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Abstract
Synthetic controls are widely used to estimate the causal effect of a treatment. However, they do not account

for the different speeds at which units respond to changes. Reactions may be inelastic or “sticky” and thus

slower due to varying regulatory, institutional, or political environments. We show that these different

reaction speeds can lead to biased estimates of causal effects. We therefore introduce a dynamic synthetic

control approach that accommodates varying speeds in time series, resulting in improved synthetic control

estimates. We apply our method to re-estimate the effects of terrorism on income (Abadie and Gardeazabal

2003), tobacco laws on consumption (Abadie, Diamond, and Hainmueller 2010), and German reunification

on GDP (Abadie, Diamond, and Hainmueller 2015). We also assess the method’s performance using

Monte-Carlo simulations. We find that it reduces errors in the estimates of true treatment effects by up

to 70% compared to traditional synthetic controls, improving our ability to make robust inferences. An

open-source R package, dsc, is made available for easy implementation.

Keywords: causal inference, time series, dynamic time warping, difference in differences, comparative case studies
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Supplementary Material

Appendix 1. The notion of speed

The notion of “speed” in this analysis is fundamentally about the responsiveness of an outcome

variable, denoted by yt, to fluctuations in a latent driving process, zt. This concept is illustrated

through the relationship between yt and both current and past values of zt, encapsulated in a series

of lagged coefficients.

Consider the formulation of the outcome variable y1,t as influenced by zt and its historical values:

y1,t = β1,0zt + β1,1zt–1 + β1,2zt–2 + · · · + β1,t–1z1,

where each coefficient β1,l captures the influence of zt at lag l on y1,t. A nonzero value of β1,l

signifies that y1,t is affected by zt not just in its current state but also as it existed l periods ago. The

presence of higher-order nonzero lag coefficients indicates a delayed response of y1,t to changes in

zt, typifying a "slower" speed of adjustment.

To differentiate speeds between outcomes, consider another outcome variable y2,t modeled

similarly:

y2,t = β2,0zt + β2,1zt–1 + β2,2zt–2 + · · · + β2,t–1z1,

If we denote the highest-order nonzero lag coefficient for y1,t as β1,l1 and for y2,t as β2,l2 , the

comparison of l1 and l2 provides a relative measure of speed: if l1 < l2, it indicates that y1,t responds

more rapidly to changes in zt than does y2,t, rendering y1,t "faster" in terms of its reaction time to

the latent process dynamics.

This approach allows us to quantitatively assess and compare the speed at which different outcomes

adjust to the underlying latent process.
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Appendix 2. The speed problem with lags and polynomials

In an attempt to improve the synthetic control’s approximation to the treated unit y1, one might

consider enriching the model by adding time lags and polynomial terms. Specifically, in addition to

the original control units y2 and y3, we extend the set of potential controls to include their lags (up

to lag 5) and polynomial terms (up to the 5th degree). These extensions aim to capture additional

dynamics and non-linearities in the data.

Figure A1. The Challenge of Varying Speeds in Treatment Effect Estimation. A researcher aims to quantify the impact of
a treatment on unit y1. Unbeknownst to them, no treatment effect actually exists. When employing standard synthetic
control methods that incorporate control units y2 (slow) and y3 (fast) along with their lags (1–5) and polynomial terms (2–5),
the estimated post-treatment effect (represented by the blue curve) significantly diverges from the true outcome (indicated
by the black curve). In contrast, the Dynamic Synthetic Control method produces an estimated synthetic control that more
closely approximates the true trajectory.

As illustrated in Figure A1, however, the inclusion of these additional terms does not appreciably

improve the performance of the synthetic control. The blue and yellow curves represent the synthetic

control derived from expanded sets of potential controls. The blue curve, for example, solves the

following:

W∗ = argminW∗
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where Ll is the lag operator.

However, both the blue and the yellow curves still deviate from the true trajectory (black curve)
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of unit y1. Consequently, one might still erroneously infer a treatment effect where none exists,

highlighting the limitations of standard synthetic control methods in handling varying speeds among

control units.
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Appendix 3. Synthetic Controls: A refresher

Formally, suppose that we have data for J + 1 units.24 For time t ∈ (1, 2, . . . ,N), We observe a

target unit y1,t that receives a treatment, and J units yj,t, j ∈ (2, 3, . . . , J + 1) that are untreated and

can therefore be used as donor units. Each unit is observed for N periods, and we assume that

the treatment takes place at time T. For each unit, we might also observe a set of k predictors

z1,j, z2,j . . . , zk,j, although for simplicity we do not include them in the model below.25 Formally, a

synthetic control can be represented by a J × 1 vector of weights, w = (w2,w3, . . . ,wJ+1)′, and the

synthetic control estimator of yN1,t (the potential response in the absence of intervention) is then:

ŷN1,t =
J+1∑
j=2

wjyj,t

In other words, synthetic controls are weighted averages of the units in the pool of donors. The

estimated effect of intervention is then:

τ̂t = y1,t – ŷN1,t

The key question is how to choose the weights wj. There are many possibilities, ranging from

assigning equal weights to all control units to using a population-weighted unit. A sensible approach

is to choose w2,w3, . . . ,wJ+1 such that the resulting synthetic control ŷN1,t is as close as possible to the

pre-intervention time series for the treated unit as possible (Abadie and Gardeazabal 2003; Abadie,

Diamond, and Hainmueller 2010). By minimizing the distance between the trajectory of the treated

unit and the combined untreated units, we build a synthetic control that is as close as possible to the

(unobservable) counterfactual.

24. This section largely follows Abadie (2021).
25. The predictors can be added after warping for time-constant predictors, or the same algorithm described below can be

applied to these predictors for time-varying variables.
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Appendix 4. Bias of the synthetic control estimate when the time series have different speeds

In this appendix, we demonstrate that the standard synthetic control estimator may produce biased

results when different units respond to shocks at different speeds. Mathematical proofs and models

are presented here to support these claims.

Suppose that the target time series y1 and the donors yj, j ∈ (2, 3, ..., J + 1) are of length N. Let T

denote the treatment time and let the treatment effect be zero. To obtain weights w, the synthetic

control method essentially estimates the following model:

y1,t =
J∑
j=2

(wjyj,t) + ϵt, t < T

if the usual assumptions of the error term hold, then the least square estimate of the weights ŵ is

unbiased and efficient, and can produce a synthetic control that is the closest to the target time series

y1.

However, when the time series have different speeds, i.e. each time series has its own delays

to responding to the common exogenous shocks z, and the delays vary over time, then the usual

assumptions of the error term in model (4) are violated and it introduces bias to ŵ.

Taking the different speeds into account, model (11) becomes:

y1,t =
J∑
j=2

[wj(yj,t + β1,j,tyj,t–1 + β2,j,tyj,t–2 + . . .βt–1,j,tyj,1)] + ϵt

= (Y–1,t + Y–1,t–1β1,t + . . . + Y–1,1βt–1,t)w + ϵt

where Y–1,t is a vector of donor units at time t, Y–1,t = (y2,t, y3,t, ..., yJ ,t), and Y–1,t–1, Y–1,t–2, ... ,

Y–1,1 are all possible lags at time t. w is the time-independent coefficient. βl,t are time-dependent

coefficients of the lags. ϵ ∼ N(0,σ2I) is the error term.

Model (13) allows a varying dependency of the target variable y1 on lags of the donor variables

Y–1. This varying dependency captures the different speeds that y1 and Y–1 respond to the common

exogenous shocks z.

If the time series have different speeds and (13) is the true model, the original synthetic control

method would obtain biased estimates of the treatment effect as the lag terms are omitted.
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Pre-treatment Period

In traditional synthetic control analysis, the model of interest is,

y1,t = Y–1,twsc + ηt

the new error term ηt is

ηt = Y–1,t–1β1,tw + . . . + Y–1,1βt–1,tw + ϵt,

which is the summation of the original error term ϵt and the lag termsY–1,t–1β1,tw+. . .+Y–1,1βt–1,tw.

According to Greene 2003, the expectation of ŵsc is

E[ŵsc] = w + GβLw

where G = (Y′–1Y–1)–1Y′–1Y–1,L. Y–1,L is a matrix of lags of Y–1, and βL is matrix of corresponding

coefficients.

The expectation of residual

E[η̂] = E[Y–1,LβL + ϵ]

= E[Y–1,LβL] + 0

depends on the existence of lag effects. If lag effects exist, i.e. E[Y–1,LβL] ̸= 0, η̂ is biased.

The variance of residual

Var(η̂) = Var(Y–1,LβL + ϵ)

= Var(Y–1,LβL) + Var(ϵ) + 0

= Var(Y–1,LβL) + σ2I

≥ σ2I

is at least σ2I. If the lag effects exist, i.e. E[Y–1,LβL] ̸= 0, Var(η̂) > σ2I.
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On the contrary, in dynamic synthetic control, the model of interest is:

yt = Y∗–1,twdsc + ϵt

where

Y∗–1,t = Y–1,t + Y–1,t–1β1,t + . . . + Y–1,1βt–1,t. (A1)

The expectation of ŵdsc is

E[ŵdsc] = w

Note the error term is the same as in model (2). so the expectation of residual is just

E[ϵ̂] = 0

and the variance of residual

Var(ϵ̂) = σ2I

Therefore, if time series have different speeds, i.e. effects of lags of Y–1 are not zero, in the

pre-treatment period, traditional synthetic control method would fail to obtain a synthetic control

that closely resembles y1.

Post-treatment Period

In post-treatment period, both synthetic control methods estimates the treatment effect using post-

treatment y1,Y–1 and pre-treatment ŵsc, ŵdsc. For cleaner notation, let A denote the pre-treatment

period and B denote the post-treatment period.

The estimated treatment effect from traditional synthetic control is:

τ̂sc = yB1 – YB
–1ŵ

A
sc
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The expectation of τ̂sc is

E[τ̂sc] = E[yB1 – YB
–1ŵ

A
sc ]

= E[(YB
–1w + YB

–1,Lβ
B
L) – YB

–1ŵ
A
sc ]

= E[YB
–1,Lβ

B
L + YB

–1(w – w – GAβA
Lw)]

= E[YB
–1,Lβ

B
L – YB

–1G
AβA

Lw]

Whether the expectation of τ̂sc equals to zero depends on Y–1, Y–1,L, βL, and w. There are

two sources of bias. One is omitted lag effects, YB
–1,Lβ

B
L. The other is biased estimate of weights,

–YB
–1G

AβA
Lw. The two sources of bias are both zeros only when the lag effects are zero, i.e.

E[Y–1,LβL] = 0. Otherwise, as the two sources of bias are only marginally correlated (Y–1 and

Y–1,L have some common terms), it is very rare that the two parts have different signs and add up to

zero, which means that the estimated treatment effect from traditional synthetic control is highly

likely biased.

The variance of τ̂sc

Var[τ̂sc] = Var(yB1 – YB
–1ŵ

A
sc )

= Var[(YB
–1w + YB

–1,Lβ
B
L + ϵ) – YB

–1ŵ
A
sc ]

= Var[YB
–1,Lβ

B
L – YB

–1G
AβA

Lw + ϵ]

= Var[YB
–1,Lβ

B
L – YB

–1G
AβA

Lw] + σ2I

is larger or equal to σ2I. The equal sign holds only when τ̂sc is not biased, i.e. (25) equals zero.

Instead, the estimated treatment effect from dynamic synthetic control is

τ̂dsc = yB1 – Y∗B–1 ŵ
A
dsc
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The expectation of τ̂dsc is

E[τ̂dsc] = E[yB1 – Y∗B–1 ŵ
A
dsc]

= E[yB1 – Y∗B–1 w]

= E[ϵB]

= 0

The variance of τ̂dsc is

Var[τ̂dsc] = Var(yB1 – Y∗B–1 ŵ
A
dsc)

= Var[(YB
–1w + YB

–1,Lβ
B
L + ϵ) – YB

–1ŵ
A
sc ]

= Var(yB1 – Y∗B–1 w)

= Var(ϵB)

= σ2I

Therefore, when time series have different speeds, dynamic synthetic control method can produce

unbiased and efficient estimate of the treatment effect while the traditional synthetic control method

would most likely produce biased estimates and inflated variances.
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Appendix 5. Discussion of identification threats

This section addresses some of the challenges of identifying causal effects.

Unobserved Heterogeneity

First, we examine the impact of an unobserved characteristic, φj, which influences both the likelihood

of treatment and the dynamics before and after treatment, thereby affecting the interpretation of the

results. We discuss here how this unobserved factor affects the estimation of treatment effects and

implications for empirical analysis.

The outcome yj can be written as:

yj = fy(sj,Xj, z) + πjτj,

where fy(sj,Xj, z) is the outcome time series, which is determined by the universal shocks z that

applied to all units, speed profile sj, and predictors Xj. The second part πjτj is the random treatment,

where πj is the probability of receiving a treatment and τj is the treatment effect.

Assume the treatment also changes the speed profile. The new speed profile s
′

j can be simplified

as a combination of the original speed and the changes in speed:

s
′

j = sj + ∆sj

Given the speed changes, the treatment effect τj consists of two parts:

τj = fy(∆sj,Xj, z) + fy(sj + ∆sj,Xj,θ),

The first part fy(∆sj,Xj, z) is caused by changes in speed. The second part fy(sj +∆sj,Xj,θ) is caused

by the treatment θ.

Assume there is an unobserved characteristic φj affects both the speed profiles and the probability
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of receiving a treatment:

sj = fs(φj)

∆sj = f∆s(φj)

πj = fπ(φj),

If the research focus on the expected treatment effect for all units, it is of the form:

1
J + 1

J+1∑
j=1
πjτj

The unobserved characteristic φj affects the result in the way that, for units who have larger

probability to receive treatments, their reaction to the treatment, e.g. slow/fast response speed,

reduced/amplified response level, and etc., will highly influence the expected treatment effect.

If the research focus only on the treatment effect on the treated units, the model is reduced to a

conditional form:

y1 = fy(s1,X1, z) + τ1

yj = fy(sj,Xj, z),

conditional on y1 received the treatment and the others did not.

To estimate the treatment effect, we first warp the donor units yj to make them align to the speed

of y1:

ywj ≈ fy(s1,Xj, z)

Then we estimate the weights and generate a synthetic control that closely resembles unit y1

prior to the treatment.

ydsc1 = yw–1w ≈ fy(s1,X1, z)



Cambridge Medium 33

The estimated treatment effect is:

τ̂1 = y1 – ydsc1

≈ fy(∆sj,Xj, z) + fy(sj + ∆sj,Xj,θ).

The unobserved characteristic φ1 affects the result through post-treatment dynamics sj and ∆sj.

Spillover Effects

We will now examine how spillovers from the treatment to the donor units might influence the results.

These effects are a significant concern for causal inference setups, such as Difference-in-Differences

and synthetic controls, because they imply that the control units are also impacted by the treatment.

Consequently, we generally expect spillover effects to result in an underestimation of the treatment

effect size and inflated standard errors.

Suppose the treatment effect is τt and that the spillover effect on donor unit j is, for simplicity, an

additive term of the form pjτt, pj ∈ (0, 1). Then the affected donor unit j would be:

y
′

j,t = yj,t + pjτt

Since the patterns in the post-treatment donor unit are affected by the spillover, there is a risk that

they may now be matched to the wrong pre-treatment sequences. There are two cases to consider:

Case 1: The matched sequence is correct. When warping the donor unit, both original donor

unit and the spillover effect are warped:

yw,′
j,t = ywj,t + pjτ

w
t .

The addition of the warped spillover effect pjτ
w
t will cause bias. If the spillover effect is warped

faster, i.e. the effect unfolds in a shorter period of time, then the warped spillover effect would be

larger, i.e. |pjτ
w
t | > |pjτt |. Otherwise, if the spillover effect is warped slower, then the effect is smaller

|pjτ
w
t | < |pjτt |. However, notice that no matter whether the spillover effect is warped faster or slower,

its consequence is still to dampen our estimate of the treatment effect. The warping does not affect

the direction of the bias. The bias is always toward underestimation. What the warping does is affect
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whether the underestimation is more or less severe—more severe when the spillover effect is sped up,

less severe when it is slowed down.

Case 2: If, on the other hand, the matched sequence is incorrect, then the warped donor unit

would be:

yw,′
j,t = (ywj,t + ϵj,t) + pjτ

w
t ,

where errors ϵj,t are introduced because the donor unit is incorrectly warped. The errors ϵj,t could

be either positive or negative. If the combination of errors and warped spillover effect is in the same

direction of the treatment effect (have the same sign), i.e., if:

(ϵj,t + pjτ
w
t ) × τwt > 0,

the treatment effect will be underestimated. If the combination is on the opposite direction of the

treatment effect (have different signs), the treatment effect will be overestimated.
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Appendix 6. The forward lag coefficients

In model 1, y1,t can be influenced not only by past values of yj,t, but also by its future values. This

does not suggest that the future impacts the past. Instead, suppose that both yj and y1 are functions

of a latent variable z—a variable representing true underlying shocks—while the observed time

series for units yj and y1 are the manifestations of the shocks. In this situation, the observed time

series are always slowed-down versions of z, but at different rates. For example, the time series for y1

may reflect changes in z immediately, whereas there may be a delay for yj. As a result, we would

observe that y1,t is a function of the future of yj,t, simply because y1 reacts faster to changes in z than

yj does. This phenomenon, for example, occurs in the US financial markets, where the reactions

of the bond and stock markets to sudden changes in the Federal Reserve’s monetary policies often

occur at different speeds (Fleming and Remolona 1999). After the announcement of an interest rate

hike, the bond market reacts to the news instantaneously, while the stock market requires active

trading to adjust prices. In such cases, we observe a strong correlation between current bond prices

and stock prices shortly thereafter. This means that, in order to correct for the relative speeds of

yj and y1, we need not only consider past lags of yj, but also forward lags. The forward lags have

non-zero coefficients when y1 is faster than yj. However, note that since y1 and yj are always slower

than the latent common exogenous shocks z, the forward lags of yj are associated with exogenous

shocks that have already occurred, not future events. We do not suggest that the future affects the

past, but rather simply that yj and y1 react at different speeds to z, and hence that y1 may appear to

be a function of future yj. This implies that there are really a total of JNN potential coefficients to

estimate ((J donor time series) × (N time periods) × (N/2 backward lags + N/2 forward lags)).
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Appendix 7. The Dynamic Synthetic Control algorithm

Algorithm A1 Dynamic Synthetic Control (DSC)
Input: y1 = {y1,1, y1,2, ..., y1,N}: time series with treatment.

yj = {yj,1, yj,2, ..., yj,N}: J time series without treatment.
T: treatment time.
Cj: cutoff time of yj.
k: size of the sliding window.
m: margin of the sliding window.
nQ: increment for sliding the target window.
nR: increment for sliding the reference window.
θ: threshold of distance in window matching.

Output: synthetic control yN1 .
Process:

1: j← 1
2: for j = 2 to J + 1 do
3: Step 1: Match y1,1:T and yj;

4: DTW match y1,1:T and yj with open.end = TRUE,
5: save yj,1:Cj

that matches y1,1:T as yj,pre,
6: save yj,Cj :N as yj,post , y1,1:T as y1,pre, and y1,T:N as y1,post
7: save warping path yj,pre → y1,pre as Pj,pre,

8: Step 2: Match yj,post and yj,pre (double sliding window);

9: u← 1; Pi ← NULL
10: while u ≤ length(yj,post) – k do
11: locate target window Qu = yj,post[u : (u + k)],
12: i← 1; costs← NULL
13: while i ≤ length(yj,pre) – k – m do
14: locate reference window Ri = yj,pre[i : (i + k + m)],
15: DTW match Qu and Ri with open.end = TRUE,
16: save DTW distance to costs,
17: i← i + nR.
18: end while
19: if min(costs) ≤ θ then
20: find i∗ that minimizes costs,
21: locate reference window R∗ = yj,pre[i

∗ : (i∗ + k + m)],
22: subset Pj,pre and obtain warping path Pj,R∗ ,
23: save warping path Qu → R∗ as Pj,Qu→R∗ ,
24: obtain warping path Pj,Qu

= Pj,Qu→R∗ (Pj,R∗ ),
25: store Pj,Qu

in list Pj,
26: end if
27: u← u + nQ.
28: end while
29: merge all Pj,Qu

in Pj, obtain Pj,post .

30: Step 3: Warp yj according to y1

31: ywj = [Pj,pre(yj,pre),Pj,post(yj,post)].

32: end for
33: Step 4: use ywj , j ∈ (2, . . . , J + 1) to construct synthetic control yN1 .

34: return yN1
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Appendix 8. Deriving post-treatment warping paths from pre-treatment warping paths

To derive the warping path Pj,post from Pj,pre, we first match the short-term patterns in yj,post to the

patterns in yj,pre, and for each matched pattern in yj,pre, we obtain a sub-warping path matrix by

subsetting Pj,pre; then we adjust the sub-warping path matrix according to the DTW matching from

the pattern in yj,post to the pattern in yj,pre; lastly, we combine the adjusted sub-warping path and

obtain Pj,post.

To find the similar patterns in yj,post and yj,pre, we use a double-sliding windows approach as

shown in the second part of Figure 2. The first sliding window is in yj,post and the second in yj,pre,

Specifically, for any target window Qu in the post-treatment time series yj,post, the method finds

an optimal reference window R∗ in the pre-treatment time series yj,pre that minimizes the DTW

distance between Qu and Ri. Pattern R∗ is therefore the closest match to pattern Qu:

R∗ = argminRi
[DTW(Qu,Ri)],

Qu = yj,u:(u+k), u ∈ [C,N – k], k ∈ Z+

Ri = yj,i:(i+k+m), i ∈ [1,C – k – m],m ∈ Z0

where k is the default size of the sliding windows, and m is an extra right boundary of the reference

window Ri for the open-end DTW, i.e. allowing the the target window Qu to freely match to a

pattern that is within Ri, which enables the DSC algorithm to consider patterns in different lengths.

m is chosen by the user to ensure it is large enough to have the matching achieved within Ri, while

as small as possible to reduce the computational burden.

We recommend using slope-constrained step patterns such as symmetricP2 or asymmetricP2 in

DTW to avoid extreme warping paths. In addition, all windows are normalized before DTW for

better matching results.

If no similar pattern can be found in yj,pre, i.e. min(costs) is too large, R∗ can not provide enough

information to help build the warping path Pj,post. Instead, including poor matches would introduce

noise to the warping path. To avoid this problem, we use a threshold θ to filter out the poor matches.

For each pattern Qu that has a close match R∗ whose DTW distance does not exceed the threshold

θ, the warping path Qu → R∗ is stored in a k× (k + m) matrix Pj,Qu
. Although Qu and R∗ are close

matches, they are not identical. We can not directly use warping path Pj,R∗ (i.e. sub-matrix of Pj,pre
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that warps R∗ towards y1,pre) to warp Qu. We need to adjust Pj,R∗ and take the difference between

Qu and R∗ into account.

To help transform Pj,R∗ using Pj,Qu
, we can transform the warping path matrix Pj,pre into a

Speed Profile (SP):

ϕj,pre = {Pj,pre[diag(I1×CPj,pre)
–1]}IT×1

where I1×C is a row of ones of length C, and similarly, IT×1 is a column of ones of length T.

A speed profile can also be seen as a one-dimensional version of the warping path matrix. It

generates the same warped time series as the warping path matrix does. The difference between a

speed profile and a warping path matrix is that the speed profile only supports single-direction warping,

while the latter supports both directions. Since we are not interested in warping y1,pre → yj,pre, in our

case, an one-dimensional speed profile works as well as a warping path matrix. And most importantly,

it greatly simplifies the process of deriving the warping path Pj,post, as we can use a sub-speed profile

to warp the corresponding window of time series and ignore the remaining speed profile without

losing any information. In our method, a reference window Ri = yj,i:(i+k+m), i ∈ [1,C – m – k] can be

warped towards y1,pre using the sub-speed profile ϕRi
= ϕj,pre[i : (i + k + m)].

The DSC algorithm then uses the warping path Pj,Qu
: Qu → R∗, to transform the sub-speed

profile ϕj,R∗ and obtains a new speed profile ϕj,Qu
for Qu → y1,post. The speed profile ϕj,Qu

on one

hand preserves the speed relationship between yj,pre and y1,pre, on the other hand, makes adjustments

and makes sure the difference between Qu and R∗ is taken into account. Specifically, without losing

generality, in matching target window Qu and its closest reference window R∗, if one data point

Qu[s] matches one or more data points R∗[p : q], we define the weight of Qu[s] in speed profile is

the average of the weights of R∗[p : q]. Formally,

ϕj,Qu
[s] =

∑
i∈[p,q]ϕj,R∗[i]
q – p + 1

, s ∈ [1, k], 1 ≤ p ≤ q ≤ (k + m)

The transformed speed profile ϕj,Qu
can be obtained through the following process:

ϕj,Qu
= {[diag(Pj,Qu

I(k+m)×1)–1]Pj,Qu
}ϕj,R∗
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The resulting speed profiles ϕj,Qu
, u ∈ [C,N – k] are stacked in a (N – C – k + 2) × (N – C + 1)

matrix ϕj:

ϕj = [ϕj,ξ,υ], ξ ∈ [1,N – C – k + 2],υ ∈ [1,N – C + 1]

ϕj,ξ,υ = ϕj,Qu
[υ – ξ + 1]

And the estimate of the speed profile ϕj,post is the column mean of the stacked weight matrix ϕj:

ϕj,post = I1×(N–C–k+2)ϕj

Please see Appendix 9 for the method to warp time series using a speed profile.
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Appendix 9. Warp time series using speed profile

As discussed in Appendix 8, the speed profile ϕ is an one-dimensional version of a warping path

matrix P:

ϕ = {P[diag(I1×nrow(P)P)–1]}Incol(P)×1

It is used in the DSC algorithm to simplify the double-sliding window approach and can also be

used to warp time series.

Given a speed profile ϕ, we can warp the corresponding time series y through the following

transformation:

yw = y(ϕ) = Hy

where H is a transformation matrix determined by the speed profile ϕ. The process for obtaining H

from ϕ is shown in Algorithm A2.

Algorithm A2 Obtain transformation matrix H from speed profile ϕ
Input: ϕ = {ϕ1,ϕ2, . . . ,ϕN}: speed profile for y.

N: length of ϕ.
Output: H: transformation matrix used to warp y.
Process:

1: i← 1; j← 1; H ← NULL; r ← ϕ[1]; c← 1
2: while i ≤ N do
3: H[j, i] = min(r, c)
4: if r > c then
5: j = j + 1
6: r = r – c
7: c = 1
8: end if
9: if r < c then

10: i = i + 1
11: c = c – r
12: r = ϕ[i]
13: end if
14: if r == c then
15: i = i + 1
16: j = j + 1
17: c = 1
18: r = ϕ[i]
19: end if
20: end while
21: return H
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For example, a speed profile ϕ = (1.5, 1, 0.5) gives a transformation matrix H:

ϕ =
[

1.5 1 0.5
]
⇒


1 0 0

0.5 0.5 0

0 0.5 0.5

 = H

Notice that the transformation matrix is just a matrix of lag coefficients βl,t in equation 1:

H =


β0,1 = 1 β–1,1 = 0 β–2,1 = 0

β1,2 = 0.5 β0,2 = 0.5 β–1,2 = 0

β2,3 = 0 β1,3 = 0.5 β0,3 = 0.5

 .

And process Hy is equivalent to combining the lag terms into a new time series in equation A1.
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Appendix 10. Data generation in Monte Carlo study

Each dataset contains ten time series. They all follow a common Autoregressive integrated moving

average (ARIMA) process but exhibit differing speeds. To simulate these varying speeds, each time

series j is warped by a matrix Pj, which is either random or a function of the time series direction

(increasing or decreasing). More formally,

y1 = P1(z) + τ + ϵ1,

yj = Pj(z) + ϵj,

Pj = f [ψsj + (1 –ψ)λj] (A2)

λj ∼ N(sj, var(sj)),

where z denotes a 100 observation-long ARIMA(1,1,0) process.26 This process is warped by a

warping path Pj, which varies across units. The warping path Pj is a function of variable sj , which

takes on value δj (a random variable specific to the unit) if z is increasing, and δ–1
j otherwise. I.e.:

sj,t =


δj if z′t > 0

1
δj

otherwise,
δj ∼ U(a, b)

The idea behind sj is to capture the possibility that speed may vary as a function of the direction

of the underlying series. Economic crashes (i.e. a decreasing series), for example, may unfold faster

than recoveries (Reinhart and Rogoff 2014).

The other term in the warping path expression, ψ ∈ (0, 1), determines the extent to which this

occurs. For instance, ψ = 0 implies that the warping path will be entirely governed by a random

normal variable λ. In this case, the speed at each observation will randomly differ from the next,

and sj will play no role. Conversely, if ψ = 1, the speed profile will completely depend on the

direction of the time series (although the speed is still specific to each series, as the random draw δj is

unit-specific).

26. We also generated data using ARIMA (0,1,1) and ARIMA (1,1,1) models. Our findings indicate that the results across
these models are similar.
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Finally, τt denotes the value of the true treatment effect at time t. For the treated unit,

τt =


0 if t ≤ T

t–T
10 κ if t ∈ [T,T + 10)

κ if t ≥ T + 10,

where κ refers to the magnitude of the treatment effect, and T = 60 here. The chosen form of τt

represents a shock that unfolds over several periods, capturing the gradual impact often observed

in real-world scenarios. This modeling choice, not central to our approach, is simply intended

to enhance the representation of actual shocks, whose effects may take time to materialize. An

illustrative sample dataset is displayed in Figure A2.
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Figure A2. Illustration of an artificial dataset generated using the Model in equation A2. Only a subset of units is displayed
for readability. Top: Units y2–y4 are used to construct counterfactuals approximating Unit y1 during the pre-treatment
period (t < 60). The middle figure depicts synthetic controls: standard SC in blue and DSC in red. The lower figure shows
that the estimated treatment effects from DSC are more accurate in capturing the true effect compared to those from the
standard SC method.
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Appendix 11. Empirical replication with warped covariates

We replicate the placebo tests in Figure 5 with warped covariates. In each analysis, we use the same

covariates from the original applications, while these covariates are warped using the same warping

path as we used in warping the donor units. This is under the assumption that the covariates have

the same speed with the donor unit. The results are shown in Figure A3.

Figure A3. Placebo tests, real data. We revisited the placebo tests reported in Abadie and Gardeazabal (2003), Abadie,
Diamond, and Hainmueller (2010) and Abadie, Diamond, and Hainmueller (2015). The covariates are warped. The plots
report the placebo tests for each of these studies, using standard synthetic controls (blue) and dynamic synthetic control
(red). In addition, the estimated treatment effects for the treated units—Basque Country, California State, and West
Germany—are shown as thick, brighter lines. For each study, find that our placebo estimates exhibit smaller variance than
those using standard synthetic controls, which do not account for variations in speed.
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Appendix 12. Length of warped time series

The length of the warped time series ywj often differs from the target time series y1 for two reasons:

(i) the cutoff time Cj and the treatment time T are not necessarily the same; (ii) the warping of the

post-treatment time series yj,post is not based on a direct DTW matching between yj,post and y1,post.

While ywj,pre is guaranteed to be of length T, the length of ywj,post could be shorter or longer than

y1,post depending on whether Cj is smaller than T or the warping path Pj,post accelerates the average

speed of yj,post, thus shortening the warped time series. The difference in length is normal, as the

speeds of y1 and yj can vary and we do not impose a strict end-rule that forces yj,N to match y1,N . If

ywj,post is shorter than y1,post, we lose some data points at the end of the time series but gain better

speed alignment immediately after the treatment at T. This improved alignment is beneficial for

comparative studies.

Changes in the length of the warped donor time series have significant implications for the

implementation of the DSC method. In instances where the post-treatment time series are very short,

if the DSC method yields a shorter synthetic control, there might be insufficient post-treatment data

points to deduce a solid causal inference. Take, for instance, a scenario where the post-treatment

segment consists of 12 periods. If, after applying the DSC method, the resulting synthetic control

has only 8 periods, then conducting a causal effect study over 10 periods becomes unfeasible.

To avoid this issue, we recommend the adoption of slope-constrained step patterns like symmetricP2

or asymmetricP2 (Sakoe and Chiba 1978) in DSC so that the time series are not overly warped.

Depending on the chosen step pattern, users can determine the minimum periods of the warped time

series. For instance, after warping using the symmetricP2 or asymmetricP2 step patterns, the potential

length of the warped time series lies within the [ 2
3N, 3

2N] range. This suggests that maintaining

a buffer of 1
3N can guarantee that the warped time series retains adequate periods for subsequent

analysis.
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Appendix 13. R package

For the convenience of researchers and practitioners interested in employing the methods discussed

in this paper, we have developed an accompanying R package. This package is publicly available at

github.com/conflictlab/dsc. The package includes functions to implement all described methods, and

it comes with comprehensive documentation to guide users through the installation and application

process.

To install the package, one can execute the following R command:

devtools::install_github("conflictlab/dsc")

Additional documentation and examples for using the package can be found at https://github.

com/conflictlab/dsc/blob/main/README.md.

Researchers are encouraged to refer to the package when utilizing the methods described in this

paper, and a citation format for acknowledging the package is provided in the package documentation.
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