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1 Technical Details

1.1 Gibbs Sampler
Before describing the estimation and model selection procedures in more detail, the Gibbs
sampler used to obtain samples from the SERGM, as defined in equations (2) and (3) in
the main article for static and dynamic networks, respectively, is described and visualized
in algorithm 1. Since the temporal case is equivalent to the static case, we focus on the
simpler case of static networks. The goal is to sample a network y following the SERGM
distribution characterized by a set of sufficient statistics (possible choices are given in
Section 2.2 of the main article), each weighted by the parameter θ . For the kth step out
of K of the Gibbs sampler, we start by selecting a random dyad (i(k), j(k)) from all possible
edges. Then, we sample the value of (i(k), j(k)) from a multinomial distribution with n = 1
and success probabilities
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Subsequently, the dyad (i(k), j(k)) is set to be the result of this multinomial distribution
in y(k). As shown in the main manuscript in equation (4), this multinomial distribution
corresponds to the conditional distribution of the SERGM. Therefore, continuing this pro-
cess long enough will provide samples from the desired distribution. Since these types of
MCMC methods suffer from autocorrelation between successive steps of the sampler (e.g.,
y(k) and y(k+1) differ at most in the entry (i(k+1), j(k+1))), we use only every Mth result of
the algorithm as a sample. This commonly used method is called thinning.

Result: y(1), ...,y(K)

Set y(0), θ and K
Set y = y(0)

for k = 1, ...,K do
Select dyad (i(k), j(k)) randomly from all possible dyads
Sample Yi(k), j(k) |Y C

i(k), j(k) from {1,−1, 0} with probabilities given in equation (4) of
the main article

Set y(k) = y
end

Algorithm 1: Gibbs sampler for signed networks.

1.2 Partial Stepping Algorithm
Following standard theory of exponential families, θ maximizing the approximate likeli-
hood detailed in (11) of the main article only exists if the observed sufficient statistics∑T

t=1 s(yt ,yt−1) are inside the convex hull spanned by the sampled sufficient statistics(∑T
t=1 s(y(m)

t ,yt−1), ...,
∑T

t=1 s(y(M)
t ,yt−1)

)
(Barndorff-Nielsen, 1978). Since this condition

does not hold for arbitrary values of θ0, we adapt the partial stepping algorithm intro-
duced by Hummel et al. (2012) to find an adequate θ0.

In the kth step of this iterative procedure, we substitute ∑T
t=1 s(yt ,yt−1) in (11) of the

main article by
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t ,yt−1) is the estimated mean of the
sufficient statistics of networks sampled under θ (k). We select the largest possible value
of γ (k) in (1) such that even the point marginally closer to ∑T
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)
m(k), is inside the convex hull spanned by the sam-

pled statistics. One can test whether a point ∈ Rp lies in this convex hull via a linear
programming problem (details can be found in Hummel et al., 2012 and Krivitsky et al.,
2023).

To update θ (k) to θ (k+1) for a given γ (k), we thus optimize
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with a Newton-Raphson algorithm and y
(m)
t ∀ m = 1, ...,M and t = 1, ...,T sampled from

model (3) of the main article. To ease this step, we assume that ∑T
t=1 s(Yt ,yt−1) follows

a p-variate Gauss distribution with mean m(k) and covariance matrix Σ(k), which is the
covariance matrix of the sufficient statistics under θ (k). Both terms can be estimated with
samples Y (1), ...,Y (M). Then we can state the optimal value of (2) in closed form:

θ
(k+1) = θ

(k) +
(
Σ̂(k)

)−1 (
ξ

(k) − m̂(k)
)
.

The algorithm terminates when we estimate γ (k) = 1 two iterations in a row, we then
continue the procedure with ξ (k) = ∑T

t=1 s(yt ,yt−1) until the estimates stabilize.

1.3 Evaluation of the AIC
To decide between alternative specifications of the sufficient statistics, a common method
is to select the model with the lowest AIC value. The AIC is defined as

AIC(M) = 2p − 2ℓ(θ̂ ; y), (3)

where M is a SERGM for temporal networks with a particular specification of the sufficient
statistics and estimated parameters θ̂ and ℓ(θ̂ ; y) = log

(∏T
t=1 Pθ (Yt = yt |Yt−1 = yt−1)

)
is the log likelihood. To evaluate (3), we have to calculate the value of the intractable
logarithmic likelihood at θ̂ , which we can restate by

ℓ(θ̂ ; y) = r(θ̂ , θ̂Ind; y) + ℓ(θ̂Ind; y), (4)

where θ̂Ind ∈ Rp is the estimate of the sub-model including only the subset from the
sufficient statistics that abide the conditional dependence assumption (the coefficients of
all other (endogenous) statistics are fixed at 0). Due to this characteristic, ℓ(θ̂Ind; y) is
equivalent to the log likelihood in a multinomial regression and can be computed in closed
form. To evaluate r(θ̂ , θ̂Ind; y), we follow Hunter and Handcock (2006) and apply path
sampling (Gelman and Meng, 1998) to approximate
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= log
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from (11) in the main article in a more precise manner. If we specify a smooth mapping
θ : [0, 1] → Rp with θ (0) = θ̂Ind and θ (1) = θ̂ and let 0 = u0 < u1 < ... < uJ = 1 for
J ∈ N be a fixed grid of so-called bridges and its finite support, the following approximation
holds:
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Figure 1: Simulation results in setting 1: The x-axis relates to different number of con-
secutively observed networks, while the y-axis represents the value of the coefficients (in
the first five rows) and the needed time for estimation (in the last row). The results of
all 100 simulations are summarized in box plots, the yellow dashed line relates to the true
coefficient value, and the red triangles depict the arithmetic mean of the simulations.

where y
( j,1)
t , ...,y

( j,M)
t are networks sampled conditional on yt−1 under θ (u j) ∀ j = 1, ..., J.

For our implementation, we set θ (u) = θ̂Ind + u(θ̂ − θ̂Ind), corresponding to a linear path
from θ̂Ind to θ̂ and d

duθ (u) = θ̂ − θ̂Ind. Plugging (5) into the first row of (11) of the main
article permits the computation of (3). For a more technical derivation of (5), we refer to
Hunter and Handcock, 2006 or Gelman and Meng, 1998.

2 Simulation Study
To assess the quality of the proposed estimation algorithm, we carry out two separate Monte
Carlo simulation studies. Generally, we simulate 100 networks with 100 actors under the
SERGM introduced in the main article with the following five network effects and true
coefficients:
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ML MPL
Coef. AVE RMSE CP AVE RMSE CP

Edges + −5.0 −5.012 0.156 0.99 −4.996 0.161 0.69
Edges − −3.0 −3.003 0.038 0.93 −2.998 0.039 0.86
GWD + 0.5 0.508 0.134 0.99 0.499 0.141 0.61
GWD − −0.5 −0.508 0.135 0.93 −0.509 0.141 0.74
GWESE + 0.5 0.490 0.082 0.98 0.487 0.087 0.66

Table 1: Simulation results in setting 2: The AVE (AVerage Estimate), RMSE (Root-Mean-
Squared Error), and CP (Coverage Probability) are provided for the Maximum Likelihood
(ML) and Maximum Pseudo-Likelihood (MPL) approach.

1. Number of positive edges (Edges +): −5

2. Number of negative edges (Edges −): −3

3. Geometrically weighted degree distribution of positive edges (GWD +): 0.5

4. Geometrically weighted degree distribution of positive edges (GWD −): - 0.5

5. Geometrically weighted positive edgewise-shared enemies distribution (GWESE +):
0.7

We apply the partial stepping algorithm detailed in Section 1.2 to find the maximum
likelihood estimators (the computational settings of the estimation routine are reported in
Section 5). With the first experiment, we study how the number of networks affects the
accuracy of the parameter estimates and the needed time until convergence. Therefore, we
vary T between 5 and 50. In the second study, we investigate the coverage probabilities of
our estimators in the setting of repeated sampling. This analysis will allow us to assert the
uncertainty quantification reported in our findings.

Setting 1 (Accuracy under growing T): The result of this simulation study are pre-
sented in Figure 1 and uncover three takeaways. First, it is visible that, on average, the
correct parameter estimate is recovered in all scenarios, which can be seen as empirical
proof of the correctness of the implementation and derivation of the algorithms from Sec-
tion 1.2. Second, the accuracy of the estimates gets better with the number of observed
networks since the width of the box plots becomes smaller with T increasing. Heuristically,
this empirical observation follows from the consistency of the ML estimator with growing
T . Third, the time needed for the estimation grows almost linearly with T and hits its
maximal mean around 25 minutes if T = 50.

Setting 2 (Coverage probability): To emulate the core findings of structural balance
theory, we add another endogenous effect calculating the geometrically weighted positive
edgewise-shared friends distribution (GWESF +) with a coefficient of 1 to the second
simulation setting. Now, we contrast the maximum likelihood (ML) estimator with the
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maximum pseudo-likelihood (MPL) estimator. For this comparison, we investigate the
average point estimate (AVE), the root-mean-squared error (RMSE), and the coverage
probabilities (CP) in Table 1. The AVE of a specific coefficient θp is its average estimate
over the 100 simulation runs:

AVE(θp) = 1
S

S∑
s=1

θ̂p,s,

where θ̂p,s is the estimate of the pth coefficient in the sth simulation run. To assess how
volatile the estimation error is over the simulation runs, we report the RMSE of θp:

RMSE(θp) =

√√√√1
S

S∑
s=1

(
θ̂p,s − θp

)⊤ (
θ̂p,s − θp

)
,

where θp is the ground truth of the pth coefficient. In order to explore the adequacy of the
uncertainty quantification, we compute the percentage of runs in which the true parameter
lies within the confidence intervals provided by the respective estimation technique. This
coverage probability should be around 95%. The results in Table 1 indicate that, on average,
the coefficient estimates of the ML and MPL routines are correct. However, the MPL
approach has almost consistently a higher RMSE than the ML approach. In line with the
observation of van Duijn et al. (2009) for binary ERGMs, the coverage probabilities of the
MPL are off. However, extending the techniques recently developed by Schmid and Hunter
(2023) or Schmid and Desmarais (2017) could correct this phenomenon. In summary, the
results underpin the usage of the MPLE as the starting value for the stepping algorithm.

3 Details on the Application to International Coop-
eration and Conflict

3.1 Data Visualization and Covariate Details
Here, we visualize the network and offer additional details regarding the data sources for
the application of the SERGM to interstate relations presented in Section 4. As discussed
in this section, we source data from Kinne (2020) and Palmer et al. (2022) to construct
a network spanning the years 2000-2010, where positive ties represent Defense Coopera-
tion Agreements (DCAs) and negative ties Militarized Interstate Disputes (MIDs) between
states. A snapshot of the resulting network, as observed in 2005, is presented in Figure 2,
and yearly descriptive summaries of the exogenous information are provided in Table 2.

For this application, we also use additional data to construct our exogenous covariates.
The information underlying these variables, as well as the MID data, are sourced from the
peacesciencer package (Miller, 2022), but the original data sources are as follows: We
measure countries’ absolute political difference (Abs. Polity Diff.) using their polity scores
(Marshall et al., 2018), their relative military power by taking the ratio of their Composite
Indicators of National Capabilities∗ (CINC Ratio; Singer et al., 1972), their difference in
wealth via their absolute GDP difference (Abs. GDP Diff; Anders et al., 2020) and obtain

∗We use the higher CINC value in the ratio’s numerator.
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Figure 2: Network of MIDs (red) and DCAs (blue) in 2005. The size of each node relates
to the degree (positive plus negative) of the respective country.

Table 2: Descriptive information about the exogenous dyadic covariates.

Year Avr. Polity Var. Polity Avr. CINC Var. CINC Avr. GDP Var. GDP
2001 2.925 42.659 0.006 <0.001 24.853 3.637
2002 3.082 42.829 0.006 <0.001 24.893 3.619
2003 3.184 43.356 0.006 <0.001 24.935 3.601
2004 3.116 43.487 0.006 <0.001 24.981 3.615
2005 3.211 44.332 0.006 <0.001 25.043 3.612
2006 3.429 42.986 0.006 <0.001 25.110 3.614
2007 3.510 42.923 0.006 <0.001 25.176 3.611
2008 3.497 42.183 0.006 <0.001 25.238 3.623
2009 3.592 41.860 0.006 <0.001 25.291 3.607
2010 3.687 40.641 0.006 <0.001 25.333 3.576

their geographical distance from Schvitz et al. (2022), log-transforming it before inclusion
(Abs. Distance). For each covariate, we separately estimate effects on the propensity of
a positive and negative edge. The only exception to this rule is the effect of the absolute
distance, which is assumed to be equal for both types of edges. From 164 countries that
participated in at least one MID or DCA between 2000 and 2010, we excluded 15 countries
where covariate information was missing.

We now briefly discuss the estimation results for these covariates, as reported for Model
1 in Table 1 of the main article. These estimates are ceteris paribus, i.e., when accounting
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for network dependencies via the endogenous terms. Regarding cooperation, countries are
found to be more likely to formally work together via defense cooperation agreements if
they are politically more similar, more comparable in their wealth, but also differ more in
their material military capabilities. In particular, the first result is in line with previous
research showing that similar regimes are more likely to ally (Lai and Reiter, 2000; Warren,
2016) while the second indicates that for DCAs, which regulate activities such as the joint
research and development of military technology, countries’ economic match also plays a
role. The finding that countries are more likely to cooperate as their CINC ratio increases
indicates, instead, that DCAs also follow a hierarchical structure where powerful states
enter agreements with less powerful ones (Lake, 2009). In contrast, we find that states are
more likely to fight when their CINCs, and thus military capabilities, are more similar, while
their differences in regime type and wealth do not matter. Finally, the absolute distance
between countries has a positive coefficient, suggesting, surprisingly, that the further away
countries are from each other, the more likely they are to interact.

3.2 Goodness-of-Fit Assessment
3.2.1 Comparison between Model 1 and 2

We also plot the results of the model assessment for Models 1 and 2 in the year 2010 in
Figure 3. Since the degree distribution is captured in the same way in both models, we only
focus on the distribution of edgewise-shared friends and enemies. According to Figure 3
(a) and (b), both models can capture the distribution of edgewise-shared friends. However,
Figure 3 (c) and (d) indicates that the edgewise-shared enemies distribution is captured
better in Model 1. This is in line with the comparison of AIC values reported in the main
manuscript, which clearly indicates the superiority of Model 1 and thus of incorporating
the number of common partners via simultaneous statistics.

3.2.2 Yearly Assessment

In the main article, the goodness-of-fit assessment was only shown for the year 2010. One
can, however, carry out the same assessment for all years, as shown in Figures 4 to 12.
These are substantively in line with the figure for the year 2010.

3.3 MCMC Diagnostics
In figures 13–17, we present some diagnostic plots of the MCMC chain used in the final
iteration of Model 1 in Section 4 of the main article. We average the Markov chain of each
sufficient statistic around its observed value for better readability. Overall, one can observe
that the model’s estimates converged, are not degenerate, and are equal to the maximum
likelihood estimates since the Markov chain oscillates around 0.
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(a) Model 1

(b) Model 2

(c) Model 1 (d) Model 2

Figure 3: Goodness-of-fit assessment in the year 2010 for Models 1 and 2.
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Figure 4: Goodness-of-fit assessment in the year 2001.
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Figure 5: Goodness-of-fit assessment in the year 2002.
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Figure 6: Goodness-of-fit assessment in the year 2003.
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Figure 7: Goodness-of-fit assessment in the year 2004.
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Figure 8: Goodness-of-fit assessment in the year 2005.
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Figure 9: Goodness-of-fit assessment in the year 2006.
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Figure 10: Goodness-of-fit assessment in the year 2007.
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Figure 11: Goodness-of-fit assessment in the year 2008.
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Figure 12: Goodness-of-fit assessment in the year 2009.
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Figure 13: MCMC diagnostics of Model 1.
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Figure 14: MCMC diagnostics of Model 1.
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Figure 15: MCMC diagnostics of Model 1.
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Figure 16: MCMC diagnostics of Model 1.
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Figure 17: MCMC diagnostics of Model 1.
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Figure 18: Network of enmity (red) and friendship (red) among New Guinean Highland
tribes. The size of each node relates to the degree (positive plus negative) of the respective
people.

4 Application to a static network: Enmity and Friend-
ship among New Guinean Highland Tribes

4.1 Data Visualization and Sources
Next to dynamic networks one can also apply the SERGM to static networks. We demon-
strate this with network data on interactions between the New Guinean Highland Tribes
originally collected by Read (1954) and presented in Hage and Harary (1984). We source
these data from the R package signnet (Schoch, 2020). The network covers relations of
enmity and friendship among sixteen subtribes of the Gahuku-Gama, based on the anthro-
pological work of Read (1954). Hage and Harary (1984) introduce it as an example of a
network which is not perfectly balanced due to the existence of triads with zero or two
positive ties but note that 82% of triads are balanced nonetheless. The full network is
plotted in Figure 18. We now apply the SERGM to this static network to test whether
structural balance effects can be recovered from it. The SERGM we specify includes edge
terms, GWESE, GWESF as well as a degree statistic. To show the flexibility with which
these statistics can be specified, we include the edge and GWESF terms separately for
positive and negative ties, but the GWESE and GWD statistics only for positive ties. For
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Dependence Independence
Coef. CI Coef. CI

Edges + -8.744 [-12.182,-5.306] -0.76 [-1.13,-0.39]
Edges − -1.647 [-2.766,-0.528] -0.76 [-1.13,-0.39]
GWESE+ 0.45 [0.015,0.885] -
GWESF+ 0.068 [-0.228,0.364] -
GWESF− 0.932 [0.616,1.248] -
GWD+ 5.492 [2.252,8.732] -
AIC 139.613 170.355

Table 3: Results of the models applied to the New Guinean Highland Tribes.

the sake of comparison, we also estimate a model that drops all endogenous network terms
and hence includes only the two edge terms. Results of both models are presented in Table
3.

4.2 Results and Model Assessment
In Table 3, it is apparent that the fully specified Dependence model has a lower AIC than the
Independence model, which does not account for endogenous network terms, indicating that
it is preferable in terms of performance. Table 3 also offers some evidence that structural
balance drives tie formation among the Gahuku-Gama: GWESF has a positive effect on
positive ties whose 95%-Confidence Intervals clearly exclude zero while its effect on negative
ties is very close to zero. This implies that here, friends of friends are indeed more often
friends but not less often enemies than one would expect by chance. GWESE+ also exhibits
a positive and statistically significant effect, suggesting that subtribes with a common
enemy are more likely to share an alliance than in a random network of the same size.
Finally, the effect of GWD+ is also positive and statistically significant, meaning that a
subtribe’s probability of gaining a further positive tie increases with the number of such
ties it already has.

Figure 19 offers a visual assessment of the goodness-of-fit of the Dependence model.
Here, we can see that while the observed network lines up quite well with the simulated
ones in terms of Edgewise-Shared Friends, model fit is more problematic for Edgewise-
Shared Enemies where the observed network is regularly outside the interquartile range
of the simulated networks. Similarly, the model does not do a good job of capturing the
observed network’s negative degree distribution. Based on these plots, one may consider re-
running the Dependence model while specifying GWESE for both positive and negative ties
and including GWD−. Nonetheless, this application demonstrates the possibility of using
the SERGM for the analysis of static networks. At the same time, Figure 20 visualizes the
goodness-of-fit of the independence model from Table 3. For this example, one can clearly
see that incorporating the additional terms inducing dependence augments the fit of the
edgewise-shared enemies and friends distributions.
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Figure 19: Model assessment of the dependence model of the New Guinean Highland Tribes.

4.3 MCMC Diagnostics
Finally, we also present the MCMC diagnostics for this additional application. Below are
thus shown the MCMC trace plots for all its covariates (Figures 21–22). Overall, these
MCMC diagnostics indicate a good convergence of the model.
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Figure 20: Model assessment of the independence model of the New Guinean Highland
Tribes.
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Figure 21: MCMC diagnostics of Dependence Model.
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Figure 22: MCMC diagnostics of Dependence Model.
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Cooperation and Conflict Tribes Simulation
Fixed α log(2) 1.5 log(2)
Grid size for γ 3,000 2,000 20
Number of Bridges 16 16 −

Es
tim

at
io

n Burn-In 10,000 10,000 20,000
MCMC Interval 1,000 1,000 1,000
M 2,000 1,000 250
Start Empty False False True

Va
ria

nc
e Burn-In 100,000 10,000 20,000

MCMC Interval 10,000 1,000 10,000
M 3,000 3,000 500
Start Empty True True True

Br
id

ge

Burn-In 100,000 10,000 −
MCMC Interval 1,000 2,000 −
M 2,000 1,000 −
Start Empty True True −

Table 4: Setting of the parameters of the fitting of the MCMC estimation procedure. One
can define separate configurations for the Gibbs sampler used for the estimation of the
parameters, the quantification of their variance, and the evaluation of the AIC via bridge
sampling.

5 Computational Settings
We provide the set tuning parameters of the MCMC algorithm, the models for both appli-
cations, and the simulation study reported in Section 2 in Table 4. We performed sensitivity
checks to ensure that the reported findings do not depend on the fixed parameters. In gen-
eral, one should choose the values based on the density (the lower the density, the higher
the burn-In and MCMC interval), size (the larger the size, the higher the burn-In and
MCMC interval), and the strength of exogenous covariates (the stronger the influence of
exogenous factors, the higher the burn-In and MCMC interval) of the network.
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