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library(MASS)
library(tidyverse)
library(broom)

Example debiasing function
This is a simplified illustration of our debiasing method. The conText package will be implemented more
e!ciently and robustly. The debiasing step in the function below is highlighted with ####.
debiased_estimates <- function(

mod # e.g., model output from lm() -- R's main linear regression function
# for independent observations
# or the estimatr package's lm_robust() to calculate clustered standard errors
# for non-independent observations

) {
mod_df <- tidy(mod) # convert model summary to data frame
#
# (unbiased) beta hats to (biased) squared beta hats
mod_df$biased_sqrd_beta <- mod_df$estimateˆ2
#
mod_df$beta_variance <- mod_df$std.errorˆ2 # beta standard error to beta variance
#
##### This is debiasing step: ####
# subtract estimated beta variance from squared beta hats
mod_df$debiased_sqrd_beta <- mod_df$biased_sqrd_beta - mod_df$beta_variance
#
return(mod_df)

}

Simulate data
In this simulation, the true value (i.e., the expected value) of the squared Euclidean norm on the di"erence
between embeddings vectors is 0 – because the groups have been randomly assigned. We demonstrate that
the debiased estimator returns 0 in the section “Average of 10,000 estimates” below.
simulate_data_k2 <- function(n = 500, group_imbalance = c(0.9, 0.1)) {

list(
# a (random) dummy variable for group membership
random_groups = sample(c(0, 1), size = n, replace = TRUE, prob = group_imbalance),
# these k=2 "embeddings" are just the example in the help file of mvrnorm()
embeddings = mvrnorm(n = n, mu = rep(0, 2), matrix(c(10,3,3,2),2,2))

)
}

Single dimension illustration
set.seed(987654321)

simulated_data <- simulate_data_k2()

A Illustration of correction with R code
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embeddings <- simulated_data[["embeddings"]]
random_groups <- simulated_data[["random_groups"]]

mod_d1 <- lm(
# run a regression with the group indicator as x and the first embedding dimension as y
embeddings[,1] ~ random_groups

)

debiased_estimates(mod_d1) |>
select(term, biased_sqrd_beta, beta_variance, debiased_sqrd_beta) |>
filter(term != "(Intercept)")

# we remove the intercept estimate for this illustration but it can be used in
# intercept only models, e.g., y ~ 1 and one of these intercept regressions for each
# compared group, to correct the denominator of a cosine similarity calculation

term biased_sqrd_beta beta_variance debiased_sqrd_beta
random_groups 0.24 0.21 0.03

Multiple dimension illustration
mod_d2 <- lm( # run a separate regression with the second embedding dimension as y

embeddings[,2] ~ random_groups
)

all_debiased_sqrd_betas <- bind_rows(
# stack estimates from models 1 and 2 for the squared Euclidean norm below
debiased_estimates(mod_d1),
debiased_estimates(mod_d2)

) |>
filter(term != "(Intercept)")

all_debiased_sqrd_betas |>
# calculate the squared Euclidean norm for each x variable (here, only 1 of them)
group_by(term) |>
summarize(

biased_sqrd_euclidean_norm = sum(biased_sqrd_beta),
debiased_sqrd_euclidean_norm = sum(debiased_sqrd_beta)

)

term biased_sqrd_euclidean_norm debiased_sqrd_euclidean_norm
random_groups 0.28 0.02

Average of 10,000 estimates
Repeating the above code for 10,000 simulated samples, mean estimates are:

term biased_sqrd_euclidean_norm.mean debiased_sqrd_euclidean_norm.mean
random_groups 0.27 0

2



B Twitter data tests

For the Twitter data tests, we use data from a panel of Twitter users, described in (Hughes et al., 2021).

Users in this panel were linked to voter records, which included basic demographic information and vote

histories. We down-sample the large panel to only users whose user IDs ended with eight, and analyzed

tweets between January 2019 and February 2023 that contained the words “children” (illustration of bias

in Figure 1), “people” (large sample illustration of bias and correction in Figure 3), or “racism” (Tables

C.8 and C.9; Figures C.12 and C.13 – assessing correction for plausibly larger main e!ects and covariate

e!ects).

Context-dependent word embeddings are drawn from the a la carte embedding approach described in

(Rodriguez et al., 2023). This approach assigns context-dependent word embeddings (the 200d Twitter

embeddings from GloVe (Pennington et al., 2014): https://nlp.stanford.edu/projects/glove/) for the

word ‘people’ based on the words that appear near the word people in each tweet. Our analyses study the

squared Euclidean norm of distances across groups for these embeddings.
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C Supplementary figures and tables

C.1 Illustration of bias from folding

If, across samples or noisy measurements, the values that we estimate for ω (the unobserved sampling

distribution of ω̂) are sometimes greater than their true values and sometimes less than, our distances are

nonetheless always positive – and so, in expectation, greater than the true value of ω.

We illustrate this folding e!ect in Figure C.1.

β=0.5 E[β̂] = 0.5

−4 −2 0 2 4

β̂

|β| = 0.5
E[|β̂|] > 0.5

−4 −2 0 2 4

|β̂|

Figure C.1: Illustration of bias from folding. In the right panel, negative values (in red) for ω̂ become positive
after squaring and then taking the square root (equivalent to |ω̂| in this uni-dimensional illustration).

Less intuitively, squared Euclidean distance estimates are biased even when the sampling (or

measurement error) distribution (unrealistically) never spans 0. If we split a positively or negatively

bounded (and non-constant) distribution in exactly half at its expected value, the expected value of the

half further from 0 will increase more (or, if originally less than 1, decrease less) after squaring than the

expected value of the half closer to it will.
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C.2 (Unsquared) corrected Euclidean distance
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Figure C.2: This figure shows simulation results for the ordinary (unsquared) Euclidean norm. The horizontal
black lines represent the true Euclidean norm, divided by the number of dimensions (50). Points represent
average of the simulations and intervals are the 2.5% to 97.5% quantiles of the sampling distribution.

C.2.1 (Unsquared) Euclidean distance bias

An expression of the bias for the Euclidean norm must, to our knowledge, be distribution dependent. For

example, for the case of k = 1, we can use the properties of the half normal distribution (for a ω̂ that is

normally distributed for large N , by the central limit theorem) to get an expression for the expected value

of the absolute value of ω̂: E[|ω̂|] = ε
√

2
ω e

→ω2

2ε2 + ωerf
(

ε→
2ϑ2

)
, where erf indicates the error function and ε

the standard deviation of ω̂ (i.e., the standard error). E[ω̂] = ω. This reduces to E[|ω̂|] = ε
√

2
ω when ω = 0.
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C.3 Bimodality of corrected Euclidean distance

Unlike the squared Euclidean distance estimator, the ordinary Euclidean distance estimator is strongly

bimodal. We suspect the bimodality in particular may make this estimator somewhat di”cult for many

readers to interpret. We illustrate this bimodality and potential interpretation problem in Figures C.3 and

C.4, where we show the same estimates with and without squaring. In the squared version, we think that

the distribution resembles what an average reader would expect to see for estimates of no di!erence. In the

unsquared version, some readers may interpret estimates further from 0 as being more distinct from 0 than

they really are – they are far from 0 only because the distribution of this estimator has low density close to

zero.

Given this, and while we think it is reasonable to prefer the ordinary Euclidean distance, authors who

use this corrected distance measure may need to be careful to fully explain its bimodal distribution – and

the reason for heavily skewed confidence intervals.
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Figure C.3: Distribution of corrected Euclidean distance estimates for N=1,000 across 500 samples from
Twitter data for term ‘people’.
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Figure C.4: 10 corrected Euclidean distance estimates for N=1,000, equal group comparisons, and di!erent
e!ect sizes – from simulations shown in Figure C.2.
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Figure C.5: Distribution of corrected squared Euclidean distance estimates for N=1,000 across 500 samples
from Twitter data for term ‘people’.
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Figure C.6: 10 corrected squared Euclidean distance estimates for N=1,000, equal group comparisons, and
di!erent e!ect sizes – from simulations shown in Figure 2.
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C.4 Bootstrapping: challenges, coverage of confidence intervals

We assess whether bootstrapping and/or the jackknife can be used to construct confidence intervals for the

squared Euclidean norm.

For the bootstrap, we calculate the coverage of a bootstrapped confidence interval with 500 replicates

for our main simulations described in the main text (see Figure 2) for the case of N=1,000. Meaning, we

calculate the fraction of (true) squared Euclidean norms that fall within the range of 2.5% to 97.5%

quantiles of the bootstrap distribution (after subtracting double the calculated variance of each estimate –

since, as we show in Figure C.7, the mean of the bootstrap distribution is biased by double the variance).

For the jackknife, we use the leave-one-out method to construct standard errors and confidence

intervals.

These results are shown in Figures C.8 and C.9. For e!ect size values less than around 0.5, “95%”

confidence intervals contain more than 95% of the true/assigned e!ect size. The jackknife appears to have

closer to nominal coverage because for e!ect sizes less than 0.1 it has coverage of around 98% for a “95%”

confidence interval while the bootstrap is around 100%.

In Figure C.10, we show similar coverage for the method in Hyodo et al. (2018).

We also test the jackknife using Congressional Record data from Sessions 111-114 (Gentzkow et al.,

2018). To do this, we select target words with varying degrees of gender and partisan di!erences and

obtain locally trained embeddings with context window size six. We fit an embedding regression with party

or gender as a covariate and define the (non-deflated) squared Euclidean norm of the coe”cients as the

true parameter. We simulate sampling distributions from this ‘population’ of embeddings by taking

sub-samples of varying sizes (n = 100, n = 500, n = 1000) and estimate the same regression, using the

jackknife to calculate confidence intervals. For each target word and sub-sample size, we replicate the

simulation process 1000 times and calculate the jackknife coverage as described above. Coverage results for

each embedding regression specification are shown in Table C.1. Similar to the coverage we obtain using

simulated data, the jackknife has a coverage of around 98% for a “95%” confidence interval for e!ect sizes

close to 0, but has closer to nominal coverage for larger e!ect sizes.
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Figure C.7: Bootstrapping doubles the variance bias (from simulations in main text Figure 2).
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Figure C.8: Coverage of bootstrapped and doubly corrected norm for N=1,000.
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Figure C.9: Coverage of jackknife for N=1,000.
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Figure C.10: Coverage of Hyodo et al. (2018) confidence intervals for N=1,000.
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Embedding Regression Squared Norm Total observations Coverage by Sub-sample Size
Full Sample Estimate n = 100 n = 500 n = 1000

children→gender 0.62 50,191 0.989 0.982 0.969
nation→party 0.82 49,777 0.986 0.977 0.968
president→party 3.08 220,944 0.975 0.938 0.928
health→party 3.16 13,3797 0.976 0.953 0.964
women→gender 5.01 46,802 0.938 0.936 0.944
abortion→party 6.57 6,670 0.974 0.947 0.932
climate→party 6.98 12,641 0.939 0.92 0.937
hispanic→party 7.45 1,565 0.959 0.91 0.871
black→party 11.77 6,945 0.973 0.957 0.948
unemployment→party 12.01 21,398 0.935 0.95 0.951
wage→party 21.75 6,471 0.915 0.95 0.951
gun→party 22.64 10,446 0.96 0.956 0.96
immigrants→party 24.99 4,677 0.938 0.951 0.968

Table C.1: Coverage of jackknife on full Congressional Record data for N=100, N=500, and N=1000.
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C.5 E!ects of whitening embeddings

Our method corrects bias related to the variance of an estimated ω̂ rather than variance in the data itself.

If we equalize variance in the data, like by whitening a matrix and then calculating Euclidean distance

(i.e., Mahalanobis distance), this re-introduces bias. Intuitively, this introduces bias because (large)

di!erences between groups increase the variance of the data without altering the variance of an estimator.

Further, whitening the embeddings of groups separately prior to comparing them would place them into

di!erent and incomparable embedding spaces.

In Figure C.11, we re-run our main simulation shown in Figure 2 but whiten the matrix prior to

calculating distances. This whitening step equalizes the variance of every embedding dimension and

removes covariance across embedding dimensions.
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Figure C.11: Estimated squared Euclidean distance on a whitened embedding matrix. In this analysis,
the simulated embeddings are whitened prior to calculating squared Euclidean distance. Whitening the
embeddings of groups separately prior to comparing them would place them into di!erent and incomparable
embedding spaces.
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C.6 Covariates and clustering: corrections and simulations

Clustering

If responses are not independent, then we can under-estimate the variance of our ω̂, just as in ordinary

linear regression. The solution for this is straightforward – we can cluster our standard errors using

standard practices. We demonstrate in Table C.2 that a) not accounting for clustering biases estimates and

b) we can fix that bias through the approaches just described. For estimating clustered standard errors, we

use the ‘estimatr’ R package (Blair et al., 2024) and “stata” (CR1) type cluster-robust standard errors.

Further, we must also permute our outcomes at the cluster level to return valid p-values. Without

accounting for clustering, we will tend to over-reject the null due to a permutation distribution that is too

narrow and that also has a downward bias. These problems and their fix in simulations is are shown in

Tables C.4 and C.7.

Expanding our main text derivation to

E
[
↑ϑ̂ ↓ ϖ̂↑22

]
= ↑ϑ ↓ ϖ↑22 +

K∑

k=1

V [ϑ̂k ↓ ϖ̂k] (5)

= ↑ϑ ↓ ϖ↑22 +
K∑

k=1

(
V [ϑ̂k] + V [ϖ̂k]↓ 2Cov[ϑ̂k, ϖ̂k]

)
(6)

our clustered standard error approach on the di!erence corrects for both inaccurately estimated

variances and the covariance term. This covariance term can be non-zero when, for example, the same

author’s text embeddings are included in the averages of both compared vectors. We demonstrate the

e”cacy of this covariance correction in the “non-independent contrast” results in SI Table C.4, where the

same errors are included in both compared vectors in a cross-over design.

Multiple regression

If we use a regression approach, like (Rodriguez et al., 2023), then we need to account for the possibility

that highly predictive variables will reduce the variability of other estimates. In permutation tests that

permute our outcomes, we remove the e!ect of that increased precision (setting all associations to 0 on

average) and, if we do have predictive variables, then over-estimate the variance of our ω̂’s.

The primary solution to this issue is a) to use standard errors from the regression rather than using

permutation to estimate variance and b) permuting the residuals from our regression rather than the
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outcome. We demonstrate that full model residual permutation produces accurate estimates and valid

p-values in Tables C.3 and C.6.

Below, we conduct simulations that are the same as those in the main paper, but we restrict our

sample size to 1,000, use 1,000 replicates (rather than 500), and also for:

• (maximum) clustering: duplicate each observation (each observation appears twice)

• (strong) covariate: assign a covariate with c = 10 (a very large e!ect size)

• non-independent contrasts (a crossover design): duplicate each observation – but with the duplicate

observation in the opposite group as the original

In reporting estimates, we calculate the average estimates using the squared norm before taking the

pseudo square root. Meaning, the estimates below are for the unbiased correction – we have only applied a

pseudo square root so that we can still see bias (and lack of bias after correction) in the uncorrected

squared norm for e!ect sizes equal to 0.

C.6.1 Simulation estimates

True value Uncorrected es-
timate

Subtract regres-
sion variances

Subtract clus-
tered regres-
sion variances

0.002 0.092 0.062 0.012

0.712 0.712 0.712 0.712

Table C.2: Normed estimates: (maximum) clustering only

True value Uncorrected es-
timate

Subtract regres-
sion variances

Subtract clus-
tered regres-
sion variances

0.002 0.092 0.062 0.012

0.712 0.712 0.712 0.712

Table C.3: Normed estimates: (maximum) clustering and (strong) covariate
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True value Uncorrected es-
timate

Subtract regres-
sion variances

Subtract clus-
tered regres-
sion variances

no covariate 0.002 0.042 -(0.062) -(0.002)
strong covariate 0.002 0.042 -(0.062) 0.002

no covariate 0.712 0.712 0.702 0.712

strong covariate 0.712 0.712 0.702 0.712

Table C.4: Normed estimates: (maximum) clustering and non-independent contrasts (i.e., a crossover design)
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C.6.2 Simulation p-values

True fraction < 0.05 Permutation
test

Clustered
permuta-
tion test

Clustered
residuals per-
mutation test

0.05 0.73 0.04 0.04

Table C.5: P-values: (maximum) clustering only

True fraction < 0.05 Permutation
test

Clustered
permutation
test

Clustered
residuals per-
mutation test

0.05 0.00 0.00 0.05

Table C.6: P-values: (maximum) clustering only and (strong) covariate

True fraction < 0.05 Permutation
test

Clustered
permuta-
tion test

Clustered
residuals per-
mutation test

no covariate 0.05 0.00 0.05 0.05
strong covariate 0.05 0.00 0.06 0.05

Table C.7: P-values: (maximum) clustering only and non-independent contrasts (i.e., a crossover design)
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C.6.3 Twitter p-values

We further assessed the performance of the clustered permutations on the Twitter data using the same

sampling procedure as used in Figure 3 for the term ‘racism’. ‘Racism’ is less common than the terms

‘people’ and ‘children’ and it is also more likely to be strongly associated with covariates (which can a!ect

the performance of permutation tests). In these tests, each tweet is weighted inversely proportional to the

number of tweets that a user posted in the sample overall (e.g., each observation of a user who posted twice

will receive a weight of 1
2 ). Embeddings are permuted at the user level, whether or not a user has posted

the same number of tweets, and each tweet is then re-weighted using a user’s new number of tweets after

permutation.

In that data, clustered permutation appropriately controls type I error and ordinary permutation

slightly over-rejects the null. Clustered residual permutation slightly over-rejects, though it over-rejects less

than non-clustered residual permutation. Based on this, we suspect that the ordinary permutation test may

perform relatively well on most data sets – except for cases where there is substantial duplication in the

embedding observations (e.g., many observations drawn from one very short document), which would more

closely resemble the extreme correlation across observations considered in the simulations in Section C.6.2.

A Hotelling T 2 test as well as an estimator (Chen and Qin, 2010) for settings where the number of

embedding dimensions exceeds the number of observations can also be used for simple design significance

tests (Chen and Qin, 2010; Hyodo et al., 2018), though with potentially restrictive assumptions. We are

unaware of any such estimator for complex designs, however, and we see below that it performs poorly with

non-independent observations.

True frac-
tion < 0.05

clustered
permutation

non-
clustered
permutation

Hotelling T 2

test
Hotelling T 2 test
(on single tweet
per author)

Random group: 1%-99% 0.05 0.05 0.07 0.59 0.17
Random group: 10%-90% 0.05 0.05 0.08 0.94 0.05
Random group: 50%-50% 0.05 0.05 0.09 1.00 0.04

Table C.8: P-values: Twitter sampling (500 samples of 1,000 users) and distances calculated between random
groups.
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True fraction < 0.05 clustered resid-
ual permutation

non-clustered
residual permu-
tation

Random group: 10%-90% 0.05 0.07 0.10
Random group: 50%-50% 0.05 0.06 0.09

Table C.9: P-values: Twitter sampling (500 samples of 1,000 users) and distances calculated between random
groups. Controls: age group, race, gender, party.
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C.7 Cosine similarity correction

We use the same down-sampling procedure as in Section C.6.3 (1,000 users’ uses of the word ‘racism’ on

Twitter) to analyze the performance of a corrected cosine similarity estimator, but without covariates. In

this, we corrected the Euclidean distance in the denominator of the cosine similarity calculations (the

Euclidean norm of each group’s average embedding vector), and left the numerator untouched (assuming

independence across the compared groups). Figure C.12 and C.13 display these results. Although there is a

small upward bias in the corrected estimator, that bias is far smaller than the uncorrected estimator bias.

Note, too, that this figure illustrates that group di!erences in embeddings surrounding the same terms may

tend to be relatively small.
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Figure C.12: Cosine similarity estimator performance on sub-samples of Twitter data set: random groups.
For this data, we use sandwich-style standard errors to estimate the variance under clustering, to account
for clustering at the user level given multiple tweets from the same users.
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