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A Protest Image Dataset

The Protest Image Dataset is a new data collection project that includes images from social

media with an emphasis on political protests. The dataset contains, besides the images

themselves, variables on location, time, and a hand-annotated protest variable. This section

describes the general conventions guiding the image collection and image annotation.

A.1 Image Collection

Selection of Countries We used the Armed Conflict, Location, and Event Dataset

(ACLED) to analyze all protests since January 1, 2014 to the present (Raleigh et al., 2010).

We then identified the twenty country-years with the most protest events for each of ACLED’s

16 regions, resulting in 313 candidate country-years1. Next, the logistic regression model from

Steinert-Threlkeld et al. (2022) was used to identify the 46 countries (171 country-years) with

enough people and income to produce enough protest images from Twitter. These 46 were

narrowed to 14 based on their Polity IV score and region, with a goal of generating broad

coverage of regime types and parts of the world. With 14 countries we could ensure that

we annotate a sufficient number of images per country despite the restriction due to the

labor-intensive annotation of images.

Selection of Posts Because of its widespread use throughout the world (Huang & Carley,

2019), we used the social media platform Twitter to obtain protest images posted by observers

on the ground. In order to assign a tweet to a specific country, we required that the tweet

was geolocated within this country. Though it is possible that users who geolocate their

tweets are not a representative sample of their country’s population (Malik et al., 2021),

1ACLED did not start covering North America until Mexico in 2018; its coverage guide lists Mexico as
Central America, but in the dataset the country is coded as North America. The United States was added
in 2020, Bermuda, Canada, and Saint Pierre and Miquelon in 2021. Every candidate country-year for North
America was therefore included at this stage of the selection.
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work comparing Twitter users who share protest images to those who share non-protest

images finds no differences between those two groups (Steinert-Threlkeld et al., 2022). As

the storage requirements would render it impossible for us to collect within a whole year all

geolocated tweets, particularly in the large countries, we decided to narrow down the tweets

for each country to a specific date range. Thus, we continued to analyze the 14 countries’

number of protests per month, and chose a date range that includes both the rise and the

fall of the protests. For most countries, we specified the start date on the first of the rising

month and the end date on the last of the falling month. We made an exception for countries

where we expected a particularly large number of tweets; we specified their start and end

dates also within the courses of these months. For all countries, we ensured that within these

date ranges, in addition to tweets posted during high numbers of protests, we also included

tweets posted seven days before and after the protest period. After selecting these periods,

we extracted tweets from the relevant country-days from a corpus of tweets downloaded from

Twitter’s POST statuses/filter endpoint. This extraction resulted in just over 135 million

tweets which were then used to find protest images.

Selection of Images Twitter allows a tweet to have multiple media; it allows up to four

photos, one animated GIF or one video. In our selection of images, we included all media

that Twitter categorized as a photo, but no media was categorized as a GIF or video. We

then downloaded these images and saved them together with their tweet identifier, tweet date

and media identifier. Despite our previous selection of tweets, in some countries we collected

far too many images to store them in the space available to us, not to mention annotate

them in the next step. Therefore we decided to introduce a limit of images per country at

100,000. This limit affected 11 countries, where to stay below the limit we randomly sorted

the images and then downloaded them until we had 100,000. For example, in Japan, the

country where we collected the most images, 5,546,059 images were sampled to 100,000. In

contrast, the Kazakhstan tweets contained only 52,825 images, so we kept all of them.

A.2 De-Duplication

We analyze the occurrence of duplicates in our dataset to rule out possible problems: Through

many duplicates of the same image, the importances of certain features could be inflated.

In addition, if the same image occurs in the training set as well as in the testing set, the

classification results would be biased. We generate encodings for the images by propagating

them through a convolutional neural network. We use a MobileNet v3 (Howard et al., 2017)

pretrained on the ImageNet dataset (Deng et al., 2009) and sliced at the last layer. This

generates an encoding of 576 features. We compute the cosine similarity between all pairs of

images and retrieve duplicates with a similarity equal or larger than 0.99. We then identify

127,769 duplicate images in 48,905 clusters. The duplicate images are dropped from the

dataset.
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Region Country Date range Images

1 Northern Africa Algeria 2019-02-01 – 2020-03-01 100,000
2 Middle East Lebanon 2019-10-01 – 2020-01-15 42,203
3 Middle East Bahrain 2016-01-01 – 2017-12-31 100,000
4 South America Argentina 2020-05-01 – 2020-09-30 100,000
5 South America Chile 2019-10-01 – 2019-12-31 100,000
6 South America Venezuela 2019-01-01 – 2019-11-30 100,000
7 Eastern Africa Ethiopia 2015-11-01 – 2016-12-31 5,867
8 Southern Africa South Africa 2021-01-01 – 2021-08-31 100,000
9 Western Africa Nigeria 2018-09-01 – 2019-09-30 100,000
10 Caucasus and Central Asia Kazakhstan 2019-01-01 – 2020-03-30 52,825
11 Europe Russia 2019-07-07 – 2019-10-06 100,000
12 Southeast Asia Indonesia 2019-05-01 – 2019-10-31 100,000
13 East Asia Japan 2018-02-22 – 2018-06-30 100,000
14 Southeast Asia Philippines 2017-05-01 – 2017-12-31 100,000

Table A1: Selection of images

A.3 Image Annotation

We annotate images as to whether they display a political protest, or part of it. We define

protest as

• A publicly visible event or action: It takes place in a public space and therefore

can be observed by the public.

• An event involving one or more participants that are present on site: Protest

can range from individual statements to mass demonstrations. We exclude instances

where a symbol or an item is displayed publicly without the presence of protesters

themselves.

• A political statement or expression: An objection or a criticism against a political

actor or institution. This can be achieved by means of anything not corresponding to

the norm and thus attracting public attention; it can be done by verbal statements or

speeches, but also with banners or symbols.

Images often cover protests only partially; for example, they display a single person or a

group of persons participating in the protest. These images are considered “protest” images,

if their relation to a protest as defined above can be ascertained. They do not need to display

a complete protest event. The coder’s annotation is coded on a four-point scale as

• Protest (high certainty): The coder is certain that the image shows a part of a

protest as defined above.

• Protest (low certainty): The coder believes that the image probably shows a part

of a protest as defined above.
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• No protest (low certainty): The coder believes that the image probably does not

show a part of a protest as defined above. statements or speeches, but also with banners

or symbols.

• No protest (high certainty): The coder is certain that the image does not show a

part of a protest as defined above.

We present the coders in the first round with 6,000 images from each country. These

images are randomly selected from the previously selected images. In the second, third and

fourth round, we select from each country 3,000 images by weighted random sampling. To

calculate the weights, we train a model on the already annotated images. This model is based

on a vision transformer (ViT, Dosovitskiy et al., 2020); it is retrained after each round of

annotations. This model gives us for every not-yet-annotated image a score between 0 and 1,

where a low score indicates a likely-non-protest image and a high score a likely-protest image.

The images are then grouped by these scores in 20 equal-width bins, and their weights are

calculated such that the probability of drawing an image from one bin is the same as from

another bin. The aim of this weighted random sampling is to reduce the probability of likely-

no-protest images and increase the probability of likely-protest images. The annotation of

the images proceeds until the coders’ available time is used up.

A.4 Analyzing Reliability Across Coders

We analyze the degree that coders consistently assigned categorical protest ratings to the

images in our dataset. The protest annotations for 141,538 images were done by four coders.

For 65,120 images we have annotations from two coders.

Cohen’s kappa was computed for four classes (no protest high, no protest low, protest

low, protest high), with an inter-rater reliability of 0.68. When we combine high and low

confidence ratings to obtain a binary classification, we obtain an inter-rater reliability of

0.81. According to McHugh (2012), these results indicate moderate and strong reliability,

respectively. Since each image is annotated by a random set of coders, we decide to also

compute the intraclass correlation correlation coefficient (ICC1). This is equal to a one-

way ANOVA fixed effects model. For four classes (no protest high, no protest low, protest

low, protest high) this gives us a intraclass correlation of 0.83. For two classes (no protest,

protest) this gives us a intraclass correlation of 0.79, which is a good result according to Koo

and Li (2016).

A.5 Splitting Images into Training and Testing Set

Table A2 presents the number of images per country in the four annotation categories.

These annotated images in the dataset are randomly split into a training and testing set.

The training set contains 80% of the images, whereas the testing set contains 20%.
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No Protest Protest
High Low Low High

Argentina 12,864 124 343 1,087
Bahrain 14,070 156 111 172
Chile 9,708 445 1,016 2,776
Algeria 9,756 214 617 2,450
Indonesia 13,845 267 215 434
Lebanon 11,082 279 586 2,128
Nigeria 13,565 222 177 309
Russia 14,040 113 135 300
Venezuela 11,006 322 656 1,790
South Africa 13,815 78 94 171

Total 123,751 2,220 3,950 11,617

Table A2: Images in protest images dataset annotated in different protest categories and
countries.
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B Training of Models

For the models we train using our segment-based approach, we choose four different classi-

fication methods: logistic regression, simple decision trees, collections of decision trees and

gradient-boosted decision trees. We use logistic regression because it is widely used by social

scientists, and to provide a benchmark against. We choose the tree-based models because

they intuitively allow us to vary the complexity and interpretability of the models. As im-

plementation of the collections of decision trees a random forest (Breiman, 2001) is used, for

gradient-boosted decision trees XGBoost (Chen & Guestrin, 2016) is used.

In order to make a comparison with conventional computer vision methods, we also have

to make a selection of these methods. We decide to train a convolutional neural network

(CNN) by ourselves. We decide to train a ResNet50 because we want to keep the training

times and hardware requirements lower compared to, for instance, a ResNet101 or Resnet152

(He et al., 2016). It also allows a direct comparison to the same architecture but trained

on a different dataset by Won et al. (2017). In addition, we select a vision transformer

(ViT) because they have shown to outperform CNNs on many computer vision tasks while

requiring less computational resources (Dosovitskiy et al., 2020). These vision transformers

are available as base, large and huge-sized variants. We make sure to use a base-sized variant

of the ViT to make the comparison to the Resnet50 as fair as possible. Our ViT model refers

to a base-sized variant with a patch resolution of 16x16 and a fine-tuning resolution of

384x384.

The first step in the training of each segment model is to select the hyperparameters.

For this purpose, a 5-fold cross-validation is performed for the complete grid of hyperparam-

eters. For the logistic regression, different regularization strengths are tried, with up to 10

improving the accuracy. For the simple decision trees, the maximum depth is varied from

1 to 16. From a depth of 8 to 16, most classifiers improve only minimally, or even deteri-

orate. For the random forests, the number of trees, the number of maximum features, the

maximum depth and the minimum number of samples in a leaf are varied. The number of

trees is varied from 1 to 1,000, with more trees leading to no obvious improvement. For the

gradient-boosted trees, a large number of hyperparameters is varied, the maximum depth,

the number of boosting rounds, learning rate, and minimum loss reduction. If we disable

boosting (number of boosting rounds 0), the maximum F1 score is achieved with a maximum

depth of 8. The score deteriorates if the maximum depth is above or below 8. In order to

look at the effect of the number of boosting rounds, we fix the maximum depth at 8. The

F1 scores improve with more boosting rounds, until 10,000 boosting rounds.

For the training of the ResNet50 and ViT, we use pre-trained weights on the ImageNet

dataset. This way, the model knows from the beginning certain features that are indepen-

dent of our protest images, such as corners, edges, shapes, etc. We never use the trained

weights of the ResNet50 by Won et al. (2017), also not as pre-trained weights for our self-

trained ResNet50. During the training of the models, however, these pre-trained weights

could be completely changed, as no layers are frozen and the gradients for all weights in all

layers are calculated and changed. For the sake of readability, we have decided to use the

term training. But by the definition of finetuning, this “training” procedure could also be
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referred to as “finetuning” procedure. We decide to use a cross entropy loss with a stochas-

tic gradient descent optimizer with momentum. For hyperparameter tuning, the training

data is additionally split into a training (80%) and validation set (20%). This is not the

same as the 5-fold cross validation for the segments models, but fulfills a similar purpose

with significantly less computational effort. We follow best practice for setting most of the

hyperparameters. But we optimize the values for the learning rate and momentum with

the help of hyperparameter tuning. It is found that a learning rate of 1e-03 is best for the

ResNet50, while it is significantly lower for the ViT at 1e-05. The optimal momentum is

found to be 0.99 for the ResNet50 and 0.99 for the ViT. After the optimal hyperparameters

for the models are found, they are retrained on the entire training data for 100 epochs.

All models are trained on a server node with 8 Intel Xeon @ 2.50 GHz cores, 128 GB

memory as well as a NVIDIA graphics card, Quadro RTX 6000 with 24 GB memory. From

the segment models, the logistic regression and gradient-boosted trees need the longest train-

ing time – but not more than 12 minutes. The final model of the ResNet50 is trained in

15 hours, while the ViT is trained in 30 hours. To infer whether the images in our dataset

are protest images, the gradient-boosted tree needs 2 minutes (0.0007 seconds/image). The

inference with the ResNet50 needs 6 minutes (0.0025 seconds/image) and the ViT 30 minutes

(0.0129 seconds/image).
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C Main Results

We provide the full results for the full combination of different design choices in Table A3.

Results for the conventional image classification methods are provided at the bottom of the

table.

Training Testing
Precision Recall F1 Precision Recall F1

Segments (COCO, bin, logistic) 0.6495 0.3118 0.4213 0.6249 0.3013 0.4066
Segments (COCO, count, logistic) 0.6527 0.4621 0.5411 0.6589 0.4729 0.5506
Segments (COCO, area max, logistic) 0.1691 0.0028 0.0055 0.1667 0.0026 0.0051
Segments (COCO, area sum, logistic) 0.2289 0.0067 0.0131 0.2135 0.0061 0.0119

Segments (COCO, bin, tree) 0.7672 0.3713 0.5004 0.5735 0.2856 0.3813
Segments (COCO, count, tree) 0.5225 0.7304 0.6092 0.5187 0.7180 0.6023
Segments (COCO, area max, tree) 0.7629 0.5931 0.6674 0.5163 0.4019 0.4520
Segments (COCO, area sum, tree) 0.7642 0.5741 0.6557 0.5376 0.4022 0.4601

Segments (COCO, bin, forest) 0.8011 0.2658 0.3991 0.6762 0.2120 0.3228
Segments (COCO, count, forest) 0.8082 0.5625 0.6633 0.6984 0.4767 0.5666
Segments (COCO, area max, forest) 0.6486 0.3249 0.4329 0.5527 0.2830 0.3743
Segments (COCO, area sum, forest) 0.8400 0.3608 0.5047 0.6808 0.2679 0.3845

Segments (COCO, bin, boosted tree) 0.7362 0.4567 0.5637 0.6237 0.3701 0.4645
Segments (COCO, count, boosted tree) 0.7091 0.5860 0.6417 0.6836 0.5699 0.6216
Segments (COCO, area max, boosted tree) 0.9156 0.7140 0.8023 0.6374 0.4330 0.5157
Segments (COCO, area sum, boosted tree) 0.8129 0.5734 0.6724 0.6486 0.4305 0.5175

Segments (LVIS, bin, logistic) 0.7509 0.5831 0.6565 0.7389 0.5818 0.6510
Segments (LVIS, count, logistic) 0.7254 0.5138 0.6016 0.7048 0.5130 0.5938
Segments (LVIS, area max, logistic) 0.4443 0.0480 0.0867 0.4259 0.0443 0.0803
Segments (LVIS, area sum, logistic) 0.5374 0.1137 0.1877 0.5521 0.1124 0.1868

Segments (LVIS, bin, tree) 0.8976 0.8005 0.8463 0.5942 0.5429 0.5674
Segments (LVIS, count, tree) 0.8831 0.7778 0.8271 0.6476 0.5667 0.6044
Segments (LVIS, area max, tree) 0.7650 0.5149 0.6155 0.7154 0.4626 0.5618
Segments (LVIS, area sum, tree) 0.9219 0.8364 0.8771 0.6097 0.5596 0.5836

Segments (LVIS, bin, forest) 0.9568 0.5087 0.6642 0.8415 0.3736 0.5175
Segments (LVIS, count, forest) 0.9592 0.5719 0.7165 0.8256 0.4333 0.5684
Segments (LVIS, area max, forest) 0.9431 0.5416 0.6881 0.7817 0.3762 0.5079
Segments (LVIS, area sum, forest) 0.9761 0.5455 0.6999 0.8457 0.3784 0.5229

Segments (LVIS, bin, boosted tree) 0.9944 0.9753 0.9848 0.7594 0.6315 0.6896
Segments (LVIS, count, boosted tree) 0.9982 0.9813 0.9897 0.7834 0.6624 0.7178
Segments (LVIS, area max, boosted tree) 1.0000 1.0000 1.0000 0.7805 0.6569 0.7134
Segments (LVIS, area sum, boosted tree) 1.0000 1.0000 1.0000 0.7821 0.6675 0.7203

ResNet50 (Won et al., 2017) 0.5834 0.4698 0.5205 0.5787 0.4584 0.5116
ResNet50 (self-trained) 0.8508 0.8192 0.8347 0.7657 0.7327 0.7489
ViT (self-trained) 0.9199 0.8939 0.9067 0.8400 0.8060 0.8226

Table A3: Evaluation of different methods. “Self-trained” means trained on the images
collected for this project.

To compare the performance between countries, we present results for the best conven-

tional method (vision transformer model, ViT) and the best of our two-level classifiers (LVIS

vocabulary, area sum features and a boosted tree classifier). Table A4 presents the results

for the images in the 10 countries of our dataset.
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Training Testing
Precision Recall F1 Precision Recall F1

Segments

Argentina 1.0000 1.0000 1.0000 0.7500 0.6167 0.6769
Bahrain 1.0000 1.0000 1.0000 0.3803 0.4821 0.4252
Chile 1.0000 1.0000 1.0000 0.8560 0.5884 0.6974
Algeria 1.0000 1.0000 1.0000 0.8933 0.7651 0.8243
Indonesia 1.0000 1.0000 1.0000 0.5490 0.6462 0.5936
Lebanon 1.0000 1.0000 1.0000 0.8646 0.7053 0.7769
Nigeria 1.0000 1.0000 1.0000 0.5463 0.6082 0.5756
Russia 1.0000 1.0000 1.0000 0.5488 0.5172 0.5325
Venezuela 1.0000 1.0000 1.0000 0.7804 0.7342 0.7566
South Africa 1.0000 1.0000 1.0000 0.5000 0.5472 0.5225

ViT

Argentina 0.9019 0.8924 0.8971 0.8284 0.7735 0.8000
Bahrain 0.8423 0.8238 0.8330 0.6667 0.6786 0.6726
Chile 0.9196 0.8708 0.8945 0.8569 0.7586 0.8048
Algeria 0.9552 0.9560 0.9556 0.9103 0.9103 0.9103
Indonesia 0.8755 0.7996 0.8359 0.7731 0.7077 0.7390
Lebanon 0.9187 0.9056 0.9121 0.8396 0.8287 0.8341
Nigeria 0.8834 0.7789 0.8279 0.7065 0.6701 0.6878
Russia 0.9217 0.8793 0.9000 0.7674 0.7586 0.7630
Venezuela 0.9225 0.9121 0.9173 0.8343 0.8446 0.8394
South Africa 0.8274 0.7689 0.7971 0.6000 0.5660 0.5825

Table A4: Evaluation of different methods per country. The Vision Transformer (ViT) is
the best conventional method, whereas Segments is the best of our two-level classifiers with
the LVIS vocabulary, area sum features and a boosted tree classifier.
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D Analysis of Clustered Images

We analyze the performance of our classifier on subcategories of protest images. To identify

these subcategories, we use an unsupervised approach that clusters the images and thus

assigns them to unlabeled categories (see Zhang and Peng (2022)).

In order to do this, we extract an embedding for each image in our dataset. This embed-

ding is generated by our self-trained vision transformer (ViT) in the last linear layer, and

is 768 features long. We then cluster the embeddings using the Euclidean distance and the

KMeans algorithm. To determine the number of clusters, the number of clusters is raised

as long as the coherence of each cluster is given. This is done according to the procedure

proposed by Zhang and Peng (2022) by always selecting 20 random images from each cluster,

determining a topic for that cluster, and checking if at least 50% of the images in that cluster

match the topic. This procedure leads to 30 clusters.

Then, we evaluate the accuracy separately on each cluster. As classifier we use our best

two-level classifier (LVIS vocabulary, area sum features and a boosted tree classifier). We do

not analyze the accuracy on the training images, as these images are all correctly classified

and are therefore also correctly classified in the individual clusters. Instead, the accuracy on

the test images is analyzed based on the true negatives, false negatives, true positives, false

positives, precision score, recall score and F1 score in the individual clusters.

Table A5 shows the accuracy of the classifier in the clusters that contain at least 20

protest images from the test set. In the cluster of protest images with flags, the precision

and recall score are close to each other, which indicates that the classifier is balanced to

make errors in classifying either as a protest image and a non-protest image. In the other

clusters, however, the precision is higher than the recall. This indicates that in these clusters

the classifier makes more errors in classifying non-protest images as protest images than

protest images as non-protest images. At the same time, this shows that the accuracy differs

between the clusters. The differences in the precision and recall scores considered above are

also reflected in the F1 scores. By comparing the F1 scores of the clusters, we see that an

F1 score of 0.4156 is achieved for the clusters with African gatherings, with fire smoke of

0.5039, state police of 0.5221 and gatherings of 0.6222. This means that for these clusters it

is below the F1 score of 0.7203, which the classifier achieves on all test images. In contrast,

it achieves a higher accuracy for the clusters with large mass protests with an F1 score of

0.7495, protests with signboards with 0.8137 and protests with flags with 0.9370. The less

accurate clusters can possibly be explained by the fact that object categories are missing for

them in the LVIS vocabulary. For example, the vocabulary contains no categories related to

fire, smoke and policemen. The difficulties with gatherings could be explained by the fact

that it is difficult to distinguish whether it is a protest image or a non-protest image based

on the number of people. But especially if there are large masses on the images, the classifier

has a good performance, also if objects and flags can be seen on the protest images.

In addition to the clusters shown in Table A5, there are also clusters that contain less

than 20 protest images. These include, for example, a cluster with football matches in which

the classifier correctly classifies 406 non-protest images, misclassifies 1 protest image as non-

protest image and incorrectly classifies 7 non-protest images. In this case, the F1 score is not
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TN FN TP FP Precision Recall F1

9 Edited images 1,268 31 17 17 0.5000 0.3542 0.4146
10 Streets 1,161 55 41 39 0.5125 0.4271 0.4659
14 Protest with flags 14 58 714 38 0.9495 0.9249 0.9370
16 Gathering 414 137 210 118 0.6402 0.6052 0.6222
17 Fire smoke 242 101 64 25 0.7191 0.3879 0.5039
18 African gatherings 504 19 16 26 0.3810 0.4571 0.4156
22 Large mass protests 108 167 365 77 0.8258 0.6861 0.7495
23 State police 288 74 59 34 0.6344 0.4436 0.5221
24 Protest with signboards 120 174 450 32 0.9336 0.7212 0.8137
27 Flags 287 88 94 46 0.6714 0.5165 0.5839
30 Random images with text 1,884 67 31 44 0.4133 0.3163 0.3584

Table A5: Evaluation of best two-level classifier for clusters that contain at least 20 protest
images from the test set. Evaluation metrics are true negatives (TN), false negatives (FN),
true positives (TP), false positives (FP), precision score, recall score and F1 score.

defined because there are no true positive cases, which is why precision and recall are zero

and the F1 score is not defined. Also in the cluster of concert images 450 non-protest images

are classified correctly, 10 non-protest images are classified incorrectly, 7 protest images are

classified incorrectly, 1 protest image is classified correctly. This leads to a precision score

of 0.0909, a recall score of 0.1250 and an F1 score of 0.1053. These low scores can also be

explained by the small number of protest images in this cluster.

To get a visual impression of the clusters, we select sample images from the clusters.

To get a representative impression of the clusters, the images are selected according to the

centrality in the cluster. For this purpose, the distances of the images to the cluster centroid

are calculated in each cluster. Images whose distances are lower are more central in the

cluster, whereas images whose distances are higher are further outside the cluster.

Figure A1 shows three images for each of the clusters containing at least 20 protest images

in the test set. The left images are drawn from the first tercile, the middle images from the

second tercile and the right images from the third tercile of each cluster.
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9 Edited images

10 Streets

14 Protest with flags

16 Gathering

17 Fire smoke

18 African gatherings

22 Large mass protests

23 State police

24 Protest with signboards

27 Flags

30 Random images with text

Figure A1: Sample images for clusters than contain at least 20 protest images from the test
set. The left, middle and right images are drawn from the first, second and third terciles of
the distances to the cluster centroids.
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E Results using Secondary Dataset

The paper’s primary dataset uses high and low certainty protest images as protest images

and high and low certainty non-protest images as non-protest images. This coarsening may

introduce noise, so we repeat the analysis with a secondary dataset using only the high

confidence protest and non-protest images.

Table A6 shows the fit statistics for the resulting models. All model fits improve and the

rank ordering does not change. Figure A2 shows the object categories occupying the largest

areas of protest images and the important objects of protest images. Importance results are

largely the same, though chairs take kites’ place and cars drop out for hats. Figure A3 shows

the variation of object importance by country. The results for posters, cars and candles are

the same.
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Figure A2: Proportion of segments on high confidence protest and non-protest images (left)
and importance of area-sum aggregated segments (right) on images that have been annotated
with high confidence.

−2 0 2

Argentina

Bahrain

Chile

Algeria

Indonesia

Lebanon

Nigeria

Russia

Venezuela

South Africa

−2 0 2 −2 0 2
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and candles (right) on images that have been annotated with high confidence.
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Training Testing
Precision Recall F1 Precision Recall F1

Segments (COCO, bin, logistic) 0.6622 0.3143 0.4263 0.6309 0.2986 0.4054
Segments (COCO, count, logistic) 0.6555 0.4712 0.5483 0.6607 0.4768 0.5539
Segments (COCO, area max, logistic) 0.1241 0.0018 0.0036 0.0690 0.0009 0.0017
Segments (COCO, area sum, logistic) 0.1629 0.0039 0.0076 0.1698 0.0039 0.0076

Segments (COCO, bin, tree) 0.7797 0.3930 0.5226 0.5602 0.2883 0.3807
Segments (COCO, count, tree) 0.5233 0.7011 0.5992 0.5296 0.7009 0.6033
Segments (COCO, area max, tree) 0.7881 0.5979 0.6799 0.5129 0.3941 0.4457
Segments (COCO, area sum, tree) 0.7707 0.6184 0.6862 0.5235 0.4225 0.4676

Segments (COCO, bin, forest) 0.6382 0.2766 0.3859 0.5707 0.2517 0.3494
Segments (COCO, count, forest) 0.8051 0.5486 0.6525 0.7105 0.4901 0.5801
Segments (COCO, area max, forest) 0.8525 0.3496 0.4959 0.6754 0.2435 0.3580
Segments (COCO, area sum, forest) 0.8685 0.3759 0.5247 0.6752 0.2612 0.3767

Segments (COCO, bin, boosted tree) 0.7558 0.4305 0.5486 0.6507 0.3559 0.4601
Segments (COCO, count, boosted tree) 0.7439 0.6084 0.6694 0.6999 0.5800 0.6344
Segments (COCO, area max, boosted tree) 0.9373 0.7413 0.8279 0.6504 0.4290 0.5170
Segments (COCO, area sum, boosted tree) 0.7827 0.5154 0.6216 0.6700 0.4281 0.5224

Segments (LVIS, bin, logistic) 0.7813 0.6290 0.6969 0.7705 0.6183 0.6861
Segments (LVIS, count, logistic) 0.7526 0.5402 0.6290 0.7312 0.5301 0.6146
Segments (LVIS, area max, logistic) 0.4146 0.0423 0.0768 0.4017 0.0396 0.0721
Segments (LVIS, area sum, logistic) 0.5257 0.1014 0.1700 0.5588 0.1063 0.1786

Segments (LVIS, bin, tree) 0.7628 0.5247 0.6217 0.7119 0.4806 0.5739
Segments (LVIS, count, tree) 0.7906 0.5621 0.6571 0.7477 0.5151 0.6099
Segments (LVIS, area max, tree) 0.7880 0.5809 0.6688 0.7228 0.5262 0.6091
Segments (LVIS, area sum, tree) 0.7865 0.5819 0.6689 0.7208 0.5275 0.6092

Segments (LVIS, bin, forest) 0.9257 0.4746 0.6274 0.8321 0.3881 0.5293
Segments (LVIS, count, forest) 0.9488 0.5926 0.7295 0.8113 0.4514 0.5800
Segments (LVIS, area max, forest) 0.9681 0.5842 0.7287 0.8265 0.4139 0.5516
Segments (LVIS, area sum, forest) 0.9878 0.5815 0.7321 0.8874 0.4002 0.5516

Segments (LVIS, bin, boosted tree) 0.9977 0.9877 0.9927 0.7950 0.6639 0.7236
Segments (LVIS, count, boosted tree) 0.9906 0.9550 0.9725 0.8124 0.6876 0.7448
Segments (LVIS, area max, boosted tree) 1.0000 1.0000 1.0000 0.8325 0.6863 0.7524
Segments (LVIS, area sum, boosted tree) 1.0000 1.0000 1.0000 0.8301 0.7001 0.7596

ResNet50 (Won et al., 2017) 0.5686 0.5305 0.5489 0.5694 0.5245 0.5460
ResNet50 (self-trained) 0.8987 0.8428 0.8698 0.8251 0.7612 0.7919
ViT (self-trained) 0.9516 0.9271 0.9392 0.8917 0.8649 0.8781

Table A6: Evaluation of different methods on images that have been annotated with high
confidence. “Self-trained” means trained on the images collected for this project.
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F Temporal Analysis

We analyze how the prevalence of the segments changes over the course of a protest. Having

collected the images in our dataset based on protest periods in countries, we can track their

prevalence before, during and after the protests. To do this, we use the LVIS segments that

we detected on the images in our dataset. From these segments, we sum up the occurrence

of segments for each country, day and segment type.

Figure A4 displays the frequency of the segments over time. In each country, it is limited

to the three most frequent segments that are detected in that country over the entire period.
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Figure A4: The three most common segments per country and their frequency over time.
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G Analysis of Segments

Our main analysis in the paper shows which object categories are identified by a machine to

be important for recognizing a protest image. However, are these categories also considered

to be important by humans? To find out, we conduct an additional validation exercise at the

level of segments (not entire images), asking a coder which segments they deem important

for recognizing a protest image.

For this task, we create a subsample of our protest image dataset consisting of 100

random protest images (high or low confidence) from each of the 10 countries. These images

are inspected by one of our coders, who then have to complete two coding steps. In the

first step, the coder is asked to look at the protest image and name up to three objects that

the coder considers most important to identify it as a protest image. The identification of

these objects is done on the raw images. In the second step, after the objects have been

freely named, the same protest image is shown with the segments highlighted. The segments

shown are those from the LVIS vocabulary (Gupta et al., 2019) that were recognized by

the segmentation model by Zhou et al. (2022), with a confidence score of at least 0.1 (as

for the analysis in the paper). Importantly, the segment categories are not shown for these

segments, they are simply numbered. The coder is then asked whether the objects identified

as important in the first step correspond to one of the segments shown. Because some

of the images contain a large number of segments, making it difficult to find the correct

identifiers, the coding tool is configured such that the coder could interactively click through

the segments to find the right segments and numbers.

The coder identifies 2,210 objects as important on the 1,000 protest images. The ten most

frequent object names (freely chosen by the coder) are: people (776), flag (430), poster (216),

signboard (195), banner (118), mask (97), police (84), person (69), fire (43) and kid (15).

These categories largely overlap with those from our two-stage classification method, which

identifies people as the most important objects, followed by flags, signboards, banners and

posters. Our method does not identify police officers, fires and children because they are not

included in the LVIS vocabulary as separate categories. This shows that custom adaptations

of the segmenting method for specific tasks will likely improve results, as we discuss in

the paper. A first result is that at a general level, the object categories identified by our

two-stage method largely match those that coders consider relevant for the identification of

protest images.

We also test whether all segments identified by the coder could be matched to LVIS

segments. For the vast majority, this is possible. It is only for 141 objects (6.4%) that

there is no corresponding segment. These include categories that are included in the LVIS

vocabulary (for example, 24 posters, 22 persons, 19 flags), but which the segmenter fails to

identify on the respective images. For the successfully assigned objects we check whether

the objects indeed match the segments. To do this, we compare the object names given by

the coder with the ones detected by the segmenter. We set up a small dictionary to ensure

that object names that are spelled slightly differently could be recognized as identical. For

a strict matching (object names identical), we find that 1,512 out of the 2,210 segments

(68%) are correctly detected by the segmenter. For a lenient matching (the dictionary
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incorporates subtypes and supertypes as well), the number of correctly detected segments

increases to 1,626 (74%). Objects that are repeatedly incorrectly recognized are objects that

are interpreted as weapons by our coder. This analysis shows that human and machine

largely rely on the same segments to code protest images.
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H Collecting Images in the Future

The data for this paper were collected in real time using R’s streamR package (Barbera,

2018). One of the authors maintained a continuous connection to Twitter’s filtered stream

endpoint and requested only tweets with location information. Collecting tweets agnostically

in real-time means any event of sufficient magnitude is collected automatically, obviating the

need for researchers’ to search for events post hoc. Searching for events after they occur also

risks introducing sample bias, as searches rely on keywords or specifying users and content

could be deleted between its posting and the researcher’s download.

The past tense is used in the previous paragraph because Elon Musk’s purchase of Twitter

has led to severely restricted data access. The free tier only returns 1,500 tweets per month.

The Basic tier for $100/month provides only 10,000 tweets. The Pro, $5,000 and 1 million.

At the Pro level, one can stream tweets, but they count against the 1 million quota, which

would be reached in less than a day without stringent filter rules. Access equivalent to

what this paper had requires the Enterprise tier. That pricing is available upon request in

contrast to the $0 price before Musk’s neutering. Except for three alternatives or academics

with corporation-level resources, Twitter access is over.

The three alternatives are using already downloaded tweets, scraping, and the European

Union’s Digital Services Act (DSA). If one has previously downloaded tweets, it is possible

and easy to download media from those tweets. Each tweet contains a image url field, and

access to those media are not rate limited. While old tweets may no longer be available

(Pfeffer et al., 2023), if they are then their images are. As of April 2022, hiQ v. LinkedIn

and then Van Buren v. United States, decided at the United States’ Ninth Circuit Court

of Appeals and the Surpreme Court, respectively, establish that the Computer Fraud and

Abuse Act does not allow companies to prevent scraping of their public data. A researcher

can build a scraper themselves or use the Python package snscape. The other option is to

apply for research access as permitted pursuant to Article 40 of the DSA. Doing so requires

an application. As of this writing, we are not aware of any Twitter research conducted as a

result of the DSA.

This paper’s method is applicable to any image data, however, not just those from Twit-

ter. Other sources of images include Facebook pages, Instagram, Telegram, and WhatsApp;

Pexels, Tumblr, and Unsplash; news archives; or stills of videos from TikTok and YouTube.

A golden age of online social media data appears to have ended, but researcher creativity

will ensure that research does not.
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