (0.033) 
  2. Education (GCSE A*-C) -0.186 -0.187 -0.182 -0.197 -0.197 -0.192  -0.069 -0.069 -0.070 
 (0.059) (0.060) (0.068) (0.059) (0.059) (0.071)  (0.024) (0.024) (0.024) 
  3. Education (A-level) -0.449 -0.451 -0.444 -0.455 -0.455 -0.448  -0.284 -0.284 -0.285 
 (0.059) (0.060) (0.063) (0.059) (0.059) (0.064)  (0.025) (0.025) (0.025) 
  4. Education (Undergraduate) -0.729 -0.730 -0.728 -0.738 -0.737 -0.735  -0.473 -0.475 -0.479 
 (0.059) (0.070) (0.064) (0.059) (0.069) (0.066)  (0.023) (0.023) (0.023) 
  5. Education (Postgraduate) -1.072 -1.073 -1.080 -1.082 -1.084 -1.091  -0.648 -0.655 -0.663 
 (0.066) (0.065) (0.070) (0.065) (0.064) (0.070)  (0.028) (0.028) (0.028) 
  Retired     0.028 -0.147 -0.175     
    (0.078) (0.092) (0.156)     
Interaction           
  Retired * Import Shock    -0.407 0.122 0.211     
    (0.200) (0.253) (0.429)     
Model  Probit Probit Probit Probit Probit Probit  Hierarchical Hierarchical Hierarchical 
           

NUTS-1 Fixed Effects Yes Yes No Yes  Yes No  Yes Yes No 
Random Intercepts No No No No No No  NUTS-3 NUTS-2 NUTS-1 
Std. Err. Clustered by NUTS NUTS-3 NUTS-2 NUTS-1 NUTS-3 NUTS-2 NUTS-1  No No No 
Number of Groups        167 39 11 
Observations 16,331 16,331 16,331 16,331 16,331 16,331  20,623 20,623 20,623 
           

 
Notes:  
Standard errors in parentheses 
Emboldened digits are statistically significant coefficient estimates. 
GSCE stands for General Certificate of Secondary Education. 
† Colantone and Stanig (2018). Duplicates of Table 3, Model 4 See page 213 for details. 
‡ Colantone and Stanig (2018). Duplicates of Table 4, Model 1. See page 215 for details. 
⸹ Colantone and Stanig (2018). Duplicates of Table 5, Model 3. See page 216 for details. 
Constant is not repolled here. 
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fects the statistical significance of the result: the import shock variable is significant in all original

models at the NUTS-3 level, but insignificant across all models for reanalysis at the NUTS-2 level. Yet

as we move up to an even larger scale and operationalize this variable at the NUTS-1 level, it becomes

significant once again. This is a further demonstration that the effects of unit scale on regression re-

sults are not monotonic or predictable. Moreover, the fact that variables can become significant at

larger scales is further evidence that our results do not simply reflect the aggregation effect. Another

instance of a finding that changes in surprising ways is also highlighted in the table: the interaction

term Retired*Import Shock, which measures the impact of the import shock on working-aged people,

while significant in the expected (negative) direction at the NUTS-3 level, is positive although not

significant at the NUTS-2 and NUTS-1 levels.

As we discussed above, the authors’ theory can accommodate several spatial units as plausibly

valid scales at which to measure the impact of the import shock. While the NUTS-3 unit might be

a reasonable “approximate” unit to capture individuals’ sense of economic community, so might an

even smaller level, if such data were available. So might the NUTS-2 or NUTS-1 level if people view

their economy in broader terms. Because we cannot say whether the NUTS-3 results provide a more

accurate account of the theory, the fact that findings vary across scales casts doubt on the inferences

we can draw about the causes of support for Brexit.

3.2 Unit Scale and the Moderating Effects of Neighborhood Context on Social Rewards for

Participation

The MAUP can also alter regression results via its effects on control variables even when the IV and

DV are individual-level variables. We explore this effect in our examination of Anoll (2018), show-

ing what happens when we operationalize a moderating variable at a different spatial scale. Anoll

theorizes that the social rewards of participation are moderated by the composition of the local com-

munity. More specifically, she explores how the proportion of co-racials increases the social rewards

to Black participation, and how the foreign-born (either naturalized or noncitizens) participation of

local communities has the same impact on Latino participation. She uses the 5-digit zip code as a

measure of the survey respondents’ residential community. We replicate Anoll’s regression results
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(Table 3, p.504) using the somewhat larger scale 3-digit zip code area as an alternative operational-

ization of the local community. While many of our conclusions are similar, we find that some of the

results are not consistent across these different spatial scales.

Laudably, Anoll provides an explicit and plausible justification for why she chose the zip code for

mapping the boundaries of the local community. She bases it on work by Velez and Wong (2017)

from which she concludes that “across an array of measures, zip code most closely approximates

people’s perceptions of the racial composition of their local community” (Anoll 2018, p.503, fn. 13).

It is true that in terms of capturing perceptions of racial composition, Velez and Wong show that the

zip code outperforms both user-defined boundary measures like that developed by Wong et al. (2012)

and a measure based on people’s reports of locations they frequently visited and that the zip code (or

ZCTA; the census-defined zip code tabulation area) also outperforms the county. But our suggestion is

that while this logic may justify the choice of the zip code over the county (which is too large), it does

not provide a dispositive reason to prefer the standard zip code over other all alternative specifications

of local context.

We submit that it is therefore reasonable to operationalize local context at the 3-digit zip code

level, which is larger than the 5-digit zip code but far smaller than the county in most cases. To do

this, we use a list of 3-digit US postal zip code prefixes that identify the names of the sectional center

facilities (SCF). This is a plausible alternative way to operationalize community at a larger scale since

each SCF serves local addresses whose five-digit codes begin with the same three digits. Our local

contexts are larger than Anoll’s, but not so implausibly large as to make them inappropriate for the

concept of ‘community.’

Table A.7 reports our results of replicating Anoll’s analyses at the 5-digit zip code scale, and re-

analyzing them at the 3-digit zip code area scale. Many of the results are similar, but there are several

differences of note, which are highlighted in bold. The first can be seen by comparing the results of

Models 3 and 4. Here, while Anoll finds (in Model 3) that the social rewards to Black Americans for

participation in a rally are substantively and significantly affected by the proportion of co-racials in

a neighborhood, we do not find the same effect using a spatially larger definition of neighborhood.

While the size of the coefficient does not change substantially when we move from the 5-digit to the
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Table A.7: Neighborhood Context Effects on Social Rewards for Voting and Political Rally Attendance (Anroll 2018)
Samples: Blacks & Whites Samples: Latinos & Whites Samples: Latinos & Whites

(1) Voters (2) Rally Attenders (3) Voters (4) Rally Attenders (5) Voters (6) Rally Attenders
5-Zip 3-Zip 5-Zip 3-Zip 5-Zip 3-Zip 5-Zip 3-Zip 5-Zip 3-Zip 5-Zip 3-Zip

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 Model 10 Model 11 Model 12

Intercept 0.763 0.757 0.697 0.705 0.767 0.786 0.739 0.751 0.731 0.746 0.713 0.715
(0.014) (0.016) (0.015) (0.017) (0.016) (0.017) (0.017) (0.019) (0.016) (0.018) (0.018) (0.020)

White 0.000 0.004 -0.015 -0.024 -0.020 -0.033 -0.044 -0.045 0.025 0.012 -0.013 -0.006
(0.012) (0.014) (0.013) (0.015) (0.015) (0.017) (0.016) (0.018) (0.016) (0.018) (0.017) (0.019)

Income -0.000 -0.000 -0.004 -0.005 0.000 -0.000 -0.004 -0.004 0.000 0.000 -0.004 -0.004
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Education -0.010 -0.009 -0.001 -0.001 -0.008 -0.007 -0.003 -0.003 -0.008 -0.007 -0.003 -0.003
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

Male -0.038 -0.040 -0.014 -0.016 -0.043 -0.044 -0.020 -0.021 -0.044 -0.045 -0.021 -0.022
(0.007) (0.007) (0.008) (0.008) (0.008) (0.008) (0.008) (0.009) (0.008) (0.008) (0.008) (0.009)

Prop.Black.Zip 0.062 0.091 0.058 0.052
(0.023) (0.037) (0.025) (0.039)

Prop.Black.Zip*White -0.075 -0.087 0.033 0.041
(0.045) (0.050) (0.048) (0.054)

Prop.Latino.Zip -0.010 -0.058 -0.001 -0.039
(0.031) (0.043) (0.033) (0.046)

Prop.Latino.Zip*White 0.083 0.078 -0.000 -0.030
(0.045) (0.052) (0.048) (0.055)

Prop.Foreign-Born Zip 0.144 0.109 0.116 0.120
(0.053) (0.070) (0.057) (0.075)

Prop.Foreign-Born*White -0.163 -0.133 -0.175 -0.239
(0.071) (0.086) (0.076) (0.091)

Numbers of Obs. 2,463 2,311 2,463 2,311 1,981 1,838 1,981 1,838 1,981 1,838 1,981 1,838
RMSE 0.178 0.179 0.189 0.191 0.191 0.194 0.204 0.207 0.191 0.194 0.204 0.207
R2 0.029 0.029 0.022 0.022 0.024 0.022 0.025 0.029 0.025 0.025 0.028 0.031
Mean of DV 0.716 0.716 0.660 0.660 0.712 0.712 0.661 0.661 0.712 0.712 0.661 0.661
SD of DV 0.177 0.177 0.186 0.186 0.175 0.175 0.185 0.185 0.175 0.175 0.185 0.185

Notes: Emboldened digits are statistically significant weighted OLS estimates. The social reward is calculated by averaging likability
and respectability scores and standardizing from 0-1 with 1 being “extremely likable and respectable.” The excluded category is minority
respondents-either Black or Latino. 5-zip is the unit used in the original study (Anroll 2018, 503).
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3-digit zip code, a move to the larger set of boundaries around ‘neighborhood’ increases the standard

error, and makes the result statistically insignificant.

We find additional differences from Anoll’s results when we explore the impact of community

composition on the rewards to participation for Latinos. In Models 9 and 11, Anoll finds at the 5-digit

zip code level that the proportion of foreign-born citizens has a large, positive, and significant effect

on the social rewards to both voting and rally participation. By contrast, our analysis at the 3-digit

zip code level (Models 10 and 12) finds that these effects are not statistically significant. This is an

instance of how a contextual variable subject can affect our inferences about other predictors.

We also highlight an instance in which the MAUP impacts the moderating effects created by

interaction variables included in the model – how a respondent’s race interacts with her neighborhood

characteristics to affect social incentives to participate in political action. We replicate the interaction

terms in Anoll (2018, p.505) in Figure A.7, using the 3-digit zip code areas (compared to the 5-digit

zip code in the original analysis). The figures, a subset of the original, show the interaction of White

or Latino race/ethnicity with the percentage of racial groups in the individual’s zip code, on that

individual’s likelihood to vote (top two figures) or attend a political rally (bottom two figures).

We see a contrast between Figures A.7(a) with A.7(b), in which the effect of context disappears

at a larger scale. Figure A.7(a) captures relative predicted probabilities of perceiving social rewards

to participation (with 80% confidence intervals, as in the original paper), for Latinos and Whites.

Here, Anoll suggests that as the proportion of foreign-born citizens in the zip code area increases,

White respondents’ willingness to participate in voting remains nearly constant whereas the attitudes

toward voting of Latinos become more positive; this is said to be a result of their embeddedness in a

community “filled with group members joined by their experiences with immigration” (Anoll 2018,

p.503). Evidence for the finding is the diverging slopes between Latinos and Whites in Figure A.7(a).

However, our reanalysis at the 3-digit zip code level shown in Figure A.7(b) finds these differences

between Latinos and Whites to be insignificant. Comparing Figures A.7(c) with A.7(d) shows an-

other contrast. In these figures, contextual differences in social rewards for voting participation and

political rally attendance for members of minority groups are more pronounced when the community

is operationalized on a larger scale.
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Figure A.7: Moderating Effect of Neighborhood Context on Social Rewards (Anroll 2018)
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(b). Context: Foreign-Born (3-Zip)
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(c). Context: Latino (5-Zip)
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(d). Context: Latino (3-Zip)
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4 Exploring the MAUP in “Flagship” Journals

In the main text of the paper, we argued that the most compelling way scholars can address the threats

to inference posed by the MAUP is to justify the spatial unit they choose as uniquely valid, and

thus rule out any findings obtained by aggregating with a different spatial mapping as irrelevant. We

identified three grounds on which validity can be justified: (1) the logic of the theory in terms of

the spatial mapping at which treatment is assigned (theoretical logic), (2) empirical evidence from

the research setting about that spatial mapping (empirical evidence), and (3) empirical or theoretical

evidence about the spatial mapping associated with a particular theorized causal mechanism (causal

mechanism).

In this section of the Appendix, we discuss the APSR and AJPS articles we coded to show that

in cases where scholars use these grounds to justify their chosen spatial mapping, these justifications

provide a convincing response to the MAUP. In some cases, these justifications were explicit; we

strongly recommend this as a best practice that complements discussions of other research design

choices. In many papers, the reader must identify on their own the information provided in the paper

that can help them to assess whether we were concerned about the MAUP as a threat to inference.

We do our best in the examples that follow to assemble these justifications on the authors’ behalf.

Conversely, where scholars provide no justification that the spatial units they choose are uniquely

valid, we are able to identify additional spatial mappings beyond those used that are plausibly valid.

Since the effects of the MAUP on findings are potentially sizable and significant, these studies face

the possibility that analyses conducted at these plausibly valid alternative mappings would lead to

different inferences about the relationships under study.

After discussing a range of examples in the text, we review of all of the APSR papers in which the

MAUP potentially poses a threat to inference in Table A.8. We then elaborate on the process by which

we code these papers and identify which ones we see as potentially vulnerable to concerns about the

MAUP.
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4.1 Theoretical Justifications

4.1.1 Theoretical Logic

• Healy et al. (2017) explore the relative importance of pocketbook and sociotropic conditions on

voting. In principle, one could assess the aggregate economic outcomes relevant to sociotropic

evaluations using any number of spatial mappings, but the authors make clear (p.775) that

the literature on which the paper builds has reached a consensus that the national level is the

appropriate aggregate unit. Thus, although the paper is not explicit in justifying the use of

the country as the aggregate spatial unit in sociotropic voting, it is the uniquely valid unit for

analysis based on the authors’ theory.

• Blom-Hansen et al. (2016) explore the relationship between jurisdiction size and the costs of

service provision. While variation in these costs of public services could in principle be studied

at a wide range of spatial scales, a study of the effect of jurisdiction size on that outcome can

only be studied via comparison across the jurisdictions that provide those services. In this case,

the authors compare via a difference-in-differences analysis the evolution of service costs of

new jurisdictions created via amalgamation, which captures the effects of increased size, with

those left untouched by that institutional change, where any change in costs over time is not a

function of size. Their unit is the jurisdiction of service provision.

• Gulzar and Pasquale (2017) explore the determinants of the performance of local bureaucrats,

focusing on the implementation of a guaranteed rural employment program in India. This out-

come could, of course, be explored at many spatial mappings, ranging from the individual

bureaucrat upwards. Interested in the impact of political oversight, the authors ask whether

performance is affected by whether a bureaucrat is overseen by a single politician or by mul-

tiple politicians. Variation in this is a function of whether the bureaucratic area (a “block”) is

contained within the constituency of a single politician, or split across multiple political juris-

dictions. The question of the effects of this variation itself, then, specifies a spatial mapping

that is appropriate - the authors compare across bureaucratic “blocks,” coding whether a bu-
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reaucratic “block" splits jurisdictions or does not.

• Lindgren et al. (2019) ask whether an education initiative in Sweden affects voter turnout. Voter

turnout could be studied at many levels of aggregation, but the treatment in this case - a sec-

ondary education reform rolled out in the early 1990s - is assigned at the municipal level, so

it is the only plausibly valid spatial mapping to be used to assess its effect. The logic here is

an instance of a point seen most clearly in experimental research: when studying the impact

of a treatment, analysis is most appropriately conducted at the spatial mapping at which the

treatment is assigned.

4.1.2 Empirical Evidence

• Larreguy et al. (2016) examine how the number of polling stations within an electoral precinct

affects turnout, and therefore the effectiveness of party machines, in Mexico. In principle, party

machines’ effectiveness could be a function of concentration of polling stations within any of

a number of larger spatial aggregates - it depends on how the party machine is constructed.

They claim that party brokers are “typically designated to the electoral precinct, and possess

detailed knowledge of the vote intentions of the local population” (p.163) and provide detailed

evidence (pp.163-4, including Figure 1 and citations to other studies) about how these brokers

demonstrate their effectiveness to the party at the precinct level. This evidence about how

broker-party relations operate provides justification for the precinct as the uniquely appropriate

spatial mapping to assess variation in the effectiveness of party machines in the Mexican case.

• Touchton et al. (2017) explore the impact of participatory institutions on infant mortality in

Brazil and argue that the effects of these institutions work through the administrative level at

which services are delivered. In Brazil, this level is the municipality, and this justifies the

municipal-level comparison of infant mortality outcomes (which can be operationalized at many

spatial scales) as the only plausibly valid operationalization in this case.

• Similarly, the theory that Tajima et al. (2018) develop about diversity and public good provision

requires the identification of two spatial mappings for operationalization: what they call the
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“user level” at which people experience public goods, and the “decision level” at which policy

is made. In their setting of Indonesia, these are the village and the district, respectively, and

therefore these are the two uniquely valid spatial mappings at which analysis should take place.

The authors provide detailed justification of this component of their research design in the paper

(645) and its online appendices.

4.1.3 Causal Mechanism

• Rundlett and Svolik (2016) develop a theory to account for the supra-optimal level of electoral

fraud in authoritarian elections and apply it to the 2012 Russian presidential election. In looking

for evidence of such fraud, one could examine results at various spatial mappings at which votes

could plausibly be aggregated and manipulated - from the precinct to the region. The theory is

centered on the incentives of individual agents responsible for delivering the fraud at the local

level, and the mechanisms related to their decision-making, as outlined in the formal model,

operate at that local level. In the Russian case, as discussed in the paper (pp.190-1) the kind

of fraud being studied was executed locally at the precinct level. Thus, both theoretical and

empirical evidence about the spatial scale at which the theorized mechanisms operated justifies

the spatial mapping chosen for analysis, and rules out as irrelevant any hypothetically different

results obtained from analyses that use larger spatial aggregates.

4.2 Justification

Where scholars do not justify the validity of the spatial units they use, and alternative ones can be

identified, concerns about the MAUP remain. This is the case both when scholars provide no justifi-

cation at all of the spatial units they use, where they justify the spatial mapping used based on data

availability alone, or when they justify the spatial unit they use as valid but do not rule out plausibly

valid alternatives.
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4.2.1 No Justification

In a striking number of instances, scholars provide no justification for the validity of the spatial map-

pings that they use. This is most commonly seen, at least in our coding of articles, in studies where

characteristics of spatial aggregates are included as control variables in analyses focused on assessing

individual-level relationships. We provide three examples of this drawn from our review of APSR

articles, but we identified many more as well.

• Davenport (2016) includes neighborhood-level contextual variables in her study of political

attitudes. These are measured at the zip code level, but no justification is provided for this

spatial mapping. As we argue in the text, the MAUP impacts inferences on all variables in

a model; the issue here, then, is not just that the inferences drawn about the impact of these

control variables might change were ‘neighborhood’ to be operationalized using a different

spatial mapping, but that findings on all variables might change.

• Tezcür (2016) studies individual-level determinants of participation in the Kurdish rebellion.

The analysis includes contextual variables; these are operationalized at the district level without

any justification for this choice.

• In some papers, contextual variables enter as mediators rather than moderators. Valenzuela

and Michelson (2016), for example, argue that community-level resources mediate the rela-

tionship between identity strength and turnout for Latinos. In their experiment, they measure

this mediating variable with information on median household income (p.620) at the commu-

nity level. But there is no discussion in the paper of the possible spatial mappings that might

be valid operationalizations of community - the authors indicate that they use cities (such as

Montebello), unincorporated sub-county regions (East Los Angeles) and three “communities”

in Texas. It is unclear whether these are the appropriate spatial units to capture the authors’ con-

cept of “community-level variation in identity strength” (p.618); we are given no justification

for the choice to measure community resources at this level rather than a smaller scale (such as

the census tract), larger scale such as the county, or even non-contiguous units based on social
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networks.

It is also the case, however, that scholars conducting aggregate-level analyses sometimes choose

their spatial mappings without any attempt to justify the validity of these choices.

• Ritter and Conrad (2016) study the relationship between dissent and repression in the United

States and Africa. To get around the endogeneity inherent in that relationship in the form of

preventive repression and strategic self-censorship, they use rainfall as an instrumental variable

for observed dissent, arguing that it affects dissent but not repression (p.90). Analysis in the

United States is conducted at the state level, and in Africa variation across provinces is explored.

There is no reason given why individual instances of repression or dissent in a given day should

be studied at these scales, rather than any of a number of plausible alternatives.

• As we mention briefly in the paper, studies that use grid-based data fall into this category: schol-

ars who use grid-cells justify this choice precisely because these spatial units are exogenous to

any political or social process; i.e., because they are arbitrary in scale and zonation. But, be-

cause there are no theoretical grounds for why a particular grid mapping is used, it follows that

the MAUP may pose serious concerns for the validity of findings in these studies. Given that

our simulations using gridded data show limited reliability across grid mappings, we suggest

that there is reason to believe grid-based analyses may be particularly vulnerable to the MAUP.

Though grid-based data is more commonly used in some research communities than others,

some examples we encountered in our review of articles include Abramson and Carter (2016),

Abramson and Carter (2016), Harris and Posner (2019), and Ahmed and Stasavage (2020).

4.2.2 Data Availability

In some instances, scholars justify the choice of spatial unit based on data availability. The availability

of data on key variables is an important constraint on our research design choices - it may be possible

to aggregate data up to an alternative spatial unit, but it is much harder to move to a smaller scale.

Thus, scholars may be bound to conduct analyses at particular spatial units even if those are not the

only plausibly valid mappings - the spatial unit at which data exists may be one of several plausibly
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valid alternatives, or it may be the closest one can get to the valid mapping. Under either of these two

circumstances, the MAUP poses an important threat to the inferences drawn from findings: were one

able to obtain data at a different valid spatial mapping, one might arrive at different conclusions about

the relationship under study.

For example, Brooke and Ketchley (2018) explore the determinants of formation of Muslim Broth-

erhood branches in interwar Egypt. Because their focus is on contextual characteristics at the moment

of formation in the interwar period, they require data about local characteristics. This data is only

available in the 1937 census (p.380) where it is aggregated to the district and the sub-district level.

Based on a preliminary analysis that shows most variation is at a smaller scale than the district level,

the authors turn to analyzing the sub-district census data, which is the only available spatial mapping

at which their analysis can be conducted.

4.2.3 Units that are Not Uniquely Valid

In this instance, scholars justify a particular spatial mapping as plausibly valid for the relevant vari-

able, but do not rule out other mappings that are equally plausibly valid. In our view, this is an

incomplete response to the MAUP, since it does not buttress the inferences from a scholars’ analyses

against the possibility that findings obtained using alternative plausibly valid mappings might differ.

• For example, Anoll (2018) uses the zip code as the spatial mapping for neighborhood-level vari-

ables in her analysis of how the ethnic/racial context moderates social rewards to participation.

She justifies this spatial mapping as valid by citing Velez and Wong (2017), who compare sev-

eral standard operationalizations of local community in American politics and find that the zip

code better approximates the local community respondents have in mind than does the county.

Yet these two choices do not exhaust the range of plausible operationalizations of this con-

cept. Thus, the fact that Anoll makes a case that the zip code is more plausibly valid than the

county does not provide sufficient grounds for ruling out other plausibly valid alternatives. As

we show in our replication of Anoll in the Appendix Section 3.2, some of her results do in

fact change in substantively important ways when an alternative and (we argue) plausibly valid

spatial mapping is used.
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• Sexton (2016) studies the impact of development aid on insurgent violence in the Afghan con-

flict, theorizing that the relationship is moderated by the extent of control an incumbent has

in a locality. He chooses the district as the spatial aggregate unit for analysis, and then uses

the presence of a US military battalion in a district as an indicator of control. This measure is

justified by the claim (p.737) that “a battalion has the resources to control the district around

them” and the district is a plausible spatial unit to which one could aggregate both development

aid and insurgent violence. But other plausible units for these key variables also exist, and con-

trol could also be measured at other scales, including both those determined by administrative

boundaries, and non-jurisdictional units. Thus, although Sexton’s analysis uses plausibly valid

units, they are not uniquely valid - and the fact that plausibly valid alternatives exist raises the

threats to inference posed by the MAUP.

4.3 Explaining our Coding Approach

To code the APSR and AJPS articles, we began by limiting our coding exercise to articles that included

an empirical component, excluding those that were purely theoretical, normative, or methodological,

and where at least one variable was a characteristic of a spatial aggregate unit. Here we erred on

the side of inclusion, and further considered any paper where any one variable characterized a spatial

aggregate unit. As we discuss further in the text of the paper, some of the more important and more

poorly understood effects of the MAUP emerge in settings where analyses include contextual variables

as moderators. On the other hand, we took a conservative approach to assessing how widespread

the MAUP is in existing research and did not consider the choices of spatial unit in the clustering

of standard errors, or in controls for geographic characteristics such as urban/rural where distinct

definitions for coding might have sizable impacts on findings (Nemerever and Rogers 2021).

In the five volumes of articles in the APSR that we coded (2016-2020), there were 221 papers that

included empirical analyses, and 124 of these (56%) included a spatial aggregate unit in at least one

component of their analyses. In the AJPS for the same years, 114 articles included a spatial aggregate

unit. Considering these articles further, two of the authors coded whether in each paper a plausibly

valid alternative to the spatial unit used could be identified. This entailed both searching the paper

32



for a justification for the spatial units chosen (along the lines detailed earlier in this portion of the

Appendix) and considering whether the concepts deployed in the theory, the research setting, and

information about the variables and the mechanisms could eliminate all alternative spatial mappings

for all variables included in the analyses. We worked together to reach a consensus in the rare cases

where our initial codings differed.

Table A.8 explains our justification for each of the 52 APSR articles where we believe analysis

could have equally plausibly been conducted at a different spatial scale. These are papers where we

think the MAUP could potentially be a threat to inferences. Our brief descriptions of each also lay out

responses, if any, that the authors take in response to the MAUP, including most commonly, demon-

strations of reliability of findings at an alternative spatial mapping. In our sample from the APSR,

then, 43% of the papers that include an aggregate spatial unit, and nearly 1/4 of all empirical papers,

may be affected by the MAUP. The rate in the AJPS is similar: of the 251 papers, 114 incorporated a

spatial aggregate unit, and in 59 of these (52%) we identified a potential alternative spatial mapping

that could be valid for analysis. It may be the case that in many of these papers, authors can plausibly

rule out the alternative spatial mappings we have identified as invalid for their analyses; our point is

that doing so would improve our confidence and that it should be standard practice to discuss whether

and how one has addressed the MAUP when it is a potential concern.
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Table A.8: The MAUP as a Threat to Inference in Empirical Articles, APSR, Vol. 110-114

Vol (Issue) Pages Authors (Year) Notes

110 (1) 52-67 Davenport (2016) Neighborhood-level study of political attitudes; zip code used
to operationalize neighborhood with no justification provided.

110 (1) 85-99 Ritter and Conrad (2016) Subnational variation in repression, using rainfall to instru-
ment for observed dissent. Variation across provinces in
Africa and US states. No explanation for use of these units
versus alternatives.

110 (1) 127-147 Braun (2016) Religious minorities and resistance to genocide–“local minor-
ity churches were more likely to rescue Jews” during Holo-
caust. Uses various spatial units to operationalize localities
in terms of religious dominance, unclear what unit is used to
code whether individual churches represent local minorities.

110 (2) 247-264 Tezcür (2016) Individual-level determinants of participation in Kurdish re-
bellion. Contextual variables at the district level without jus-
tification.

110 (2) 325-341 Rogowski (2016) US county-level variation in PGP (post offices) and partisan
alignment in Congress. No theoretical justification of county
unit.

110 (4) 615-630 Valenzuela and Michelson (2016) Community level resources mediate relationship between
identity strength (ethnic vs national) and turnout for Latinos.
Many possible spatial units could be used to operationalize
‘community.’

110 (4) 675-698 Abramson and Carter (2016) Grid square as unit of analysis. Grids are designed to have
arbitrary scale and zoning.

110 (4) 731-749 Sexton (2016) The effect of aid on insurgent violence in Afghanistan de-
pends on whether aid is administered in locations controlled
by the ISAF, or contested areas. Uses district as spatial unit of
analysis with no justification; it is unclear why ISAF control
should be measured at that spatial scale versus others.

111 (2) 322-337 Hale and Colton (2017) Uses community size quintile in some of its analyses, but does
not address the possibility that community could be opera-
tionalized in alternate spatial aggregate units.

111 (3) 439-459 Reese et al. (2017) Does the Islamic calendar affect militant violence? Subna-
tional evidence based on local variation in weather conditions
and local “societal disapproval” of violence on holidays, but
multiple spatial units are plausible for each of these elements
of the theory.

Continued
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Vol (Issue) Pages Authors (Year) Notes

111 (4) 755-770 Lerman et al. (2017) Role of partisanship in individual level variation in uptake of
US Affirmative Care Act (ACA). Includes US county-level
correlation between ACA enrollment and Obama vote share,
but this relationship could be studied at other levels of aggre-
gation.

111 (4) 801-818 Charnysh and Finkel (2017) Did proximity to Treblinka affect the life trajectories of Poles
in the area and their long-term political affiliation with anti-
Semitic parties? Uses the smallest administrative unit for
which data are available, but other units are also theoretically
appropriate.

112 (1) 167-185 Clinton and Sances (2018) Changes in registration and turnout across US counties fol-
lowing Medicaid expansion in some states. Unclear that
county is the only appropriate level of analysis for this ques-
tion.

112 (2) 201-218 Colantone and Stanig (2018) See discussion and replication in main text of paper.
112 (2) 339-357 Garfias (2018) Effects of price shocks that weaken economic elites on

changes in state capacity across municipalities in Mexico.
Since the power of elites is de facto, it is unclear why their im-
pact has to operate at the municipal level rather than at larger
or sub-municipal scale.

112 (2) 376-394 Brooke and Ketchley (2018) How economic and state infrastructure shaped the early con-
texts of Muslim Brotherhood activism in Egypt. Variation
is assessed across census sub-districts and districts; unclear
whether or why these are the only appropriate units of analy-
sis.

112 (3) 473-493 Hankinson (2018) How views about housing construction in city and in neigh-
borhood vary for homeowners vs. renters. Uses zip code level
data to study neighborhoods, without justification.

112 (3) 494-508 Anoll (2018) See replication and discussion in main text of paper.
112 (4) 742-757 Enos and Gidron (2018) Lab-in-the-field conducted in 20 locations in Israel that vary

demographically; this is used as a control in some analyses
but unclear what spatial unit is appropriate for operationaliz-
ing local demography.

Continued.
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Vol (Issue) Pages Authors (Year) Notes

112 (4) 971-995 Guardado (2018) Worse quality governors see long-term negative development
outcomes, measured at the district level, with contemporary
districts fitted into historical colonial provinces. The colonial
province unit is theoretically motivated; contemporary dis-
trict level is chosen to match development outcomes due to
data availability; could also be tested with other spatial units
smaller than historical colonial province.

112 (4) 1050-1066 Selb and Munzert (2018) Were campaign effects involved in Hitler’s rise to power?
Community-level difference-in-differences analysis compar-
ing voting results in places that were and were not visited dur-
ing campaigns. Areal unit chosen based only on data avail-
ability of election statistics (community level in some models,
counties or county boroughs in others). Other units plausible.

113 (1) 123-139 Harris and Posner (2019) Do MPs target supporters within district for goods provision?
Uses grid cells around polling locations to code sub-district
political orientation. Grid cells are designed to have arbitrary
scale and zoning.

113 (2) 293-310 Weaver (2019) Evolution of news coverage about lynching. U.S. county level
measure of rail line as measure of exposure to outside media.
County centroids used to calculate proximity and connected-
ness. Unclear whether or why the county is the only appro-
priate level of analysis.

113 (2) 372-384 Martin and McCrain (2019) Uses “designated market area,” a TV specific geographic unit
of analysis. The unit is not justified other than data are avail-
able at that unit; theory suggests that other units of analysis
are plausible.

113 (2) 405-422 Fouka (2019) State-level analysis of effects of anti-German sentiment on
behavior of immigrants. Unclear why state is chosen beyond
data availability.

113 (2) 423-441 Charnysh et al. (2019) Use of municipality level data of immigration transfers, jus-
tified as the smallest unit of analysis available and small
enough to imply social interaction, but presumably there are
other plausible alternative local-level units.

113 (2) 442-455 Hangartner et al. (2019) Individual level survey data of Greek islands exposed to
refugees. Island unit of analysis justified as exposure to
refugees, use of a distance measure from island centroid to
Turkey as (instrumental) independent variable. Other spatial
units could plausibly be used to assess exposure to refugees.

Continued.
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113 (2) 456-474 Maxwell (2019) Does moving to cities change immigration attitudes, or does
lifelong exposure change immigration attitudes? Exposure
operationalized by composition of neighborhood, Swiss com-
mune, and city, but no justification of these choices or discus-
sion of alternative units.

113 (2) 475-498 Arias et al. (2019) Precinct level data on municipal elections, social network
data at the precinct level. No justification of precinct as the
appropriate unit of analysis to operationalize social network
except for their small size; other possible units can be identi-
fied.

113 (2) 499-516 Larsen et al. (2019) Voting precinct used as spatial unit representing “local hous-
ing markets.” Precincts justified because they are small and do
not overlap with local media markets, no theoretical justifica-
tion for precinct being the “local economy” or discussion of
alternative possible units. Includes robustness checks for in-
dividual level models with “local economy” defined as circles
of varying radii of housing markets.

113 (2) 552-568 Reuter and Szakonyi (2019) Uses region-level election outcomes, justified because re-
gions are the “key fora” of rent-seeking and spoil-sharing.
They mention other possible units of analysis but do not study
them.

113 (2) 569-583 Rozenas and Zhukov (2019) Impact of Stalin’s repression on loyalty to Moscow in
Ukraine. Unit of analysis is 1933-era Ukrainian rayon, a 2nd
level administrative subdivision, justified only by data avail-
ability. Other units possible.

113 (3) 658-673 Hall et al. (2019) US county level analysis of “community encouragement” for
joining the Confederacy; other ways to operationalize com-
munity possible.

113 (3) 710-726 Cantú (2019) Multiple levels of data (e.g., state, district) included in the
regressions, without discussion of which contextual variables
should be measured at the district vs. state level and why. De-
pendent variable is collected at the polling place level, aggre-
gated to the electoral district to match other data availability.

113 (3) 727-742 Ascencio and Rueda (2019) Use of controls (average number of years of schooling) at dif-
ferent levels of aggregation (municipality) than the main IV
and DV (precinct), without theoretical justification. Presum-
ably polling station level or precinct-level education data is
not available.

Continued.
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113 (4) 1012-1028 Enos et al. (2019) Precinct level analysis of effect of LA Riots on political be-
havior, coded based on distance from the riot. Not clear that
precinct is the only spatial unit one could use, no discussion
of alternatives.

113 (4) 1029-1044 Hager et al. (2019) Neighborhood-level (primary sampling unit based on 250m
x 250m grid cells) exposure to riots; presumably other ways
to operationalize neighborhood are possible. Grids cells are
designed to have arbitrary scale and zoning.

114 (2) 309-325 Gade (2020) The effects of checkpoints on resistance depend on whether
they are located within villages (divide up communities), or
between them, leaving those communities whole but isolated.
No discussion of how community borders are located spa-
tially; implicit assumption that village = community; alterna-
tive spatial units could be appropriate.

114 (2) 326-341 Allen et al. (2020) Survey analysis of effects of US military base presence on
political attitudes. Binary variable of US military facility lo-
cated within respondents’ province/region. No justification
for that unit.

114 (2) 426-442 Thal (2020) US state-level data on income and regional cost of living (unit
is state level, with value collected from major metropolitan
areas within the state) used as controls without justifications
of these aggregations.

114 (2) 443-455 Trounstine (2020) Main analysis uses city level because it decides land use zon-
ing. Part of the paper analyzes how neighborhood racial com-
position affects land use preferences. Uses census tract (ag-
gregates of electoral precincts) to operationalize neighbor-
hood; alternative operationalizations possible.

114 (2) 486-501 Cruz et al. (2020) Effects of social networks on public goods provision at the
village level within municipalities. Unclear whether other
spatial units might also be appropriate.

114 (2) 502-518 Ahmed and Stasavage (2020) Grid cell analysis of local economic conditions, to explain
society-level existence of central and local councils. Grids
are designed to have arbitrary scale and zoning.

114 (2) 573-590 Homola and Pereira (2020) Electoral effects of location of concentration camps. Elec-
toral district level data for district level analysis combined
with distance from Nazi establishment measured at the small-
est regional identifiers (Kreis, Gemeinde). No justification for
use of these aggregate spatial units rather than alternatives.

Continued.
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114 (3) 638-659 Wasow (2020) Effects of protest on voting in nearby US counties. Unclear
why county-level vote shares are the appropriate unit of anal-
ysis; no discussion of possible alternatives.

114 (3) 660-676 de Benedictis-Kessner and Warshaw
(2020)

County level data as measure of “local” economy. No justifi-
cation for unit choice or consideration of alternatives.

114 (4) 1055-1070 Bucchianeri (2020) Intermixing of city and county council analysis, no justifi-
cation of unit other than they are “American Local Govern-
ment.”

114 (4) 1071-1085 Challú et al. (2020) Precinct level analysis of electoral returns, not the only plau-
sible unit.

114 (4) 1213-1229 Yoder (2020) US city council unit of analysis to understand the effect of
home ownership on political participation. City is an appro-
priate level of analysis for effects via property values but other
units are plausible.

114 (4) 1230-1246 Gulzar et al. (2020) Use of village level not justified theoretically.
114 (4) 1335-1342 Lehmann and Masterson (2020) Sorting into control and treatment group determined by “com-

munity” measures based on altitude. Use of altitude is theo-
retically justified but community boundaries are not defined
or theoretically justified.

114 (4) 1359-1365 Hazlett and Mildenberger (2020) Use of census block group as spatial unit without theoretical
justification.

114 (4) 1375-1385 Hassell et al. (2020) Examines effect of school shooting on democratic account-
ability, using US county level data in most cases without clear
justification for unit. Explores some parts of analysis using
alternative spatial units.
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5 Addressing the MAUP: Theoretical Precision and Empirical Strategies

Existing scholarship recommends that scholars address the MAUP by showing that results are reliable

at a different mapping. We explore the performance of those reliability checks in the main text; here

we provide more detail on that exercise.

5.1 Aggregation to Larger Scale

We began by following the most common practice and identifying settings in which we could aggre-

gate up from one of the mappings we produced to another spatial unit in which the initial units were

nested. We then compared the two sets of results generated from regression analyses using these two

spatial units as the units of analysis and assessed whether our results were reliable in terms of whether

each of the two independent variables maintained the same sign and significance. We were able to

identify 15 such opportunities to assess reliability in which all units in the original mapping could

be aggregated into larger units and conducted these analyses for each of the two types (i.e., uniform

sampling vs. non-uniform sampling) of individual-level data that we generated. Below in Table A.9

we list the 15 sets of comparisons conducted across spatial units:

Table A.9: 15 Opportunities to Address Reliability
Original mapping Robustness check mapping

100 units 25 units
100 units 4 units
16 units 4 units
100 units 2 eastward shifts 25 units 1 eastward shifts
100 units 4 eastward shifts 25 units 2 eastward shifts
100 units 6 eastward shifts 25 units 3 eastward shifts
100 units 8 eastward shifts 25 units 4 eastward shifts
100 units 2 southward shifts 25 units 1 southward shifts
100 units 4 southward shifts 25 units 2 southward shifts
100 units 6 southward shifts 25 units 3 southward shifts
100 units 8 southward shifts 25 units 4 southward shifts
100 units 5 eastward shifts 4 units 1 eastward shifts
100 units 5 southward shifts 4 units 1 southward shifts
16 units 2 eastward shifts 4 units 1 eastward shifts
16 units 2 southward shifts 4 units 1 southward shift
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5.2 Monte Carlo Simulation with Regular Lattice Data: Results Different Zonation

In principle, scholars could also investigate whether their results are robust to different zonation.

Practically, aggregating data to multiple such spatial units is only possible where data are available

at a scale small enough relative to the units being used, which is rarely the case since when such

disaggregated data are available, scholars conduct analyses at that scale.4 But it is worth exploring

how our simulated data perform in terms of reliability in response to the zoning sub-problem since

this might be relevant in a setting where the size of a spatial aggregate unit is unambiguously defined,

but its borders are up for debate.

For the purposes of this exercise, we took each of the grid mappings that we generated, and

compared results to the adjacent mappings at the same scale; that is, to the mappings generated with

shifts east/west and north/south by one unit. There are 80 such comparisons that can be made for each

of the two sets of individual-level data, as listed in Table A.10. Each entry in the list identifies the

original unit used and the adjacent zonation used as a robustness check.

5.3 Results

The results for these analyses are shown below in Tables A.11 through A.13, using the same format as

in the main paper, which shows results for the effect of IV2 on the DV. Table A.11 supplements Table

1 from the main text that focuses on the variable we arbitrarily labeled ‘IV2’ and shows the results

of ‘IV1’ for alternative spatial aggregates and both of the sampling methods used to generate the

individual-level data. When examining the off-diagonal cells (bolded) in the bottom-right quadrant,

under non-uniform sampling, we find that only 5% of all pairs of spatial mappings, (2+2)/80, produced

inconsistent results. This is starkly different from the nearly 33% cases we found in Table 1 from the

main text. This contrast reveals surprising and unexpected variation in the severity of the reliability

problem across two variables that were randomly generated using the same underlying process. In our

4See the discussion in the main text about the problems with automatically “going smaller” as a

response to ambiguity about the appropriate spatial scale for analysis.
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Table A.10: 80 Robustness Checks on 80 Mapped Pairs
Units The adjacent zonation used

4 units Original and 1 eastward shift
1 eastward shifts and original
Original and 1 southward shifts
1 southward shifts and original

16 units Original and 1 eastward shift
1 eastward shifts and original
1 eastward shifts and 2 eastward shifts
2 eastward shifts and 1 eastward shifts
2 eastward shifts and 3 eastward shifts
3 eastward shifts and 2 eastward shifts
3 eastward shifts and original
Original and 3 eastward shifts
Original and 1 southward shifts
1 southward shifts and original
1 southward shift and 2 southward shifts
2 southward shifts and 1 southward shifts
2 southward shifts and 3 southward shifts
3 southward shifts and 2 southward shifts
3 southward shifts and original
Original and 3 southward shifts

25 units Original and 1 eastwards shift
1 eastward shifts and original
1 eastward shifts and 2 eastward shifts
2 eastward shifts and 1 eastward shifts
2 eastward shifts and 3 eastward shifts
3 eastward shifts and 2 eastward shifts
3 eastward shifts and 4 eastward shifts
4 eastward shifts and 3 eastward shifts
4 eastward shifts and original
Original and 4 eastward shifts
Original and 1 southward shifts
1 southward shifts and original
1 southward shift and 2 southward shifts
2 southward shifts and 1 southward shifts
2 southward shifts and 3 southward shifts
3 southward shifts and 2 southward shifts
3 southward shifts and 4 southward shifts
4 southward shifts and 3 southward shifts
4 southward shifts and original
Original and 4 southward shifts

Continued
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Table A.10. Robustness Checks on 80 Mapped Pairs (Continued)
Units The adjacent zonation used

100 units Original and 1 eastward shift
1 eastward shifts and original
1 eastward shifts and 2 eastward shifts
2 eastward shifts and 1 eastward shifts
2 eastward shifts and 3 eastward shifts
3 eastward shifts and 2 eastward shifts
3 eastward shifts and 4 eastward shifts
4 eastward shifts and 3 eastward shifts
4 eastward shifts and 5 eastward shifts
5 eastward shifts and 4 eastward shifts
5 eastward shifts and 6 eastward shifts
6 eastward shifts and 5 eastward shifts
6 eastward shifts and 7 eastward shifts
7 eastward shifts and 6 eastward shifts
7 eastward shifts and 8 eastward shifts
8 eastward shifts and 7 eastward shifts
8 eastward shifts and 9 eastward shifts
9 eastward shifts and 8 eastward shifts
9 eastward shifts and original
Original and 9 eastward shifts
Original and 1 southward shifts
1 southward shifts and original
1 southward shifts and 2 southward shifts
2 southward shifts and 1 southward shifts
2 southward shifts and 3 southward shifts
3 southward shifts and 2 southward shifts
3 southward shifts and 4 southward shifts
4 southward shifts and 3 southward shifts
4 southward shifts and 5 southward shifts
5 southward shifts and 4 southward shifts
5 southward shifts and 6 southward shifts
6 southward shifts and 5 southward shifts
6 southward shifts and 7 southward shifts
7 southward shifts and 6 southward shifts
7 southward shifts and 8 southward shifts
8 southward shifts and 7 southward shifts
8 southward shifts and 9 southward shifts
9 southward shifts and 8 southward shifts
9 southward shifts and original
Original and 9 southward shifts
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Table A.11: Robustness Checks (Effects of IV1 on DV)
Initial Result

Uniform Sampling Non-uniform Sampling
Robustness Check Not significant Significant Not significant Significant
Scale
Significant 0 0 7 0
Not significant 13 2 8 0

Zoning
Significant 4 2 2 4
Not significant 70 4 72 2
Notes: All regression outputs are based on Tables A.9 (15 exercises for scaling) and A.11 (80 exer-
cises for zoning). The number in each cell indicates the count of analyses that fall into the conditions
listed. Bold digits denote the off-diagonal cells in which the unpredictable effects of the MAUP are
more concerning. We do not have any pairs where both results are significant but the sign is the
opposite.

Table A.12: Robustness Checks across Changes in Scale
Initial Result

Uniform Sampling Non-uniform Sampling
Robustness Check Not significant Significant Not significant Significant
IV1
Significant 0 0 7 0
Not significant 13 2 8 0

IV2
Significant 0 0 4 9
Not significant 11 4 2 0
Note: All regression outputs are based on Tables A.9 (15 exercises) and A.10 (80 exercises).

Table A.13: Robustness Checks across Changes in Zonation
Initial Result

Uniform Sampling Non-uniform Sampling
Robustness Check Not significant Significant Not significant Significant
IV1
Significant 4 2 2 4
Not significant 70 4 72 2

IV2
Significant 4 8 14 36
Not significant 64 4 16 14
Note:All regression outputs are based on Tables A.9 (15 exercises) and A.10 80cases (80 exercises).
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view, the finding that the effects of the MAUP are so unpredictable casts doubt on reliability checks

alone as a sufficient response in most research settings.

To explore the results of this exercise in an alternative manner, we put both IV1 and IV2 together

in Table A.12 (sorted for assessing robustness to different scales) and Table A.13 (sorted for assessing

robustness to different zonings). The overall pattern in Table A.12 that focuses on changes in scale

is that most results were reliable. But notably, the fact that the off-diagonal cell (bolded) results for

IV2 are less consistently reliable than those for IV1 is a first indication of the unpredictable effects

of the MAUP. The third and fourth columns in this table show the results using the individual-level

data generated from an unknown sampling distribution are much less reliable than scale changes, and

once again, IV2 performs worse than IV1 in terms of reliability. We present similar results from the

exercises for different zonings in Table A.13. Here, IV1 again consistently produces more reliable

results than IV2, while the mode of sampling does not have a systemic effect on reliability.

In all, this exercise shows that the reliability of results across changed border mappings does not

follow any predictable or consistent pattern. This confirms the need that we emphasize in the text

for scholars to focus on theoretical validity rather than reliability as the core of efforts to address the

MAUP.
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