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1 Further context

There is one crucial distinction that must be noted between the approach that I take in this
letter and the closest approach that I build on in the literature, that of Eggers and Nowacki
(2024). Eggers and Nowacki (2024) consider the probability of being pivotal in causing a
candidate to be dropped in some round whether or not that changes the ultimate election
winner. I take a narrower definition of pivotality: I focus exclusively on the probability of
changing the election’s overall winner.

Another important substantive caveat to acknowledge is that the precise probability of
being pivotal may or may not ultimately play a role in voter decision-making. The equation
that I will derive is particularly complex (which I attribute to the inherent complexity of
the electoral system), and Bartholdi III and Orlin (1991, p. 341) have already shown that
identifying a ballot that would elect a certain candidate in IRV is NP-complete, so identifying
a strategic vote “is not practical, even though theoretically possible”. However, the pivotal
probability expression has substantive and methodological relevance beyond its implications
for voter behaviour. For example, if ties tend to be more common in IRV, then voters may
find themselves acting pivotally more often, especially in small elections, whether they plan
to or not. Small mistakes in election administration, or discrepancies between original and
audited vote counts, could also more frequently show different winners if election results tend
to be closer.

It is also important to mention an active area of inquiry related to pivotal probability
in IRV, which is the minimum number of ballots that would need to be changed in order
to change the election winner, called the “margin of victory” (Atsusaka et al., 2024, Blom
et al., 2016, Magrino et al., 2011). Pivotal probability is related to the margin of victory,
since, all else equal, a smaller margin of victory implies a larger pivotal probability. However,
identifying the margin of victory is not sufficient to know the pivotal probability, since the
margin of victory concerns the fewest number of ballots that could upset an election result
(Magrino et al., 2011, §3.3), whereas a correct expression for pivotal probability will require
modeling the probability of any way that a given ballot could change the election result. This
work on the margin of victory has also often focused on efficient estimation and bounding,
aimed at the practical problem of how many ballots to sample in an election audit.

Finally, I should clearly define IRV. In an IRV contest with κ candidates, voters are
allowed to rank some number of those candidates. The election administrator counts the
number of times that each candidate was ranked first, and the candidate with the fewest
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first-place votes is eliminated. For each ballot, any remaining candidate that was ranked
immediately after the eliminated candidate has one vote added to their vote total. Again,
whichever candidate has the fewest votes is eliminated. This procedure is repeated until
κ− 1 candidates have been eliminated. The remaining candidate wins.

2 The counterfactual

The primary counterfactual state in the paper is abstention. So, throughout the paper, all
probabilities and utilities should be understood as being implicitly compared to abstention.
How does this affect the derivation?

The paper seeks an expression for the utility of casting a ballot β as a function of the
number of votes for each candidate. Let u(β) be the utility of ballot β, and Ppivotal(β) be the
probability that β is pivotal, and upivotal(β) be the utility obtained by the voter conditional
on β changing the election winner. We will express each of these variables in terms of
candidates’ vote totals, and arrive at an expression of the form:

u(β) = Ppivotal(β) · upivotal(β)

The correct interpretation of this equation is the utility obtained from ballot β as opposed
to not casting any ballot at all. This interpretation omits any cost T associated with the act
of voting, but this is not a serious limitation, and a reader who wishes to include that cost
could instead compute:

u(β) = Ppivotal(β) · upivotal(β)− T

What modifications would be necessary to consider a different counterfactual vote choice,
other than abstention? If the voter is considering the effects of casting ballot β as opposed
to some other ballot β′, then they should instead calculate the utility u(β′ → β) of switching
from β′ to β as:

u(β′ → β) = Ppivotal(β) · upivotal(β)− Ppivotal(β
′) · upivotal(β′)

It must also be noted that, in addition to now needing to calculate Ppivotal(β
′), the fact

that the voter would otherwise have cast β′ also requires an adjustment to Ppivotal(β): the
voter must now account for the fact that their own vote has been taken away from various
candidates by removing β′ from the pool of ballots cast and replacing it with β. β′ would have
contributed one vote to a candidate immediately, to another candidate if the first candidate
were eliminated, to a different candidate if the first two were eliminated, and so on. When
calculating Ppivotal(β) with β′ as the counterfactual of interest, the voter must subtract a vote
from whichever candidate would have received a vote from β′ in every hypothetical scenario.
This is standard in formal treatments of strategic voting under SMDP, e.g. that of Mebane
et al. (2019), but these kinds of conditional cascades make it more complicated in IRV.

2



I take abstention to be the primary counterfactual only for the sake of simplifying the
exposition of my derivation (and because the problem of which β′ to choose as the coun-
terfactual state is immense, given how many possible ballots can be cast). When I discuss
(for example) how much more likely a ballot is to be pivotal when candidate A is ranked
in position i, I do not consider the effects of ranking candidate A as opposed to some other
candidate, which would require subtracting 1 vote from the appropriate other candidate’s
vote total. Instead, I only consider the effect of adding one vote to whichever candidate
β is currently counted for, compared to if the voter contributed 0 votes to any candidate.
A reader who wishes to consider the utility of ballot β as opposed to some β′ only needs
to subtract 1 vote from whichever candidate β′ would have been counted towards in each
hypothetical scenario.

3 Simplifying assumptions

I take the following two assumptions, entirely for the sake of communication, since without
these assumptions the equations would be too explosively complex to write. These assump-
tions have the following attributes: a) they are at least as reasonable as any alternative
assumptions, b) they are necessary for exposition, and c) their limitations do not in any way
seriously limit the article’s results.

For any candidates A,B,C, and D among the κ candidates in the election, with vba de-
noting the vote total of candidate a in round b, and using E1 ⊥ E2 ⊥ E3 to mean that events
E1, E2, and E3 are pairwise independent,

Assumption 1:
[
vrA ≥ vrB

]
⊥
[
vrA ≥ vrC

]
⊥
[
vrC ≥ vrD

]
Assumption 2:

[
vrA ≥ vrB

]
⊥
[
vr
′
A ≥ vr

′
B

]
⊥
[
vr
′
A ≥ vr

′
C

]
⊥
[
vr
′
C ≥ vr

′
D

]
where A 6= C, A 6= D, B 6= C, and B 6= D.

Assumption 1 says that any two pairwise comparisons of vote totals are independent,
even conditional on any set of candidates having been dropped and any relative ordering of
other vote totals. Assumption 2 says that the vote totals of two candidates in some round is
unrelated to the vote totals of those or other candidates in another round. Their usefulness
to the paper is as follows: Assumption 1 allows us to multiply the probability of two relative
vote totals being observed within a round and argue that it represents the joint probability
of those orderings, while Assumption 2 allows us to obtain a joint probability by multiplying
relative vote totals across rounds.

Assumption 1 is a feature of the Poisson voting games framework that I will rely on to
generate specific probabilities, and has been discussed and used extensively in that context
(Mebane et al., 2019, Myerson, 1998, Vasselai, 2022). Assumption 2 is more challenging,
because it is not a familiar assumption, and it is not obvious why we should accept it.
However, I argue that it is at least as reasonable as any alternative, and doing away with it
would introduce enormous complication without adding any insight.

Clearly, knowing (for example) the round 1 vote totals of two candidates does give us
information about what their round 2 vote totals will be. But what information? To state
how likely a candidate is to win the election given that they were leading by a certain
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margin in round 1 votes, we would need to know the probability that a certain round 1
vote margin will translate into a certain round 2 vote margin, the probability that some
round 2 vote margin will turn into some round 3 vote margin, and so on. That probability
presumably varies dramatically from election to election, based on arbitrarily complicated
features: voters’ preferences, campaign effects, coalition dynamics, and so on. Rather than
limiting our attention to one such probability, I take the simplest assumption instead: that
the vote totals are independent across rounds.

This is not a fundamental methodological limitation; it just makes exposition possible.
A reader who wishes to do away with either assumption can simply pick their preferred joint
probability distribution and substitute it into the derivation in the place of multiplication.1

However, that would impose an assumption that is no more realistic and at least as strong
as Assumption 2, while also severely complicating the derivation.

Two structural points of the derivation should also be mentioned. First, I set aside
ties between more than two candidates, which are extremely unlikely in large-population
elections and would make the derivations infeasibly more complicated. In SMDP such ties
are known to be negligible in large electorates, except in cases of extremely low turnout
(Vasselai, 2022).

A word must also be said about tie-breakers. An alternative path to the one described
in Equation 6 in the article, that S1 must have fewer votes than S2 in order to lose to it, is
that of course instead S1 could have had the same number of votes as S2, and then lost the
tie-breaker. I omit this only for the sake of exposition, because it is completely infeasible to
write out all the comparisons with equality included. Numerical computations of the pivotal
probability would have to include every tie-breaking event that could produce a tied vote
total between c and S1. Separately, note that casting a vote which breaks a tie between c
and S1 is not necessarily pivotal. It is only pivotal in the event that c would have lost the
tie-breaker against S1. This tie-breaking probability is feasible to represent, so we include
a factor of 1

2
to represent the event that c would lose a fair tie-breaker without the pivotal

vote boosting them into first place. I assume a fair tie-breaker.

4 Indirect pivotality from switching sequences

There are two crucial observations. First, c is not the winner at the end of the sequence A′;
otherwise, this would be a directly pivotal event (or not pivotal, if A−1 = c). Second, adding
a vote to c cannot change the sequence in which candidates would be dropped before c. This
is because I am only considering the pure effects of adding a vote to c, as if the elector’s
only other option were abstention (as explained in §2 of this Appendix), and not the act of

1If a reader wishes to do away with Assumption 1, they cannot obtain the joint probability of two vote
totals having certain relative sizes within the same round by simply multiplying the probability that each
ordering is realized. Likewise, without Assumption 2, they cannot obtain the joint probability of observing
that some vote total is larger than another in round 1, and that also some vote total is larger than another in
round 2, by simply multiplying those probabilities. Instead, they must propose exactly what the probability
is that the first pair has some relative size and the second pair has some relative size. So, wherever the
probabilities of relative orderings are multiplied either within rounds or across rounds, they need only
introduce a term that gives the probability of these two events occurring. This will produce results identical
to the probability that I derive in this paper, up to multiplication of each term by some real number.
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replacing a candidate with c.
Monotonicity failure, when A−1 = c and A′−1 6= c, occurs because of this kind of replace-

ment, which increases the vote total of c while simultaneously taking that vote away from
another candidate (Ornstein and Norman, 2014, Smith, 1973). Also note that indirect piv-
otality is distinct from a violation of the participation criterion (the “no-show paradox”), in
which a voter can cause a more-preferred candidate to win by abstaining rather than voting.
There are two important distinctions: first, indirect pivotality can arise from a voter just
changing the order of the ballot they were already going to cast rather than switching from
abstention to voting, and second, it does not necessarily cause the victory of a more-preferred
candidate.

Indirect pivotality is however related to the strategic defection scenarios that Eggers and
Nowacki (2024) identify in IRV, which they note is also related to Cox’s (1997) notion of a
“turkey” who strategically supports a spoiler in a runoff system.

Now, we can phrase these two observations as constraints on A and A′, where y represents
the index of c in A.

Constraint 1: A and A′ are the same up to the pivotal event: for some y, A1:y−1 = A′1:y−1

Constraint 2: The winner in A is not the winner in A′: A−1 6= A′−1

Together these two constraints imply a third: the last element in A cannot be the candi-
date in Ay, that is, the winner is some candidate other than c. Another simplifying fact is
that, for a given pair A and A′ (and recalling that I do not consider ties between more than
two candidates), whichever candidate c tied with is the candidate that is dropped in that
round instead of c, so the tie must have been between c and whichever candidate is listed in
A′y.

The probability that ranking c in position y will be pivotal is the probability that, for any
pair of sequences A,A′ satisfying Conditions 1 and 2, the vote for c causes the candidates
to be dropped in the sequence specified by A′ rather than A. I seek that probability by first
considering just one list A.

There must be a tie between c and one of the candidates which remain in the contest by
the time that c is dropped. Because I assume that there is a negligible probability of more
than two candidates being tied, these events are mutually exclusive by assumption. This
reasoning leads to the equation in the text.

5 Example pivotal probability calculation

Using the framework for numerically specific pivot probabilities introduced in Appendix §8,
I now perform a full example computation of pivotal probability in IRV. I will use different
numbers from the example in the main text because with such large numbers, exact pivotal
probabilities become almost inexpressibly small. So, consider instead the following contrived
example. Imagine that the candidates in an IRV election are Al Gross, Santa Claus,2 Mark

2A candidate of this name did actually contest Alaska’s house seat.
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Begich, Mary Peltola, and Sarah Palin, and for simplicity consider ballots of length 3.3 Sup-
pose that the following ballot types are cast, with the following frequency:

Number Ballot
2 [Gross, Palin, X]
2 [Claus, Gross, Palin]
3 [Begich, Gross, Palin]
6 [Palin, Peltola, X]
12 [Peltola, X, X]

where “X” represents any legal vote. We will take the perspective of an elector who
expects these ballots to be cast, and is deciding whether to abstain or cast a ballot.

To perform the full pivotal probability calculations, the voter cannot just consider one
way of being directly pivotal and one way of being indirectly pivotal, but the combinations of
drop orders in a 5-candidate election is too large for us to explicitly write out the entire pro-
cedure for calculating it. So instead, just compute the probability of the drop sequences that
we have identified as examples. We will also only fully work through the first ballot locations.

Direct pivotality: In this example, Sym(C \ i) is the group of all permutations of the set
{Gross, Claus, Begich, Palin}. We will focus on the drop order provoked in this example,
namely S = [Gross,Claus,Begich,Palin], but a voter who computes direct pivotality would
need to consider every other permutation as well. Denote by pdirect(S) the probability that
the ballot under consideration will be directly pivotal through the particular chain S under
consideration. Then,

3This is only in the interest of exposition; similar examples with ballots of length 4 or 5 are straightforward
to construct.
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pdirect(S) = P
(
µ1
A1
|A1:0 < µ1

A2
|A1:0

)
· P
(
µ1
A1
|A1:0 < µ1

A3
|A1:0

)
· P
(
µ1
A1
|A1:0 < µ1

A4
|A1:0

)
·

P
(
µ1
A1
|A1:0 < µ1

A5
|A1:0

)
·

P
([
µ1
A2
|A1:0 + µ2

A2
|A1:1

]
<
[
µ1
A3
|A1:0 + µ2

A3
|A1:1

])
·

P
([
µ1
A2
|A1:0 + µ2

A2
|A1:1

]
<
[
µ1
A4
|A1:0 + µ2

A4
|A1:1

])
·

P
([
µ1
A2
|A1:0 + µ2

A2
|A1:1

]
<
[
µ1
A5
|A1:0 + µ2

A5
|A1:1

])
·

P
([
µ1
A3
|A1:0 + µ2

A3
|A1:1 + µ3

A3
|A1:2

]
<
[
µ1
A4
|A1:0 + µ2

A4
|A1:1 + µ3

A4
|A1:2

])
·

P
([
µ1
A3
|A1:0 + µ2

A3
|A1:1 + µ3

A3
|A1:2

]
<
[
µ1
A5
|A1:0 + µ2

A5
|A1:1 + µ3

A5
|A1:2

])
·

P
([
µ1
A4
|A1:0 + µ2

A4
|A1:1 + µ3

A4
|A1:2 + µ4

A4
|A1:3

]
=

[
µ1
A5
|A1:0 + µ2

A5
|A1:1 + µ3

A5
|A1:2 + µ4

A5
|A1:3

])
·

P
([
µ1
A4
|A1:0 + µ2

A4
|A1:1 + µ3

A4
|A1:2 + µ4

A4
|A1:3

]
= 1+

[
µ1
A5
|A1:0 + µ2

A5
|A1:1 + µ3

A5
|A1:2 + µ4

A5
|A1:3

])
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pdirect(S) = P
(
µ1
Gross < µ1

Claus

)
· P
(
µ1
Gross < µ1

Begich

)
· P
(
µ1
Gross < µ1

Palin

)
· P
(
µ1
Gross < µ1

Peltola

)
·

P
([
µ1
Claus + µ2

Claus|{Gross}
]
<
[
µ1
Begich + µ2

Begich|{Gross}
])
·

P
([
µ1
Claus + µ2

Claus|{Gross}
]
<
[
µ1
Palin + µ2

Palin|{Gross}
])
·

P
([
µ1
Claus + µ2

Claus|{Gross}
]
<
[
µ1
Peltola + µ2

Peltola|{Gross}
])
·

P
([
µ1
Begich + µ2

Begich|{Gross}+ µ3
Begich{Gross,Claus}

]
<

[
µ1
Palin + µ2

Palin|{Gross}+ µ3
Palin|{Gross,Claus}

])
P
([
µ1
Begich + µ2

Begich|{Gross}+ µ3
Begich{Gross,Claus}

]
<

[
µ1
Peltola + µ2

Peltola|{Gross}+ µ3
Peltola|{Gross,Claus}

])
P
([
µ1
Palin + µ2

Palin|{Gross}+ µ3
Palin|{Gross,Claus}+ µ4

Palin|{Gross,Claus,Begich}
]

=

[
µ1
Peltola + µ2

Peltola|{Gross}+ µ3
Peltola|{Gross,Claus}+ µ4

Peltola|{Gross,Claus,Begich}
])
·

P
([
µ1
Palin + µ2

Palin|{Gross}+ µ3
Palin|{Gross,Claus}+ µ4

Palin|{Gross,Claus,Begich}
]

= 1+

[
µ1
Peltola + µ2

Peltola|{Gross}+ µ3
Peltola|{Gross,Claus}+ µ4

Peltola|{Gross,Claus,Begich}
])
·

Now we can substitute in the actual numbers, and represent the Skellam CDF by C ≡∑∞
w=0 S(w, a, b), which is the probability that a > b when a, b are random variables following

the Poisson distribution. Then,

pdirect(S) = C(2, 2) · C(3, 2) · C(6, 2) · C(12, 2)·
C(3 + 0, 2 + 0) · C(6 + 2, 2 + 0) · C(12 + 0, 2 + 0)·
C(6 + 2 + 2, 3 + 0 + 0)·
C(12 + 0 + 0, 3 + 0 + 0)·
(S(0, 6 + 2 + 2 + 0, 12 + 0 + 0 + 0)+

1

2
· S(0, 6 + 2 + 2 + 0, 1 + 12 + 0 + 0 + 0))
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pdirect(S) ≈ 0.023

Indirect pivotality: We will calculate just the indirect pivotal probability of moving from
the default drop sequence A = [Gross,Claus,Begich,Peltola,Palin] to the alternative drop
sequence A′ = [Claus,Begich,Palin,Gross,Peltola]. The indirectly pivotal event is boosting
Gross above Claus, so we will only consider the probability of a last-place tie between those
two candidates. Denote by p¬d(E) indirect pivotal probability through this specific event.
Then,
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p¬d(E) =P
(
µ1
A2
|A1:0 > µ1

A1
|A1:0

)
· P
(
µ1
A3
|A1:0 > µ1

A1
|A1:0

)
·

P
([
µ1
A3
|A1:0 + µ2

A3
|A1:1

]
>
[
µ1
A2
|A1:0 + µ2

A2
|A1:1

])
·

P
(
µ1
A4
|A1:0 > µ1

A1
|A1:0

)
· P
([
µ1
A4
|A1:0 + µ2

A4
|A1:1

]
>
[
µ1
A2
|A1:0 + µ2

A2
|A1:1

])
·

P
([
µ1
A4
|A1:0 + µ2

A4
|A1:1 + µ3

A4
|A1:2

]
>
[
µ1
A3
|A1:0 + µ2

A3
|A1:1 + µ3

A3
|A1:2

])
·

P
(
µ1
A5
|A1:0 > µ1

A1
|A1:0

)
· P
([
µ1
A5
|A1:0 + µ2

A5
|A1:1

]
>
[
µ1
A2
|A1:0 + µ2

A2
|A1:1

])
·

P
([
µ1
A5
|A1:0 + µ2

A5
|A1:1 + µ3

A5
|A1:2

]
>
[
µ1
A3
|A1:0 + µ2

A3
|A1:1 + µ3

A3
|A1:2

])
·

P
([
µ1
A5
|A1:0 + µ2

A5
|A1:1 + µ3

A5
|A1:2 + µ4

A5
|A1:3

]
>

[
µ1
A4
|A1:0 + µ2

A4
|A1:1 + µ3

A4
|A1:2 + µ4

A4
|A1:3

])
·

P
(
µ1
G2
|G1:0 > µ1

G1
|G1:0

)
· P
(
µ1
G3
|G1:0 > µ1

G1
|G1:0

)
·

P
([
µ1
G3
|G1:0 + µ2

G3
|G1:1

]
>
[
µ1
G2
|G1:0 + µ2

G2
|G1:1

])
·

P
(
µ1
G4
|G1:0 > µ1

G1
|G1:0

)
· P
([
µ1
G4
|G1:0 + µ2

G4
|G1:1

]
>
[
µ1
G2
|G1:0 + µ2

G2
|G1:1

])
·

P
([
µ1
G4
|G1:0 + µ2

G4
|G1:1 + µ3

G4
|G1:2

]
>
[
µ1
G3
|G1:0 + µ2

G3
|G1:1 + µ3

G3
|G1:2

])
·

P
(
µ1
G5
|G1:0 > µ1

G1
|G1:0

)
· P
([
µ1
G5
|G1:0 + µ2

G5
|G1:1

]
>
[
µ1
G2
|G1:0 + µ2

G2
|G1:1

])
·

P
([
µ1
G5
|G1:0 + µ2

G5
|G1:1 + µ3

G5
|G1:2

]
>
[
µ1
G3
|G1:0 + µ2

G3
|G1:1 + µ3

G3
|G1:2

])
·

P
([
µ1
G5
|G1:0 + µ2

G5
|G1:1 + µ3

G5
|G1:2 + µ4

G5
|G1:3

]
>

[
µ1
G4
|G1:0 + µ2

G4
|G1:1 + µ3

G4
|G1:2 + µ4

G4
|G1:3

])
·

P
(
µ1
Gross = µ1

Claus

)
+

1

2
· P
(
µ1
Gross = µ1

Claus − 1

)
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p¬d(E) =P
(
µ1
Gross = µ1

Claus

)
+

1

2
· P
(
µ1
Gross = µ1

Claus − 1

)
· P
(
µ1
Claus > µ1

Gross

)
· P
(
µ1
Begich > µ1

Gross

)
·

P
([
µ1
Begich + µ2

Begich|Gross
]
>
[
µ1
Claus + µ2

Claus|Gross
])
·

P
(
µ1
Palin > µ1

Gross

)
· P
([
µ1
Palin + µ2

Palin|Gross
]
>
[
µ1
Claus + µ2

Claus|Gross
])
·

P
([
µ1
Palin + µ2

Palin|Gross + µ3
Palin|{Gross,Claus}

]
>

[
µ1
Begich + µ2

Begich|Gross + µ3
Begich|{Gross,Claus}

])
·

P
(
µ1
Peltola > µ1

Gross

)
· P
([
µ1
Peltola + µ2

Peltola|Gross
]
>
[
µ1
Claus + µ2

Claus|Gross
])
·

P
([
µ1
Peltola + µ2

Peltola|Gross + µ3
Peltola|{Gross,Claus}

]
>

[
µ1
Begich + µ2

Begich|Gross + µ3
Begich|{Gross,Claus}

])
·

P
([
µ1
Palin + µ2

Palin|Gross + µ3
Palin|{Gross,Claus}+ µ4

Palin|{Gross,Claus,Begich}
]
>

[
µ1
Peltola + µ2

Peltola|Gross + µ3
Peltola|{Gross,Claus}+ µ4

Peltola|{Gross,Claus,Begich}
])
·

P
(
µ1
Begich > µ1

Claus

)
· P
(
µ1
Palin > µ1

Claus

)
· P
([
µ1
Palin + µ2

Palin|Claus
]
>
[
µ1
Begich + µ2

Begich|Claus
])
·

P
(
µ1
Gross > µ1

Claus

)
· P
([
µ1
Gross + µ2

Gross|Claus
]
>
[
µ1
Begich + µ2

Begich|Claus
])
·

P
([
µ1
Gross + µ2

Gross|Claus + µ3
Gross|{Claus,Begich}

]
>

[
µ1
Palin + µ2

Palin|Claus + µ3
Palin|{Claus,Begich}

])
·

P
(
µ1
Peltola > µ1

Claus

)
· P
([
µ1
Peltola + µ2

Peltola|Claus
]
>
[
µ1
Begich + µ2

Begich|Claus
])
·

P
([
µ1
Peltola + µ2

Peltola|Claus + µ3
Peltola|{Claus,Begich}

]
>

[
µ1
Palin + µ2

Palin|Claus + µ3
Palin|{Claus,Begich}

])
·

P
([
µ1
Peltola + µ2

Peltola|Claus + µ3
Peltola|{Claus,Begich}+ µ4

Peltola|{Claus,Begich,Palin}
]
>

[
µ1
Gross + µ2

Gross|Claus + µ3
Gross|{Claus,Begich}+ µ4

Gross|{Claus,Begich,Palin}
])
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p¬d(E) = C(2, 2) · C(3, 2) · C(3 + 0, 2 + 0) · C(6, 2) · C(6 + 2, 2 + 0) · C(6 + 2 + 2, 3 + 0 + 0)·
C(12, 2) · C(12 + 0, 2 + 0) · C(12 + 0 + 0, 3 + 0 + 0)·
C(6 + 2 + 2 + 3, 12 + 0 + 0 + 0) · C(3, 2) · C(6, 2) · C(6 + 0, 3 + 0) · C(2, 2)·
C(2 + 2, 3 + 0) · C(2 + 2 + 3, 6 + 0 + 0) · C(12, 2) · C(12 + 0, 3 + 0)·
C(12 + 0 + 0, 6 + 0 + 0) · C(12 + 0 + 0 + 6, 2 + 2 + 3 + 0)·

(S(0, 2, 2) +
1

2
· S(0, 2, 2− 1))

p¬d(E) ≈ 0.003

The probability of this particular example of indirect pivotality was found to be an order
of magnitude smaller than the probability of the direct pivotality example, consistent with
the fact that indirect pivotality requires a much more specific situation to occur.

6 Pseudocode

Here I provide pseudocode for computing direct and indirect pivotality. I leave counting
the votes non-explicit, but each vote total should represent the vote total relevant to the
comparison at hand. I also continue to not explicitly represent the probability of ties arising
within drop sequences, though these must be computed. The following algorithms are run
on the set of all possible ballots, which we have assumed to be PL(Sym(C)), that is, the set
of all length-L subsets of all of the permutations of the set of candidates C.
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Algorithm 1 Direct pivotality

1: for voter in voters do
2: for β in allBallots do
3: ballotDirPivot ← 0
4: for i in [1 : L] do
5: for S in Sym(C \ {Si}) do
6: A← S ∪ {i}
7: if β[1 : i] in A then
8: for each ` in A1:κ−2 do
9: candDropProbs ← 1

10: for h in A`:κ do
11: chainProb ←

∑∞
w=1 S(w, v`, vh)

12: candDropProbs ← candDropProbs · chainProb
13: end for
14: end for
15: breakTieProb ← S(0, vi, vS−1)
16: makeTieProb ← S(−1, vi, vS−1)
17: pivotProb ← (candDropProbs)(1

2
· breakTieProb + 1

2
· makeTieProb)

18: ballotDirPivot ← ballotDirPivot + pivotProb
19: end if
20: end for
21: end for
22: allBallotPivots[β] ← ballotDirPivot
23: end for
24: end for
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Algorithm 2 Indirect pivotality

1: for voter in voters do
2: for β in allBallots do
3: ballotIndirPivot ← 0
4: for A in Sym(C) do
5: A ← set of all permutations of A satisfying the two requirements
6: baseChainProb ← 1
7: if β[1 : i] in A1:y then
8: for each ` in A2: do
9: for h in A1:`−1 do

10: baseChainProb ← baseChainProb ·
∑∞

w=1(w, v`, vh)
11: end for
12: for A′ in A do
13: G← A′y:κ
14: altProb ← 1
15: for each d in G do
16: for d in [1 : length(G)] do
17: for h in [1 : d− 1] do
18: altProb ← altProb ·

∑∞
w=1(w, vGd , vGh)

19: end for
20: end for
21: end for
22: t← A′y
23: breakProb ← S(0, vi, vt)
24: makeProb ← S(0, vi, vt − 1)
25: pivotProb ← chainProb · altProb · (1

2
· breakProb + 1

2
· makeProb)

26: ballotIndirPivot ← ballotIndirPivot + pivotProb
27: end for
28: end for
29: end if
30: end for
31: end for
32: end for

The pivotal probability of each contest can be multiplied by the utility the voter would
obtain from that result, and then the ballot with the largest expected utility selected, with
the caveat that a tie-breaking rule might also be necessary.

7 Equal utility ballots

There are several ways that voters may find the same expected utility for multiple different
ballots. I will informally outline three ways.

First, if a voter has a non-strict preference ordering, then they will expect the same utility
from any pair of ballots which are equal up to the relative ordering of any set of candidates
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to which they attach equal sincere utility.
Second, if voters have non-strict preference orderings, then the utilities they expect from

casting two ballots may still be equal. For example, in a 4-way race between the set of
candidates {A,B,C}, the ballots β1 = [A,B,D] and β2 = [A,C,D] have the same expected
utility if and only if pB,C · u(B,C) + 2pB,D · u(B,D) = −pC,B · u(C,B) + pD,C · u(D,C), that
is if the two ways that the second position can be pivotal balance each other out, where
px,y denotes the probability of being pivotal in deciding the election for candidate x over
candidate y, and u(x, y) represents the utility obtained from the victory of x minus the
utility obtained from the victory of y. Because we can freely set the sincere utility obtained
from the victory of every candidate, it is straightforward to produce a numerical example
that satisfies this equality.

Third, suppose that one candidate is expected to not receive any votes. We assign zero
probability to the event that such a candidate’s vote total will exceed the vote total of a
candidate who is expected to get a positive number of votes. Then any two ballots will have
equal expected utility if they are equal up to the location of the candidate who is expected
to receive zero votes.

For this reason, a complete specification of optimal vote choice in IRV requires some
means of breaking ties. One option is to pick a framework for assigning probabilities to
pivotal events which guarantees that ties will not arise (though it is not obvious what such a
framework would be), and to assume that all voters have strict preference orderings. Barring
that, a tie-breaking rule must assign a unique expected utility to any two non-equal ballots,
and a reasonable second condition would be that a voter should break ties in proportion to
their sincere utilities.

8 Modeling the probabilities

There are many ways to model expected vote totals, but I motivated Assumption 1 (and to a
lesser extent Assumption 2) as being especially well-supported by one prominent framework:
Poisson voting games (Myerson, 1998). For that reason I proceed by suggesting how to
compute probabilities in that framework, by extending a derivation of pivotal probabilities
in single-vote elections by Mebane et al. (2019). Importantly, however, we have already
seen the full pivotal probability equation before ever making the probabilities numerically
specific. So, all of the preceding work can be immediately adapted to any other framework for
computing probabilities in voting games, such as the Dirichlet beliefs in an iterated polling
framework that have been used in previous work on strategic voting in IRV (Eggers and
Nowacki, 2024).

Following Mebane et al. (2019), if the number of voters is drawn from a Poisson distribu-
tion, then the number of voters with a preference ordering following each possible preference
ordering will also follow a Poisson distribution with known parameter, and their difference
follows the Skellam distribution. So one way of computing the expected utility of a ballot is
as follows:
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u(β) =
L∑
i=1

( ∑
S∈

Sym(C\i)
β1:i−1⊂S

{[ κ−2∏
`=1

κ∏
r=`+1

∞∑
w=0

S
(
w,

`−1∑
q=0

µq+1
Ar
|A1:q,

`−1∑
q=0

µq+1
A`
|A1:q

)]

[
1

2
· S
(

0,
κ−2∑
q=0

µq+1
Aκ−1
|A1:q,

κ−2∑
q=0

µq+1
i |A1:q

)
+

1

2
· S
(

1,
κ−2∑
q=0

µq+1
Aκ−1
|A1:q,

κ−2∑
q=0

µq+1
i |A1:q

)]}
·
[
u(i)− u(S−1)

]
+

∑
A∈Sym(C)
β1:i⊂A1:y

[ κ∏
`=2

[ `−1∏
h=1

∞∑
w=0

S
(
w,

h−1∑
q=0

µq+1
A`

∣∣A1:q,
h−1∑
q=0

µq+1
Ah

∣∣A1:q

)]

·
∑
A′∈A

{ |G|∏
d=1

[ d−1∏
h=1

∞∑
w=0

S
(
w,

y+d∑
q=0

µq+1
Gd

∣∣A1:q,

y+d∑
q=0

µq+1
Gh

∣∣A1:q

)]

·
[

1

2
· S
(

0,

y∑
q=0

µq+1
c

∣∣A1:q,

y∑
q=0

µq+1
t

∣∣A1:q

)

+
1

2
· S
(

1,

y∑
q=0

µq+1
c

∣∣A1:q,

y∑
q=0

µq+1
t

∣∣A1:q

)]}]
·
[
u(A′−1)− u(A−1)

])
In the article I implement the IRV pivotal probability algorithm in Python and simulate

the magnitude of pivotal probabilities for identical election setups in IRV and SMDP. Now
that we can estimate pivotal probabilities in both systems, we can assess the claim that there
is more incentive to vote strategically in one system than in the other.4

9 Simulated pivotal probabilities

In Appendix §8 I suggest a method for modeling the probability of the pivotal events identi-
fied in this paper. Here I show results from 100 runs of a model, where each run consists of
one IRV contest and one SMDP contest with identical parameters, re-run for elections with 3,
4, and 5 candidates. Preferences are drawn in two ways. One is a uniform distribution, where
every candidate has similar numbers of people most-preferring them, second-most-preferring
them, third-most-preferring them, and so on. The other is a power law distribution, where
half of the population holds one preference order, and the other half has a uniformly random
preference order. These preference types are opposite ends of a spectrum: the uniform case

4To facilitate direct comparison, I simulate SMDP pivotal probabilities using the derivation from Mebane
et al. (2019) which I extended to cover IRV.
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is an extremely competitive election, in which every candidate has similar levels of support,
while the power law case is a model of an election where there is a clear front-runner. In
both IRV and SMDP, pivotal probabilities should be larger in competitive elections than
in uncompetitive elections, but it is not obvious in advance how the different preference
distributions should increase or decrease pivotal probabilities more in one system than the
other.

Figure 1 shows the total pivotal probability for two stylized preference distributions in
either IRV and SMDP: one where support for 3, 4, or 5 candidates is roughly uniform, and
another where it follows a power law. I conduct 100 runs, and within each of the 100 runs,
the order of each voter’s ballot is determined randomly, in a way that ensures that support
for the candidates follows the specified distribution. The total pivotal probability on the
y-axis is the sum of the pivotal probability of every possible ballot. Each dot represents the
sum of the pivotal probabilities of all ballots in one run of the simulation. Note that the
figures have different y-axis scales so that the range of both is clearly visible; this means
that they should not be directly compared to one another without taking the y-axis scales
into account.
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(a) Pivotal probabilities with power law support

(b) Pivotal probabilities with uniform support

Figure 1: The comparative pivotal probabilities of IRV and SMDP with 3, 4, and 5 candi-
dates, when 1,000 voters can rank every candidate. The y-value sums the pivotal probability
of all ballots. 100 runs are shown with different random number seeds. For each run,
one contest is held under IRV and an identical contest under SMDP, for each number of
candidates, and with preferences drawn from either a power law or a uniform distribution.
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There are differences, including IRV having a slightly higher pivotal probability overall
and IRV exhibiting slightly lower variance. When support for candidates resembles a power
law distribution, IRV has very slightly higher pivotal probabilities than SMDP (averaging
about 10−6 compared to about 10−7 with these particular preference structures). In the case
of uniformly distributed support, the chances to be pivotal in IRV may be slightly higher
than in SMDP when there are only 3 candidates, but when there are 4 or 5 candidates
neither is clearly larger than the other.5 The results do not support widespread claims that
there are either stronger or weaker incentives for voters to cast strategic votes under IRV
compared to SMDP.

However, these are stylized figures meant to illustrate how my derivations could be applied
in the presence of actual preference data. Instead perhaps the overall most important feature
of Figure 1 is that IRV and SMDP have pivotal probabilities that often coincide up to the
order of magnitude or even the decimal place. This is particularly true when considering that
the simplifying assumptions from Appendix §3 were made for logistical and not empirical
reasons, so differences between the SMDP and IRV pivotal probabilities could certainly
change if a user were to conjecture specific joint probabilities to replace the independence
assumptions, as might the relationship between the number of candidates and the difference
between IRV and SMDP pivot probabilities.

10 Translation to existing notation

In this article I have had to develop substantial notation in order to express relative vote
totals and candidate drop orders under hypothetical scenarios in arbitrarily many-candidate
IRV elections which, to my knowledge, have not previously been written explicitly in sym-
bolic notation. The article that I believe has expressed the most similar ideas is that of
Eggers and Nowacki (2024). The relaxation of the assumption that the election includes
only three candidates, and the consideration of pivotal events beyond the next round, mean
that it would not be convenient to directly adapt their notation to our purposes. However,
for the sake of comparability, and to aide readers who are familiar with their notation in
understanding the new notation that I introduce, in this section I translate some of the
events that they consider from their notation into mine.

Eggers and Nowacki (2024) consider certain pivotal probabilities in their Appendix sec-
tion A.1.2., and particularly Table 1, which contains expressions for particular “pivot events
in IRV”. To illustrate the connections, and also some differences, between the quantities that
I derive and the ones they derive, I will obtain the first equation in their table from one of
the expressions in my article.

For illustration, we will consider the pivotal event that “i and j tie after k is eliminated
in 1st round”. Eggers and Nowacki (2024) call this a “second-round” pivot event, meaning

5However, I strongly caution against reading substantively into the appearance that pivotal probabilities
in IRV fall more quickly as the number of candidates rises than pivotal probabilities in SMDP, since this
result may be attributable to the varying quality of Assumption 2 as more candidates are introduced. Also,
note that these are all out-of-equilibrium pivotal probabilities. Observing these pivotal probabilities would
cause rational voters to update their expected vote choice, which should change the expected vote totals of
each candidate, and in turn alter the pivotal probabilities. This process may or may not converge to a fixed
equilibrium. So, these should be understood as the initial pivotal probabilities of these election structures.
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that they assume a certain result from the first round of a three-candidate contest (in this
case, that candidate k was dropped first), and express the probability of one of the other
two candidates winning. The expression they give is:

πij,2 = Pr
(
vj + vkj −

1

2
∈ (0, N−1) ∩ vk < vi ∩ vk < vj

)
where N is the total number of voters, and vi is the share of votes received by candidate

i. Can we obtain this expression from the ones in the main body of this paper? First we
must consider the assumptions underlying the expression above.

The first structural difference is that Eggers and Nowacki (2024, Appendix p.3) take
the perspective of a voter who assumes that the vector of votes v is a continuous random
variable. This means that it is possible for the share of votes to fall in an interval between 0
votes and 1 vote. The second difference is that Eggers and Nowacki (2024) consider shares
of votes, whereas I consider the total number of votes received.

Two simple substitutions will adjust for these differences. To address the second differ-
ence, instead of representing a single ballot as its share of all votes N−1, we will just consider
it as 1 vote and not phrase it in terms of the total number of votes cast. Second, while for
Eggers and Nowacki (2024) a single ballot can be pivotal if the relevant vote shares fall in
the interval between 0 and 1

N
, since we consider raw numbers of discrete-valued votes for

us the difference in votes between the candidate to beat and the candidate being voted for
must be exactly either 0 or 1. Making these adjustments to the above equation yields:

πij,2 = Pr
[(
vj + vkj −

1

2
= 0
)
∪
(
vj + vkj −

1

2
= 1
)]
∩
[
vk < vi ∩ vk < vj

]
By Kolmogorov’s second and third axioms and the rules of IRV,

vj + vkj + vi + vki = 1

With this identity, the expression of Eggers and Nowacki (2024) becomes the following:

πij,2 = Pr
[(
vj + vkj = vi + vki

)
∪
(
vj + vkj = 1 + vi + vki

)]
∩
[
vk < vi ∩ vk < vj

]
Since the first two events are mutually exclusive, the probability of either one occurring

can be obtained by adding the probability of each one occurring. Now we reach the final
difference in assumptions between the two derivations. Assumptions 1 and 2 in this Appendix
— which, I must again stress, are the most realistic assumptions I could find that would
allow me to fit the full equations I derive onto a standard sheet of paper — allow us to
multiply the probability of certain events rather than positing the precise chance that they
co-occur. Then,
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πij,2 =
[
Pr
(
vj + vkj = vi + vki

)
+ Pr

(
vj + vkj = 1 + vi + vki

)]
·Pr (vk < vi) ·Pr (vk < vj)

To avoid a collision with some of the notation that we have developed in the body of this
paper, particularly overloading the variable i, let us re-define the candidate labels before we
turn to matching the two equations. Let x ≡ i, y ≡ j, and z ≡ k, and, to match the style
we chose in the body of the paper, represent probabilities by P rather than Pr. Then the
above equation becomes:

πxy,2 =
[
P
(
vy + vzy = vx + vzx

)
+ P

(
vy + vzy = 1 + vx + vzx

)]
· P(vz < vx) · P(vz < vy)

Now that we have rephrased the equation of Eggers and Nowacki (2024) using the same
assumptions we have made throughout this paper, can we obtain it from one of the equations
that we have derived? Because this situation presumes that k is dropped first, there is no
opportunity for indirect pivotality; the relevant equation is the expression for direct pivotal
probability, Equation 8 in the main article. Eggers and Nowacki (2024) imagine a three-
candidate contest with length 2 ballots. Equation 8 gives the following identity for the
direct pivotal chances of any ballot β:

pdirect(β) =
L∑
i=1

( ∑
S∈

Sym(C\i)
β1:i−1⊂S

{[ κ−2∏
`=1

κ∏
r=`+1

P
( `−1∑

q=0

µq+1
A`
|A1:q <

`−1∑
q=0

µq+1
Ar
|A1:q

)]
·

[
1

2
· P
( κ−2∑

q=0

µq+1
Aκ−1
|A1:q =

κ−2∑
q=0

µq+1
i |A1:q

)
+

1

2
· P
( κ−2∑

q=0

µq+1
Aκ−1
|A1:q = 1 +

κ−2∑
q=0

µq+1
i |A1:q

)]})
In this scenario, L = 2. Eggers and Nowacki (2024) do not consider any particular ballot

β, focusing rather on the probability of a tie occurring, which we have noted is the same
as the direct pivotal probability of any ballot listing x � y or y � x. Because we are wlog
positing a vote for candidate x, the relevant drop sequences are all the permutations of
the set {y, z}, such that all previous entries in the ballot have already been dropped. This
restricts our attention to S =

[
z y

]
and therefore A =

[
z y x

]
. With κ = 3, we only

consider ` = 1.
We will need one more identity to obtain the tie probability from the direct pitoval

probability. The direct pivotal chances account for the chance that the ballot is cast for a
candidate in an exact tie who would have won anyways by winning the tiebreaker, and the
probabilty that the ballot is cast for a candidate who is one vote behind but who then loses
the tiebreaker. Each of these events has probability 1

2
of occurring if the tiebreaker is fair.

However, the tie probability should not adjust for these events. So, all else equal,
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πxy,2 = 2 · pdirect

We also should omit the initial sum over all candidates on the ballot,
∑L

i=1, because this
would represent the probability of breaking the tie either for x or for y, but we are seeking
only the probability that they are tied. Then we can substitute the numbers above as well
as the above identity into the direct pivotal probability to obtain our expression for πxy,2.

πxy,2 =

{[ 3∏
r=2

P
( 0∑

q=0

µq+1
A1
|A1:q <

0∑
q=0

µq+1
Ar
|A1:q

)]
·

[
1

2
· P
( 1∑

q=0

µq+1
A2
|A1:q =

1∑
q=0

µq+1
i |A1:q

)
+

1

2
· P
( 1∑

q=0

µq+1
A2
|A1:q = 1 +

κ−2∑
q=0

µq+1
i |A1:q

)]}
· 2

πxy,2 =
3∏
r=2

[
P
(
µ1
z < µ1

Ar

)]
·

[
P
( 1∑

q=0

µq+1
y |A1:q =

1∑
q=0

µq+1
x |A1:q

)
+ P

( 1∑
q=0

µq+1
y |A1:q = 1 +

1∑
q=0

µq+1
x |A1:q

)]

πAB,2 = P
(
µ1
C < µ1

B

)
· P
(
µ1
C < µ1

A

)
·[

P
(
µ1
B + µ2

B|C = µ1
A + µ2

A|C
)

+ P
(
µ1
B + µ2

B|C = 1 + µ1
A + µ2

A|C
)]

We developed this notation to represent situations that can arise in IRV elections with
very large numbers of candidates. In the notation of Eggers and Nowacki (2024), v is used
rather than µ, and cases like µ2

B|C is written as vCB, so that the superscripts can also be
ommitted. Rephrasing the above expression using those conventions,

πAB,2 = [P(vB + vCB = vA + vCA) + P(vB + vCB = 1 + vA + vCA)] · P(vC < vB) · P(vC < vA)

This exactly matches our rendition of the expression from Eggers and Nowacki (2024).
What, then, should we take from this exercise? Most importantly, it is that the two papers
agree when applied to the same situation. My results generalize and build on that previous
result, and in no way should they be understood as contradicting or disagreeing with it. And
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yet, it is not quite the case that the equations that I derive can be written entirely as sums
or products of equations already in Eggers and Nowacki (2024). The most direct reason is
that three different structural assumptions or scope decisions were made, which we needed
to modify in order to obtain one equation from the other:

1. Eggers and Nowacki (2024) consider beliefs over a continuous-valued vote share rather
than the raw vote count

2. My assumptions 1 and 2 in this Appendix permit multiplication of certan probabilities,
to stand in for the probability of certain joint events with unknowable joint distributions

3. Eggers and Nowacki (2024) restrict their attention to three- or four-candidate contests

4. Eggers and Nowacki (2024) separately state the probability of events occurring within
each round, so that just changing the loser in a certain round is a pivotal event, whereas
I only consider it a pivotal event if it changes the ultimate election winner

None of these features are any better or worse. They are simply fitted to the needs of
their authors. The major new feature of my equations is that they work for any number
of candidates and any ballot length. Previously it was not feasible to write out, say, the
probability that candidates i and j tie in round five given that candidates a, b, c, and d have
all be dropped. My addition is to make any situation like this expressable in closed form.
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