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Appenbdix 1 Pairwise Tests vs Confidence Intervals

To be clear about the problem, consider the difference between two estimates: b1 − b2, assuming that b1 > b2.
Since b1 > b2, the t-statistic below will be positive and we evaluate the t-statistic of the difference relative to
its critical value tcrit. The difference is significant if

tcrit <
b1 − b2√

V (b1) + V (b2)− 2V (b1, b2)
(1)

Conducting the same test with confidence intervals does something similar, but not the same. If we assume
that non-overlapping intervals indicate a significant difference, we want to know whether b1 − tcrit

√
V (b1)

(the lower confidence bound for β1) is bigger than b2 + tcrit
√

V (b2) (the upper confidence bound for β2). This
suggests:

tcrit <
b1 − b2√

V (b1) +
√

V (b2)
(2)

These tests will only produce the same test statistic when V (b1, b2) = −
√

v(b1)
√

v(b2). That said, they will
both produce the same result with respect to statistical significance more often than that.

The overlap in confidence intervals of statistically different estimates can be large if the correlation between
the two estimates is high. For example, consider the following situation where b1 and b2 are two estimates
whose difference is of interest. We set b1 to zero and then vary b2 over the range [0,5]. Further, assume that
V (b1) = V (b2) = 1 and that we allow V (b1, b2), the covariance between the two estimates to range from
[-.95,.95]. Note, in this situation since both variances are 1, the covariance and the correlation are the same.
The confidence interval for b1 will be roughly (−1.96, 1.96) We can then calculate the confidence interval for
b2 which will be the same as for b1 when b2 = 0 all the way to (3.04, 6.96) when b2 = 5. To get the percentage
overlap, we first subtract the lower bound of b2 from the upper bound of b1. If this difference is positive,
it means there is some amount of overlap in the intervals. We then divide that difference by the length of
the confidence interval for b1. We can test for significance using the formula in equation 1. If we subset
the results to only those cases where there is a significant difference, we can plot the greatest percentage
of overlap among significant differences as a function of the correlation between the estimates in Figure 1.
Figure 1 shows that there can be more than 80% overlap if the estimates are very highly correlated (r = .95).
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Figure 1: Maximal Percentage of Overlap of 95% Confidence Intervals for Statistically Different Estimates by
Correlation

For a more moderate correlation of 0.5, the overlap of the second interval with the first is just under 50%.
This example may not be indicative of all real world scenarios because the estimates often have different
variances, but it does suggest that without knowing the covariance between the estimates, even what seem to
be safe inferences using the overlaps in confidence intervals may be erroneous.

Appenbdix 2 Similarities to the Reference Category Problem

The so-called reference category problem exists when a set of estimates, we’ll call them g2, . . . , gm represent
regression coefficients for the dummy variables created from a categorical variable, where here we assume the
first level is the reference category resulting in the identifying constraint g1 = 0. The estimates, g2, . . . , gm
allow us to directly test the difference between the reference group and each of the non-reference groups.
What happens if we want to test the null hypothesis γ2 = γ3, for which g2 − g3 is an estimate. To do this, we
would need to make the corresponding t-statistic:

t =
g3 − g2√

var(g2) + var(g3)− 2cov(g2, g3)
(3)

The variances in the equation are generally easily obtained from the regression output by squaring the
standard errors. While it is trivial to obtain the covariance of the two estimates from most statistical software,
those values are not usually reported. The result is that users are left without the relevant information to
conduct all relevant pairwise tests. This is where the similarity arises between visual testing and the reference
category problem. There are many solutions to the reference category problem, many of them visual in
nature.

One person commenting on the manuscript wondered whether quasi-variances (Firth 2003; Firth and De
Menezes 2004) and particularly the quasi-confidence intervals that get produced therefrom might solve this
problem? Essentially, to identify for each estimate, bi (including the reference category) a quasi-variance, call
it q2i such that the relationship below holds as closely as possible:
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bj − bi√
var(bi) + var(bi)− cov(bi, bj)

≈ bj − bi√
q2i + q2j

(4)

In terms of visual testing, this puts us in no better and often a slightly worse position in terms of visual
inference to our initial result. To do tests using the quasi-variances, we would make a diagonal matrix of
quasi-variances. This would be akin to the situation where we had uncorrelated estimates. We know that even
in this case, the 95% intervals are often not sufficient to perform a visual test at the 5% level. In addition,
except in cases with only three categories, the quasi-variances are prone to error - they do not perfectly
capture all the variance and covariance information required. As such, we are essentially compounding the
error in the quasi-variances with the error in the visual testing algorithm.

Figure 2: Iyengar and Westwood (2014)’s Predicted Probabilities for Partisan Winner Selection (CLD)

The literature on the reference category problem proposes several useful solutions, many of which are
discussed in Armstrong II (2013) and Andersen and Armstrong II (2022). One such display is called a
compact letter display (CLD) (Piepho 2004). This identifies groups of estimates that are not different from
each other by assigning them the same “letter”. Figure 2 is a CLD that corresponds to Figure 2 in the main
article. This does give users the ability to make valid inferences about any pairwise comparison they want
within each panel. However, this is a display that is not familiar to most political scientists and can get
confusing if the patterns of differences are somewhat complex. Further, while it is relatively easy to make
these displays in R, it would be more complicated in Stata and SPSS. Thus, we think our solution is superior
because it relies on a visual display that is already familiar to most researchers in the field and is trivial to
produce in any statistical software.

Appenbdix 3 84% Confidence Intervals

The most popular solution to the visual testing problem is arguably using 84% confidence intervals (Goldstein
and Healy 1995; Payton, Greenstone, and Schenker 2003; Tukey 1991). The idea is that two 84% confidence
intervals for means will overlap roughly 95% of the time under the null hypothesis. However, this only
works when the ratio of standard errors for the estimates being compared is roughly 1 and the samples are
independent. While this is a good start, it does not mean that 84% confidence intervals will work in general
and particularly not in regression contexts where estimates are rarely independent.

If we take non-overlapping intervals to indicate statistical significance, we can calculate the type I error rate
for any pair of intervals by imposing the null hypothesis condition and calculating one minus the probability
that the intervals overlap. We do this for 84% confidence intervals for all combinations of θ = {1, 2, 3} and
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ρ = {−.9,−.6,−.3, 0, .3, .6, .9}.1 Figure 3 shows the results. In all cases, increasing the correlation between
the estimates reduces the type I error rate. When the ratio of standard errors is 1, the 84% interval works if
the estimates are independent. If estimates are negatively correlated, the type I error rate is higher than
desired and if they are positively correlated the type I error rate is lower than desired. As the ratio of
standard deviations increases, the same general pattern holds, but the correlation between the estimates
that produces the right type I error rate increases. This shows that the estimates could be quite far off
in real-world applications where the variances of the estimates could vary quite a lot and the correlations
between estimates could be relatively far from zero. While 84% confidence intervals may work in some cases,
they are not a general solution.

Figure 3: Type I Error Rates for 84% Confidence Intervals

Further, even in situations where the 84% intervals should work, they do not always agree with the pairwise
test. Using the simulation above for θ = 1 and ρ = 0 (the situation where the overlap in 84% intervals has a
Type I error rate of 5%), we find that out of 10,000 iterations, the 84% interval and the pairwise test agree a
vast majority of the time, but there are 18 times (0.2%) where the 84% intervals overlap and the pairwise
difference is statistically significant. The magnitude of the problem here is certainly small, but it does suggest
that even in the most optimistic case, the pairwise test and 84% intervals will not always produce the same
result.

Appenbdix 4 Choosing the Appropriate Inferential Confidence
Level

Often times, a range of inferential confidence levels will all produce the same result with respect to correspon-
dence between (non-)overlaps and test results. When this happens, the user must pick a level. To highlight
the options, we use a hypothetical example. Imagine three estimates; we label them A, B, and C. Further, A
and B are not statistically different from each other, while B and C as well as A and C are statistically different
from each other. Figure 4 shows the 95% confidence intervals for the estimates. Notice that the intervals for
A and B overlap as do the intervals for B and C despite the fact that the estimate for B is statistically different
from the estimate for C at the 5% level. Also, we see that A is not statistically different from zero but both B

and C are.

1. To remind, θ is the ratio of standard errors and ρ is the correlation of the estimates.
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Figure 4: 95% Confidence Intervals for Hypothetical Data

Our procedure indicates that all confidence levels between 59.1% and 91.3% will perfectly represent all six
tests - the three pairwise tests and the three tests of the parameter estimates relative to zero. The question
we have to consider is how to choose a value in this range. There are several possibilities.

One reviewer suggested that the best level might be the one closest to the nominal rate of the test. Here,
we would choose the level closest to 95%, so 91.3% would be what we would use. This as closely as possible
preserves the lengths of the confidence intervals while also making them compatible with the visual tests
being done. Choosing a level closer to 95% will tend to accentuate the overlapping intervals, making it easier
to identify differences that are not significant.2 Choosing the highest acceptable level will generate a plot
where the intervals for the closest significantly different estimates will be separated by a very small distance,
making it difficult to see whether the intervals are overlapping or not.

The upper left-hand corner of Figure 5 shows the result when choosing the 91.3% intervals. The lighter
orange polygon depicts the overlap of the intervals for estimates A and B. The larger this overlap is, the easier
it is to tell that estimates A and B are not statistically different from each other. The darker blue polygon (it
looks like a line here) highlights the distance between the upper bound of the interval for B and the lower
bound for C. The larger this polygon, the easier it is to see that the intervals for A and B do not overlap
and thus are statistically different from each other. There is also the difference between A and C to consider.
However, these estimates and their corresponding intervals are much farther apart than those for B and C so
if we can tell whether B and C are statistically different from each other, then it should be easier to do the
same for A and C.

The converse of choosing a high (or the highest) level would be to choose the smallest level. This would
generate the most compact set of confidence intervals that are still maximally consistent with the visual tests.
This does exactly the opposite – accentuating the distance between the two closest significantly different
estimates, but making it somewhat difficult to discern whether the intervals overlap for the most distant
statistically insignificant pair of estimates. The upper right-hand panel of Figure 5 shows this result. The
darker blue polygon in this display is bigger and the lighter orange polygon is a line.

2. Usually, the acceptable levels will all be smaller than 95%, so the one closest to 95% will usually be the largest acceptable
value.
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If we learned anything from Goldilocks and the Three Bears, it is that the middle is always the best. The
lower left-hand panel of Figure 5 depicts this scenario. Halfway between 59.1% and 91.3% is 75.2%. Here,
you can see that all three tests are pretty easy to discern. The overlap between the intervals for A and B is
quite clear. The distance between the upper bound for B and the lower bound for C is even easier to identify
as it is larger than the overlap for A and B.

The middle value seems like a reasonable choice. In the lower left-hand panel of Figure 5, however, you
can see that the overlap between the two most distant estimates that are not significantly different from each
other (A and B) and the distance between the ends of the intervals for the two closest estimates that are
significantly different (B and C) are of different sizes making one test slightly easier to apprehend than the
other. One slight modification to picking the middle value would be to pick a value that made the two most
difficult tests – the most distant two estimates that are not statistically different and the closest two estimates
that are statistically different – equally easy to apprehend, as much as possible. This is what happens in the
lower right-hand panel of Figure 5. The software we have finds the inferential confidence level that makes the
smallest overlap for insignificant differences and the smallest non-overlap for significant differences as close to
the same size as possible.

Appenbdix 5 Using Results from a Bayesian MCMC Simulations

The results of Bayesian MCMC simulation do not have p-values or type I error rates to consider. Indeed, this
is marketed as a feature of the Bayesian inferential paradigm rather than a flaw. The fact that there are no
p-values to consider or null hypotheses to test does not mean that this problem no longer exists. Consider
the posterior distributions for two estimates of interest, β1 and β2 with other model parameters collected in
θ, e.g., other regression coefficients, variance estimates, etc..., with joint posterior p(β1, β2, θ|x, y) We can
define δ = β2 − β1, the posterior distribution of which is p(δ, θ|X, y). We could then calculate the posterior
probability that β1 < β2:

P (β1 < β2|X,y) =

∫ ∞

0

∫
θ

p(δ, θ|X, y)dδdθ (5)

We could then identify whether that probability indicated a credible difference, using whatever level we
choose to indicate credibility.

For the purposes of demonstration, consider example 12.4 from Gill (2015). In this example, time is
related to several different economic indicators. The intercepts and slope coefficients relating time to the
economic indicators are estimated in a hierarchical model. This produces six different intercepts and six
coefficients - one of each for DSB (wage and salary disbursements in billions of dollars), EMP (employees on
non-ag payrolls in thousands), BDG (building material sales in millions of dollars), CAR (auto sales in millions
of dollars), FRN (home furnishing sales in millions of dollars) and GMR (general merchandise sales in millions
of dollars). We will focus specifically on the slope coefficients here. The posterior summaries are presented in
Table 1.

Econ Indicator Median MAD R̂ 95% HDI
DSB 0.040 0.058 1.000 -0.077 0.155
EMP 0.496 0.059 1.000 0.381 0.609
BDG 0.316 0.059 1.000 0.200 0.429
CAR 1.522 0.058 1.000 1.408 1.641
FRN 0.368 0.059 1.000 0.250 0.481
GMR 0.547 0.058 1.000 0.434 0.663

Table 1: Posterior Summary for Retail Sales Random Slope Coefficients

We could figure out how credible each pairwise difference is by calculating Pr(βk > βj) for k > j (note
that in the posterior samples have been organized from smallest to largest posterior means). If we adopt the

6



Figure 5: Inferential Confidence Intervals for Hypothetical Data

convention that credible differences are those where at least 95% of the posterior draws for βk are greater
than those for βj , then we could mark each pairwise difference as credible or not. We could also indicate
whether the 95% highest density intervals overlap for each of those pairs. We present that information in
Table 2.

You’ll notice that there are two rows where the differences are credible, but the HDIs overlap. If we wanted
to make a display that reflected these differences appropriately, then we could search over different highest
posterior density probabilities to find one(s) where the (non-)overlaps in the HDIs correspond maximally
with the credibility of the differences. We would find for this example that any probability from 0.718 to
0.877 for the HDI will have intervals that correspond perfectly with the results of our pairwise comparisons.
The middle value is .795 and the value that makes the two most difficult tests easiest to apprehend is 0.816,
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Indicator j Indicator k ∆̄ Pr(∆ > 0) ∆ Credible HDI Overlap
DSB BDG 0.276 1.000 Yes No
DSB FRN 0.328 1.000 Yes No
DSB EMP 0.456 1.000 Yes No
DSB GMR 0.507 1.000 Yes No
DSB CAR 1.483 1.000 Yes No
BDG FRN 0.052 0.736 No Yes
BDG EMP 0.180 0.987 Yes Yes
BDG GMR 0.231 0.997 Yes No
BDG CAR 1.207 1.000 Yes No
FRN EMP 0.128 0.940 No Yes
FRN GMR 0.179 0.985 Yes Yes
FRN CAR 1.155 1.000 Yes No
EMP GMR 0.051 0.732 No Yes
EMP CAR 1.026 1.000 Yes No
GMR CAR 0.975 1.000 Yes No

Table 2: Credibility and Overlap of HDIs for Retail Sales Random Slope Coefficients
.

so either of those values would work fine. We will use 0.816 for this demonstration.

We admit that presenting only the 81.6% HDIs changes the information presented in a meaningful way.
The HDIs represent something that is somewhat more interesting than a confidence interval as they summarise
the parameter of interest directly. A compromise would be to present both sets of values as in Figure 6.
The light-gray lines represent the 95% highest density region and the thick black bars represent the 81.6%
highest density regions where the (non-)overlaps of the intervals correspond perfectly with the credibility of
the differences in estimates.

Figure 6: Inferential Posterior HDIs for Retail Sales Example
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Appenbdix 6 Case Study: Muraoka and Rosas (2021)

Muraoka and Rosas (2021) consider the effect of economic status and economic inequality in the perceived
placement of political parties. They show that the effect of economic inequality varies by economic status
(4 groups) and by the ideological leaning of the party (Left, Centre or Right). The results derive from a
Bayesian analysis. Using the idea of inferential credible intervals from Appenbdix 5, we can identify the
inferential intervals that would allow users to evaluate differences among these effects.3 We find that 76.6%
credible intervals are the optimal ones for visual testing. Of the 78 tests (all pairs, and single-point tests
against zero) 76.6% intervals misrepresent 5 tests (compared to 15 for the 90% intervals and 21 for the 95%
intervals). Four of the missed tests are single-point tests relative to zero, which are easy to identify in the
display. We do this by also presenting the 90% credible intervals whose overlap with zero is easy to evaluate.
Figure 7 shows the 90% and 76.6% credible intervals.

There are a few interesting differences worth considering. Among parties on the left, there is a credible
difference between those in the Bottom economic group and those in the Second-Top. This is clear from
the 76.6% intervals, but not from the 90% intervals. Likewise, among parties on the Right, those in the
Second-Top economic group are credibly different from those in the Second-Bottom and Bottom, but those
credible differences are not apparent from the 90% credible intervals. We lose very little by using 76.6%
intervals, but gain an ability to evaluate almost all pairwise differences effectively. The only test that the
76.6% intervals miss is the one between the Left Top and Left Second-Top which is significant, though the
credible intervals still overlap.

These two examples (this one and the one from the main article) highlight the flexibility of our approach.
It works for both Frequentist and Bayesian applications and through the use of simulation could work for any
arbitrary distribution.

Appenbdix 7 Software Demonstration

Here, we demonstrate the implementation of the algorithm in R and Stata.

Appenbdix 7.1 R

The package VizTest contains the function that estimates the optimal confidence level. It can be installed
from a GitHub repository (and eventually from CRAN).

Appenbdix 7.1.1 Gibson Replication

Below, we show the software demonstration and results for the replication of Gibson (2024).

1 remotes :: install_github(’davidaarmstrong/VizTest ’)

2 library(VizTest)

3 library(survey)

4

5 ## load data

6 load("data/analysis/gibson_replication/gibson_dat.rda")

7

8 ## make survy design object using weights

9 des <- svydesign(ids=~1, weight=~WEIGHT , data=gibson_dat)

10

11 ## estimate model which really just calculates the survey weighted mean by wave

12 m <- svyglm(agree1 ~ WAVE - 1, design=des)

13

14 ## find the inferential confidence levels for a two -tailed test at the 0.05 level

15 v <- viztest(m, test_level =.025, include_intercept = FALSE , include_zero = TRUE , level_

increment = .001)

3. This is similar to the percentile intervals that Radean (2023) suggests, though again adapted for multiple comparisons.
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Figure 7: 90% and 76.6% Credible Intervals for the Effect of Inequality by Party Ideology and Income Group

16

17 ## print results

18 v

19

20 Correspondents of PW Tests with CI Tests

21 level psame pdiff easy method

22 1 0.773 1 0.8 2.730103e-07 Lowest

23 2 0.827 1 0.8 2.213877e-05 Middle

24 3 0.882 1 0.8 3.734387e-10 Highest

25 4 0.834 1 0.8 2.249823e-05 Easiest

26

27 All 10 tests properly represented for by CI overlaps.

The output here suggests that any level between 77.3% and 88.2% would work equally well. We could
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use the 84% level because it is one with which users will be familiar. All ten tests - the six pairwise tests
of estimates and four univariate tests of the estimates relative to zero are appropriately captured by the
(non-)overlaps of the inferential confidence intervals. We plot the estimates with both levels in Figure 8.

1 ## Calculate relevant confidence intervals

2 ci95 <- confint(m)

3 ci84 <- confint(m, level = .84)

4

5 ## Combine data and create labels

6 plot_dat <- tibble(wave = factor(levels(gibson_dat$WAVE)[1:4] ,
7 levels = levels(gibson_dat$WAVE)[1:4]))%>%
8 bind_cols(as.data.frame(ci95) %>% setNames(c("lwr_95", "upr_95"))) %>%

9 bind_cols(as.data.frame(ci84) %>% setNames(c("lwr_84", "upr_84"))) %>%

10 mutate(estimate = coef(m))

11

12 ## Make plot

13 ggplot(plot_dat , aes(x=wave , y=estimate)) +

14 geom_segment(aes(y = lwr_95, yend=upr_95, colour="Original (95%)"),

15 linewidth =1.1) +

16 geom_segment(aes(y = lwr_84, yend=upr_84, colour="Inferential (84%)"),

17 linewidth =3) +

18 geom_point(colour="white") +

19 theme_classic () +

20 theme(legend.position = "top") +

21 scale_colour_manual(values=c("black", "gray50")) +

22 labs(x="Survey Wave", y="Proportion Agreeing", colour="Confidence Level: ")

Figure 8: Gibson (2024) Replication in R

Appenbdix 7.1.2 Iyengar and Westwood Replication

Below, we show the software demonstration and results for the Iyengar and Westwood (2015) replication.
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1 ## Load data

2 library(ggplot2)

3 library(tidyr)

4 load("data/analysis/iyengar_westwood_replication/iw_dat.rda")

5

6 ## Estimate model

7 model <-glm(partisanSelection~participantPID2*mostQualifiedPerson ,data=iw_dat[iw_dat$
scholarship =="partisan" ,],family = "binomial")

8

9 ## Calculate predicted probabilities for the interaction

10 eff <-effect(model ,term="participantPID2*mostQualifiedPerson",as.table=T)

11

12 ## change class of effects object to a data frame

13 dataeff <-as.data.frame(eff)

14

15

16 ## get the names of the values of the most qualified person and participant party id

variables and change them to something shorter for plotting

17 nms <- eff$x
18 nms <- nms %>%

19 mutate(mostQualifiedPerson = case_when(

20 mostQualifiedPerson == "Equally Qualified" ~ "EQ",

21 mostQualifiedPerson == "Republican More Qualified" ~ "RMQ",

22 mostQualifiedPerson == "Democrat More Qualified" ~ "DMQ"),

23 participantPID2 = case_when(

24 participantPID2 == "Independent" ~ "I",

25 participantPID2 == "Democrat" ~ "D",

26 participantPID2 == "Lean Democrat" ~ "LD",

27 participantPID2 == "Republican" ~ "R",

28 participantPID2 == "Lean Republican" ~ "LR")) %>%

29 mutate(label = paste(participantPID2 , mostQualifiedPerson , sep=":"))

30

31 ## get the estimates from the effects object

32 b <- c(eff$fit)
33

34 ## reset the names of the estimates to the labels produced above

35 names(b) <- nms$label
36

37 ## identify the estimates that correspond with the three different "Most Qualified" options

38 w_eq <- grep("EQ", nms$label)
39 w_dmq <- grep("DMQ", nms$label)
40 w_rmq <- grep("RMQ", nms$label)
41

42 ## Extract effects for each different "Most Qualified" option

43 eff_eq <- structure(list(coef=b[w_eq], vcov=vcov(eff)[w_eq , w_eq]), class="vtcustom")

44 eff_dmq <- structure(list(coef=b[w_dmq], vcov=vcov(eff)[w_dmq , w_dmq]), class="vtcustom")

45 eff_rmq <- structure(list(coef=b[w_rmq], vcov=vcov(eff)[w_rmq , w_rmq]), class="vtcustom")

46

47 ## Find the inferential confidence levels for a two -tailed test at the 0.05 level for each

48 ## different "Most Qualified" option.

49 vt_eq <- viztest(eff_eq , test_level = .025, level_increment = .001, include_zero=FALSE)

50 vt_eq

51

52 Correspondents of PW Tests with CI Tests

53 level psame pdiff easy method

54 1 0.590 1 0.8 0.0005564590 Lowest

55 2 0.726 1 0.8 0.0535105152 Middle

56 3 0.863 1 0.8 0.0003973695 Highest

57 4 0.752 1 0.8 0.0553895827 Easiest

58

59 All 10 tests properly represented for by CI overlaps.

60

61 vt_dmq <- viztest(eff_dmq , test_level = .025, level_increment = .001, include_zero=FALSE)

62 vt_dmq

63

64 Correspondents of PW Tests with CI Tests

65 level psame pdiff easy method

66 1 0.744 1 0.7 0.0003615722 Lowest
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67 2 0.806 1 0.7 0.0490940109 Middle

68 3 0.869 1 0.7 0.0005554610 Highest

69 4 0.829 1 0.7 0.0539710609 Easiest

70

71 All 10 tests properly represented for by CI overlaps.

72

73 vt_rmq <- viztest(eff_rmq , test_level = .025, level_increment = .001, include_zero=FALSE)

74 vt_rmq

75

76 Correspondents of PW Tests with CI Tests

77 level psame pdiff easy method

78 1 0.817 1 0.4 5.588237e-05 Lowest

79 2 0.847 1 0.4 1.019474e-02 Middle

80 3 0.878 1 0.4 5.030617e-04 Highest

81 4 0.847 1 0.4 1.019474e-02 Easiest

82

83 All 10 tests properly represented for by CI overlaps.

The result here suggests that for the three different Qualification treatments, each of the ten tests (six
pairwise tests and four univariate tests versus zero) is captured by the (non-)overlaps of the confidence
intervals within each treatment condition. A range of levels will work for each treatment condition, but
anything in the range of [0.817, 0.863] will work for all conditions. Since the 84% interval is in the middle of
that range, we could use it. The confidence intervals are presented in Figure 10.

1 ## Calculate effects at 84% level

2 eff_84 <- effect(model ,term="participantPID2*mostQualifiedPerson",as.table=T, se=list(level

=.84))

3

4 ## Combine original and 84% intervals

5 dat_all <- bind_rows(as.data.frame(eff_84) %>% mutate(interval = "Inferential (84%)"),

6 dataeff %>% mutate(interval = "Original (95%)")) %>%

7 mutate(participantPID2 = factor(participantPID2 ,

8 levels=c("Democrat", "Lean Democrat", "Independent", "Lean

Republican", "Republican")),

9 interval = factor(interval , levels=c("Original (95%)", "Inferential (84%)")))

10

11 rownames(dat_all) <- NULL

12

13 ## Plot Results

14 ggplot(dat_all , aes(x=fit , xmin=lower , xmax=upper , y=participantPID2)) +

15 geom_pointrange () +

16 facet_grid(interval ~ mostQualifiedPerson) +

17 theme_bw() +

18 labs(x = "Predicted Probability of Selecting Republican", y="")

Appenbdix 7.1.3 Muraoka and Rosas Replication

Below, we show the software demonstration and results for the Muraoka and Rosas (2021) replication.

1 library(rstan)

2 load("data/raw/muraoka_rosas_replication/Left_Stan_July10.RData")

3 load("data/raw/muraoka_rosas_replication/Center_Stan_July10.RData")

4 load("data/raw/muraoka_rosas_replication/Right_Stan_July10.RData")

5 load("data/analysis/muraoka_rosas_replication/mr_data.rda")

6

7 ## Combine estimates across ideological directions

8 all.eta <- cbind(left.eta , center.eta , right.eta)

9

10 ## create custom testing object

11 all_vt <- structure (.Data = list(est = all.eta), class="vtsim")

12

13 ## find inferential credible masses for the HDIs

14 v_all <- viztest(all_vt , test =.05, range_levels=c(.6, .9),level_increment =.001 , cifun="hdi")

15

16 v_all

17

18 Correspondents of PW Tests with CI Tests
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Figure 9: Iyengar and Westwood (2015) Replication in R

19 level psame pdiff easy method

20 1 0.759 0.9358974 0.4615385 5.214876e-08 Lowest

21 2 0.769 0.9358974 0.4615385 2.891048e-07 Middle

22 3 0.777 0.9358974 0.4615385 2.853712e-08 Highest

23 4 0.768 0.9358974 0.4615385 4.332770e-07 Easiest

24

25 Missed Tests for Lowest Level (n=5 of 78)

26 bigger smaller pw_test ci_olap

27 28 L: Top L: Second -Top Sig Yes

28 38 R: Second -Top zero Insig No

29 46 C: Second -Top zero Insig No

30 70 zero L: Second -Bottom Insig No

31 71 zero R: Bottom Insig No

32

33 Missed Tests for Lowest Level (n=5 of 78)

34 bigger smaller pw_test ci_olap

35 28 L: Top L: Second -Top Sig Yes

36 38 R: Second -Top zero Insig No

37 46 C: Second -Top zero Insig No

38 70 zero L: Second -Bottom Insig No

39 71 zero R: Bottom Insig No

40

41 Missed Tests for Lowest Level (n=5 of 78)

42 bigger smaller pw_test ci_olap

43 28 L: Top L: Second -Top Sig Yes

44 38 R: Second -Top zero Insig No

45 46 C: Second -Top zero Insig No

46 70 zero L: Second -Bottom Insig No

47 71 zero R: Bottom Insig No

48

49 Missed Tests for Lowest Level (n=5 of 78)

50 bigger smaller pw_test ci_olap

51 28 L: Top L: Second -Top Sig Yes

52 38 R: Second -Top zero Insig No

53 46 C: Second -Top zero Insig No

54 70 zero L: Second -Bottom Insig No

55 71 zero R: Bottom Insig No

Here, we can see the first instance where some tests are not accommodated by the (non-)overlaps of the
HDIs (in this case). Regardless of which level we use, they all miss the same set of tests. Four of these are
relative to zero. The second-top and bottom income groups on the Right, the second-top income group in the
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Centre and the second-bottom income group on the Left – all have estimates that are not credibly different
from zero, but their inferential HDIs do not overlap zero. We solve this by also printing the 90% HDIs that
allow us to evaluate the tests relative to zero. There is also one other difference that is not well captured.
The difference between the top and second-top groups on the Left is credibly different from zero, but their
inferential HDIs do overlap. That difference could be noted in the table note or in the text. The HDIs are
presented in Figure ??.

1 ## create original 95% and inferential HDIs

2 hdi_90 <- t(apply(all.eta , 2, \(x)HDInterval ::hdi(x, credMass = .9))) %>%

3 as_tibble(rownames="term") %>%

4 dplyr:: rename(lwr_90 = lower , upr_90 = upper)

5

6 hdi_inf <- t(apply(all.eta , 2, \(x)HDInterval ::hdi(x, credMass = .768))) %>%

7 as_tibble () %>%

8 dplyr:: rename(lwr_inf = lower , upr_inf = upper)

9

10 ## combine HDIs and make appropriate variables/labels for the data

11 plot_dat <- bind_cols(hdi_90, hdi_inf)

12 plot_dat <- plot_dat %>%

13 mutate(estimate = colMeans(all.eta)) %>%

14 separate_wider_delim(term , ": ", names = c("Direction", "Income")) %>%

15 mutate(Direction = factor(Direction , levels=c("L", "C", "R"),

16 labels = c("Left", "Centre", "Right")),

17 Income = factor(Income , levels=c("Top", "Second -Top", "Second -Bottom", "Bottom")))

18

19 ## Make plot

20 ggplot(plot_dat ,

21 aes(x=estimate , y=Income)) +

22 geom_segment(aes(x=lwr_90, xend = upr_90, colour="Original (95%)"), linewidth =1.5) +

23 geom_segment(aes(x=lwr_inf , xend=upr_inf , colour="Inferential (76.8%)"), linewidth =3) +

24 geom_point(colour="white") +

25 geom_vline(xintercept =0, linetype =3) +

26 scale_colour_manual(values=c("black", "gray50")) +

27 facet_wrap(~Direction , ncol =1) +

28 theme_bw() +

29 theme(panel.grid = element_blank (),

30 legend.position="top") +

31 labs(x="Posterior Mean and Inferential Credible\n Intervals of Inequality (Standardized)",

32 y="",

33 colour="HDI: ")

Appenbdix 7.2 Stata

You can download the optimal confidence level finding function for Stata from GitHub.

Appenbdix 7.2.1 Gibson Replication

1 net install viztest , from(" https ://raw.githubusercontent.com/davidaarmstrong/viztest_stata/

main /")

2

3 * load data

4 use "data/analysis/gibson_replication/gibson_dat.dta", clear

5

6 * run regression

7 quietly reg agree1 i.WAVE [pw=WEIGHT]

8

9 * calculate effect of interest

10 quietly margins WAVE

11

12 * Find inferential confidence intervals

13 viztest , a(.025) usemargins incr (.001)

14

15 Optimal Levels:

15



Figure 10: Muraoka and Rosas (2021) Replication in R

16

17 Smallest Level: .773

18 Middle Level: .826

19 Largest Level: .881

20 Easiest Level: .834

21

22 No missed tests!

The output here suggests that any level between 77.3% and 88.1% would work equally well. We could
use the 84% level because it is one with which users will be familiar. All ten tests - the six pairwise tests
of estimates and four univariate tests of the estimates relative to zero are appropriately captured by the
(non-)overlaps of the inferential confidence intervals. Note that the results here are slightly different from the
R results due to slight numerical differences in the output. The confidence intervals are in Figure 11.

1 * margins using 95% intervals

2 margins WAVE

3 * save the results table and keep the estimate and the

4 * confidence bounds

5 mat tabo = r(table)’

6 mat tabo = tabo [....,1] , tabo [....,5], tabo [.... ,6]
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7

8 * margins with 84% confidence intervals

9 margins WAVE , level (84)

10

11 * keep the lower and upper bounds from the estimates table

12 mat tabi = r(table)’

13 mat tabi = tabi [....,5] , tabi [.... ,6]

14

15 * put the results together in a matrix

16 mat out = tabo , tabi

17

18 * create a new frame and change to the frame

19 frame create res

20 frame change res

21

22 * place matrix results in the new frame

23 svmat out , names(out)

24

25 * rename all the variables

26 rename out1 estimate

27 rename out2 lwr95

28 rename out3 upr95

29 rename out4 lwr84

30 rename out5 upr84

31

32 * generate a variable for the x-axis

33 gen obs = _n

34

35 * make the graph

36 twoway (rcapsym lwr95 upr95 obs , lwidth(medium) msymbol(none) lcolor(gs8)) || ///

37 (rcapsym lwr84 upr84 obs , lwidth(vthick) msymbol(none) lcolor(black)) || ///

38 (scatter estimate obs , mcolor(white) mfcolor(white) msymbol(circle)), ///

39 xlabel (1 "July 2020" 2 "December 2020" 3 "March 2021" 4 "July 2022")

40 legend(order(2 "Inferential (84%)" 1 "Original (95%)") position (12) cols (2))

41 xtitle ("Wave") ytitle (" Proportion Agreeing ")

42

43 * change to the default frame and drop the one

44 * created for the figure

45 frame change default

46 frame drop res

Figure 11: Gibson (2024) Replication in Stata
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Appenbdix 7.2.2 Iyengar and Westwood Replication

1 use "~/ Dropbox/optci/iw_dat.dta", clear

2

3 * keep required obs

4 keep if scholarship == "partisan"

5

6 * estimate logit with interaction

7 logit partisanSelection i.participantPID2 ##i.mostQualifiedPerson

8

9

10 * equally qualified

11 * calculate margins for party id

12 margins participantPID2 , at(mostQualifiedPerson = 1)

13

14 * find inferential confidence level

15 viztest , a(.025) lev1 (.5) lev2 (.95) incr (.001) usemargins

16

17 Optimal Levels:

18

19 Smallest Level: .581

20 Middle Level: .731

21 Largest Level: .883

22 Easiest Level: .765

23

24 No missed tests!

25

26 * republican more qualified

27 * calculate margins for party id

28 margins participantPID2 , at(mostQualifiedPerson = 2)

29

30 * find inferential confidence levels

31 viztest , a(.025) lev1 (.5) lev2 (.95) incr (.001) usemargins

32

33 Optimal Levels:

34

35 Smallest Level: .818

36 Middle Level: .843

37 Largest Level: .87

38 Easiest Level: .845

39

40 No missed tests!

41

42 * democrat more qualified

43 * calculate margins for party id

44 margins participantPID2 , at(mostQualifiedPerson = 3)

45

46 * find inferential confidence level

47 viztest , a(.025) lev1 (.5) lev2 (.95) incr (.001) usemargins

48

49 Optimal Levels:

50

51 Smallest Level: .5

52 Middle Level: .673

53 Largest Level: .848

54 Easiest Level: .678

55

56 No missed tests!

The result here suggests that for the three different Qualification treatments, each of the ten tests (six
pairwise tests and four univariate tests versus zero) is captured by the (non-)overlaps of the confidence
intervals within each treatment condition. A range of levels will work for each treatment condition, but
anything in the range of [0.818, 0.848] will work for all conditions. Since the 84% interval is in that range, we
could use it. The confidence intervals are presented in Figure 12.

1 * calculate margins for plotting

2 quietly margins participantPID2 , at(mostQualifiedPerson = (1 2 3))
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3

4 * save results in tabo and keep only estimate

5 * and lower/upper confidence bounds

6 mat tabo = r(table)’

7 mat tabo = tabo [....,1] , tabo [....,5], tabo [.... ,6]

8

9 * calculate margins with inferential confidence interval

10 quietly margins participantPID2 , at(mostQualifiedPerson = (1 2 3)) level (84)

11

12 * save results in tabo and keep only lower/upper confidence bounds

13 mat tabi = r(table)’

14 mat tabi = tabi [....,5] , tabi [.... ,6]

15

16 * put results together

17 mat out = tabo , tabi

18

19 * create a new frame and change to the frame

20 frame create res

21 frame change res

22

23 * place matrix results in the new frame

24 svmat out , names(out)

25

26 * rename all variables

27 rename out1 estimate

28 rename out2 lwr95

29 rename out3 upr95

30 rename out4 lwr84

31 rename out5 upr84

32

33 * generate most qualified person variable

34 gen mqp = .

35

36 * replace values to correspond with output from margins

37 replace mqp = 1 in 1/5

38 replace mqp = 2 in 6/10

39 replace mqp = 3 in 11/15

40

41 * define an apply levels for mqp

42 label def mqp 1 "Equally Qualified" 2 "R More Qualified" 3 "D More Qualified"

43 label val mqp mqp

44

45 * generate party id variable

46 gen pid = .

47

48 * repalce values to correspond with output from margins

49 * democrats

50 foreach i of num 2 7 12 {

51 replace pid = 1 in ‘i’

52 }

53 * lean democrat

54 foreach i of num 3 8 13 {

55 replace pid = 2 in ‘i’

56 }

57

58 * independent

59 foreach i of num 1 6 11 {

60 replace pid = 3 in ‘i’

61 }

62 * lean republican

63 foreach i of num 4 9 14 {

64 replace pid = 4 in ‘i’

65 }

66 * republican

67 foreach i of num 5 10 15 {

68 replace pid = 5 in ‘i’

69 }

70
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71 * define and apply labels

72 label def pid 1 "D" 2 "LD" 3 "I" 4 "LR" 5 "R"

73 label val pid pid

74

75 * Make the graph

76 twoway (pcspike pid lwr95 pid upr95 , lwidth(medium) lcolor(gs8)) || (pcspike pid lwr84 pid

upr84 , lwidth(vthick) lcolor(black)) || (scatter pid estimate , mcolor(white) mfcolor(

white) msymbol(circle)), by(mqp , cols (3) compact note ("")) legend(order(2 "Inferential

(84%)" 1 "Original (95%)") position (12) cols (2)) xtitle (" Predict Pr(Choose Republican)")

ytitle ("") ylabel (1 "D" 2 "LD" 3 "I" 4 "LR" 5 "R")

Figure 12: Iyengar and Westwood (2015) Replication in Stata

Note, the Stata results here are a bit different because the output from margins uses the delta method to
derive standard errors for the predicted probabilities and then normal theory confidence intervals around the
predicted probabilities using those standard errors.

Appenbdix 7.2.3 Muraoka and Rosas Replication

Currently, the Stata version of the software only supports Frequentist results and those from the margins

function. As such, we do not present the Muraoka and Rosas replication in Stata.

Appenbdix 8 Cautions and Caveats

One reviewer was less sanguine about the use of this tool than we are. We want to highlight some of those
thoughts here. The reviewer suggested that authors should only present confidence intervals (specifically our
inferential confidence intervals, but perhaps any) for estimates where any pairwise comparison is reasonable.
We think this is generally good practice independent of our intervention in the article. Plotting estimates on
the same scale implicitly invites comparison. As researchers, we should be careful about what comparisons
we invite people to make. The reviewer goes on to say that not following this advice invites substantive
comparisons that may not be supported by or consistent with the literature to which the article in question
contributes. Perhaps this is true. However, the terms are estimated by the model and someone may
hypothesize, independently of the article’s intent, about the nature of some comparison. If the model is
generating estimates whose values ought not to be compared, even if due consideration is given to underlying
variability and the distribution of the variables that give rise to the estimates, that seems like a modeling
problem more than a presentation problem.
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