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1 Identifiability of IRV versus other electoral systems
The list of rankings submitted in IRV is often accompanied by Cast Vote Records (CVRs) which show
how a specific (anonymous) person voted across their entire ballot. So why are we concerned about
IRV identifiability, when instead someone may just be able to signal their vote choice by voting
according to a certain pattern across their whole ballot (say, selecting candidate A in the first office
on the ballot, candidate B in the second office, and so on).

We argue that IRV is especially vulnerable for two reasons. First, the permutations possible in
an IRV election are explosively larger than in a single-vote CVR. Second, the information in IRV will
often be free, while on a CVR it may not be. We provide a stylized illustration of both arguments.

The core numerical difference between the number of possible sequences in IRV and the number
of votes across offices in a CVR is that, in the CVR, candidates are constrained such that they can
only appear in specific locations, and only one candidate per contest can be included in the ranking.
Consider a ballot that contains an IRV election between 10 candidates. In the main text we will show
that the number of possible sequences, depending on the method by which votes are counted and
reported, could be on the order of 108.

Compare this with the simple case of 5 contests on a ballot, which are each contested by 2
candidates, and in each contest voters can only vote for one option. In office one, the voter can select
either candidate A or B, in the second office they can select C or D, and so on. By concatenating
the choices they make across offices, we can form a string like ACEGI . The possible number of
such strings is 32, whereas if these 10 candidates were contesting an IRV election withL = 10, more
than one hundred million strings could be formed. Of course, the CVR becomes more identifiable if
each election has more candidates or a higher magnitude, but heroic assumptions are needed for
a CVR of non-ranked elections to approach the identifiability of a reasonably large IRV election.

There is also a crucial structural difference between the scheme we outline for identifying IRV
ballots, and anything that can be done on a CVR: in our IRV scheme, the information is encoded
without any potential electoral downside. Suppose a vote-buyer purchases a vote from a voter in
a 10-candidate IRV race, in support of candidate A, who the voter is paid to rank first. Then, the
vote-buyer assigns the voter a specific sequence in which to rank the other nine candidates. If A
wins, none of the voter’s rankings after A are counted, so the information was placed on the ballot
without any effect on the vote count. If A loses, then the scheme has failed. Even if the voter and
vote-buyer have preferences between the candidates other than A, if 10 candidates are ranked, for
most plausible distributions of vote counts it is unlikely that the last several rankings will be used;
this information is included in the ballot, but not relevant to practical vote-counting.

In the version of the scheme in which a sequence is signalled by casting certain votes across
single-vote races on CVR, however, some of those elections may be close elections with small
electorates (say, a competitive school board race). In this case, the voters involved in the scheme
have a serious risk of being pivotal in an unrelated contest. In the CVR scheme, the voter is asked to
affect real vote counts for unrelated races, whereas in the IRV scheme, much of the information
used is unlikely to affect real vote counts.

As we note in the text, the problem is much worse for systems like Approval Voting or Borda
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Count. There, our scheme would actually require the vote buyer to increase the vote total of the
people who are competing against their preferred candidate. We therefore consider the scheme
particularly ill-suited for those systems. Single-Transferable Voting might provide more fruitful
ground for our scheme, especially if the scheme were enacted to support a slate of candidates
rather than just one, but transfer ballots in particular would complicate any analysis of how feasible
the scheme is exactly. Taken together, all these reasons motivate focusing on IRV specifically for
the first analysis of this type of scheme, knowing that its extension to other electoral systems is
theoretically plausible but severely nontrivial.

2 Reporting methods in real IRV contests

Election Method Estimate Source
Alameda County, 2021 Partial list < No Blanks Alameda County (2022)
Alaska, 2022 All rankings Any Blank Alaska Division of Elections (2022)
Australia House, 2022 Partial list < No Blanks Australian EC (2022)
Maine, 2022 All rankings Any Blank Maine Elections Bureau (2022)
New York City, 2021 CVR > Any Blank New York City (2021)
Papua New Guinea, 2022 # rankings None EC Papua New Guinea (2022)
San Francisco, 2022 CVR > Any Blank City of San Francisco (2022)

Table 1. EC stands for Electoral Commission. The method column is the most granular type of reporting
we found: All rankings for just a full list of the rankings that were cast in the IRV election, Cast Vote Record
(CVR) for entire ballots including the ranked choices in the IRV contest, a partial list for incomplete lists of IRV
orderings, or just the candidates’ total numbers of points. The “ruleset” is the appropriate abstention rule for
estimating how identifiable that type of reporting is.

Table 1 reports the largest amount of data that we have been able to find through a straightfor-
ward perusal of public sources. This is a conservative table in the sense that, with a more concerted
effort (such as contacting the governments responsible with a specific request for a richer type
of data), it may be possible to uncover more data from each of these elections, or more data may
become available. We have restricted our attention to recent elections for government office in
democracies with robust public election result reporting.

In Australia as well as Alameda County, California, the files which provide distributions of prefer-
ences provide enough information that a version of our scheme may be theoretically feasible, but
reveal less information than any of the cases that we examine in the paper. Specifically, those files
show the flow of preferences as candidates were eliminated. From those files, one could infer how
many people ranked a given non-eliminated candidate immediately after each eliminated candi-
date. However, we have not found a way to infer from public election data whether a) a previously
eliminated candidate was ranked in between some eliminated candidate and the candidate the
votes flow to, or b) any rankings that follow the final candidates in the election. This is a truncated
version of the problem that we study, but how much less information it provides will depend on the
distribution of ballots and the candidate elimination order, so it is an open question under what
conditions this practice provides enough information to pose a risk in small electorates. In the case
of Australia, we confirmed that there is no obvious way to infer this from public data with a phone
call to the Australian electoral commission, and we are grateful to Campbell Sharman for providing
helpful context.

Note that in Alaska and Maine alike, where the full list of rankings is called a “Cast Vote Record”,
the main data outputs that contain this information actually just provide the full rankings of candi-
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dates is the IRV race alone, without tying them to voters’ choices in any other election.1 Because
the reporting of IRV rankings includes undervotes in exactly the positions in which voters listed
them, both elections are exactly examples of the Any Blanks ruleset.

Alaska explicitly motivates its choice to provide CVRs for the IRV race with the explanation that
they are “providing the CVR to increase transparency and provide voters the data necessary to
confirm the results”.

We have not found an example of a governmental election using the No Blanks ruleset. This is
as expected, since that ruleset was intended to provide a theoretical lower bound on the number
of available sequences.

3 Identifying the most scientifically conservative assumption
We suspect that we are not the first to maximize the estimator of the number of unique types in
a sample, but we have been unable to find a fully worked through derivation of the values of the
population proportions pi which maximize observed types for a fixed sample size m anywhere in
the existing literature. We therefore produce an original proof ourselves below, although we think
it is likely that this result is not new, and maybe indeed be quite old. We are very grateful to Kevin
E. Acevedo Jetter for his collaboration in this derivation, which also benefited from notes by Iain
Osgood.

max[E(Sm)] = max[S −
S∑

i=1

(1− pi)
m] such that

S∑
i=1

pi = 1

Since all terms are nonnegative,

max[E(Sm)] = S −min[

S∑
i=1

(1− pi)
m] such that

S∑
i=1

pi = 1

This is a classic Lagrangian, of the form

L =

S∑
i=1

(1− pi)
m + λ

( S∑
i=1

pi − 1
)

Then, for each pi,

Lpi
= −m(1− pi)

m−1 + λ

Setting the partial derivative to 0,

λ = m(1− pi)
m−1

pi = 1 +
m−1

√
λ

m

So the number of distinct ballots in the sample is maximized exactly when the pi are all equal.
What value do they have? Substituting this identity into the constraint, and by the fact that the pi
are all equal,

1. It is always possible that we have overlooked some data output, or one can be obtained through special request or will
subsequently be produced by the governments, which in these specific cases connects the ballots in those files to ballots
cast in other contests so that individual voters’ choices in an IRV contest can be connected through another means to their
choices in other contests. If that is the case, we contend that the usefulness of Alaska and Maine as illustrative examples
should not be undermined. We are discussing the main way that these states report IRV results to the public, and because
we do not believe that vote buying took place in these specific elections, we are only using them as illustrative examples to
discuss a type of data reporting.
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pi =
1

S
∀i

Because the constraint function is linear, the constraint qualification is satisfied, this is the
unique critical point. To establish that this critical point is a minimum, we assume S ≥ 1 and
m ≥ 2 (in our application these respectively mean there is at least one candidate and at least two
voters), and it will be sufficient to show that the final S− 1 leading principle minors of the bordered
Hessian are negative (Sundaram 1996, §5.3). The Bordered Hessian B has the form

B =



0 1 1 · · · 1

1 Lp1p1 Lp1p2 · · · Lp1pS

1 Lp2p1 Lp2p2 · · · Lp2pS

...
...

...
. . .

...

1 LpSp1
LpSp2

· · · LpSpS


Because the Lagrangian is

L =

S∑
i=1

(1− pi)
m + λ

( S∑
i=1

pi = 1
)

all cross-partial derivatives equal zero, so B simplifies to

B =



0 1 1 · · · 1

1 L2
p1

0 · · · 0

1 0 L2
p2

· · · 0
...

...
...

. . .
...

1 0 0 · · · L2
pS


By a standard theorem (Nicholson 1995, p. 113), det(B) is equal to the determinant of any

matrix obtained by adding a multiple of one of the rows of B to another row of B. So,

det(B) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

− 1
L2

p1

− 1
L2

p2

− · · · − 1
L2

pS

0 0 · · · 0

1 L2
p1

0 · · · 0

1 0 L2
p2

· · · 0
...

...
...

. . .
...

1 0 0 · · · L2
pS

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
This is a matrix of the form

B =

[
A 0

X C

]
Where A is an n× n matrix and C is a m×m matrix, so by another standard theorem (p. 117),

det(B) = det(A) · det(C). Since n = 1,

detA = − 1

L2
p1

− 1

L2
p2

− · · · − 1

L2
pS

And becauseC is a diagonal matrix,det(C) is the product of the entries on its principal diagonal,
so
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det(C) =

S∏
i=1

L2
pi

For a generic L2
pi

,

∂2L
∂i2

= (m2 −m)(1− pi)
m−2

Since m ≥ 2,

∂2L
∂i2

> 0

and therefore

S∏
i=1

L2
pi

> 0

and

− 1

L2
p1

− 1

L2
p2

− · · · − 1

L2
pS

< 0

so that

det(A) · det(C) < 0

det(B) < 0

We next use the determinant of the full matrix to check the final S − 1 leading principle minors
of B. Consider the kth leading principal minor, where k is any natural number from 2 up to S (since
we need only check the sign of the final S − 1 leading principal minors). By the same theorem we
invoked to compute the determinant of a diagonal matrix, the kth leading principal minor is

det(B)

L2
pk+1

· L2
pk+2

. . . · L2
pS

The denominator is the product of individually positive numbers, so the whole fraction is
negative for any k. The condition for the critical point to be a local minimum is that the sign of the
leading principal minors must match the sign of (−1)m, which is satisifed. So, the minimizer of the
population proportions is pi = 1

S ∀i
□

We have shown that setting pi =
1
S for all i maximizes the number of distinct types we expect

to appear in a sample of generic size. By a nearly identical argument we could show that the same
critical point maximizes the sample coverage estimator.

4 Proportions cast under varying abstention rules
Here we supplement the Blanks Last table in the article. Table 2 shows how many complete
sequences of candidates can be constructed for contests that include between 2 and 10 candidates
using the No Blanks ruleset, and ballot lengths that also range from 2 to 10.

Williams, Baltz, and Stewart III | Political Analysis 5



Cands 2 3 4 5 6 7 8 9 10
Ballot
length

1 2 3 4 5 6 7 8 9 10
2 2 6 12 20 30 42 56 72 90
3 6 24 60 120 210 336 504 720
4 24 120 360 840 1,680 3,024 5,040
5 120 720 2,520 6,720 15,120 30,240
6 720 5,040 20,160 60,480 151,200
7 5,040 40,320 181,440 604,800
8 40,320 362,880 1,814,400
9 362,880 3,628,800

10 3,628,880
Table 2. The number of sequences that can be formed when no rankings can be skipped.

Table 2 shows that even under the harsh restriction that voters must complete every ranking,
many thousands of distinct sequences can be formed even in contests with a fairly modest number
of candidates and reasonably short ballots. If just eight candidates are contesting an election
in which voters may rank seven of them, 40,320 distinct sequences can be cast. If there are 10
candidates with a ballot length of eight or more, the number of distinct sequences rises into the
millions.

How does this compare to the situation in which any rankings can be blank? Table 3 shows how
the number of rankings grows in the number of candidates and in the ballot length under the Any
Blanks ruleset.

Cands 2 3 4 5 6 7 8 9 10
Ballot
length

1 2 3 4 5 6 7 8 9 10
2 6 12 20 30 42 56 72 90 110
3 33 72 135 228 357 528 747 1,020
4 208 500 1,044 1,960 3,392 5,508 8,500
5 1,545 4,050 9,275 19,080 36,045 63,590
6 13,326 37,632 93,228 207,774 424,050
7 130,921 394,352 1,047,375 2,501,800
8 1,441,728 4,596,552 12,975,560
9 17,572,113 58,941,090

10 234,662,230
Table 3. The number of sequences that can be formed when any number of rankings can be left blank, so
long as at least one candidate is ranked.

When any rankings can be left blank, the number of sequences reaches the thousands (about
the size of many American precincts) so long as there are five candidates and all of them can be
ranked, or if there are at least six candidates and at least four can be ranked.

Figure 1 shows the number of possible rankings under each of the three rules when the number

Williams, Baltz, and Stewart III | Political Analysis 6



of candidates is fixed at 10 but the number of candidates that can be ranked varies from 2 to 10.

Figure 1. How the possible number of ballot sequences varies in the case of a 10-candidate contest as the
number of candidates who can be ranked on a ballot varies.

Similarly, Table 4 holds the number of candidates fixed at 10, and shows how the expected
number of ballots that will not be cast varies as the number of those 10 candidates that can be
ranked varies.

Ranks 3 4 5 6 7 8 9 10
Population

101 810 5,850 36,090 187,290 792,090 2,606,490 6,235,290 9,864,090
102 726 5,761 36,000 187,200 792,000 2,606,400 6,235,200 9,864,000
103 242 4,941 35,114 186,303 791,101 2,605,500 6,234,300 9,863,100
104 0 1,063 27,365 177,562 782,163 2,596,519 6,225,308 9,854,105
105 0 0 2,262 109,816 698,155 2,508,394 6,136,098 9,764,605
106 0 0 0 899 224,129 1,775,979 5,311,368 8,913,118
107 0 0 0 0 3 56,216 1,254,146 3,579,147
108 0 0 0 0 0 0 1 390

Table 4. The expected number of sequences that will not be cast in an election with a certain ballot length,
fixing the number of candidates at 10, and in an electorate of a given population, using the Blanks Last vote-
counting method. We take the maximally conservative assumption that all sequences are equally likely to be
cast.

5 Estimating collision probabilities
Here we explore the probability that a bought vote collides with a legitimate vote, using the size
and rules of Oakland as an example, and then we consider three options for the hypothetical vote
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buyer seeking to secure the estimated 1,500 votes that they need.
Since we assume that a voter has equal probability of casting any particular sequence, a se-

quence generated by the vote buyer in this election has probability 54,684
63,590 of being present already

in the cast votes without any vote-buying activity. A reasonable approximation, when the popu-
lation and the number of sequences are large, is to assume that the probabilities that each new
sequence collides with a legitimate vote are independent of each other. Then whether or not each
sequence matches a legitimate vote is a Bernoulli trial, and the expected number of ballots that
will be precisely identifiable is the sum of the probabilities that each ballot is identifiable. In that
case, the vote-buyer should expect that about 14% of the sequences that they assign to voters will
be cast by only that voter. This means that, if they purchase 1,500 votes, they should only expect to
be able to confidently identify about 210 votes.

Of course, the independence assumption is severely strained here, with more than 1
7 of the

expected number of unique sequences being assigned. Perhaps a better model is to imagine the
vote buyer sequentially generating 1,500 sequences to assign. Each sequence generated that is not
already cast by some voter reduces the total number of sequences that remain to be generated, but
does not reduce the number of legitimate sequences that might be matched by the next generated
sequence; meanwhile, each sequence that matches a legitimate vote reduces the total number of
remaining legitimate sequences by one, and also the remaining number of covered sequences by
one. This specifies a sum in which the probability of encountering a collision with each sequence
decreases proportional to the initial probability of a collision, but depending on the order in which
collisions happen to be encountered. So, a vote buyer might be well-advised to model the necessary
number of votes using draws from a hypergeometric distribution. However the probabilities are
modeled, this poses a serious challenge to the vote buyer: the number of rankings available to
voters has been limited, and consequently their ability to buy votes is highly constrained.

So, what are the vote buyer’s options? First, they could decide that this is a sufficient number
of votes to expect to be confident about, and purchase those 1,500 votes, expecting that even if
every voter cooperates and successfully casts the ranking they assigned, only about 210 of those
sequences will be uniquely cast by the assigned voter.

A second option is for the vote-buyer to decide that they would like to be able to confidently
identify that 1,500 votes were successfully purchased, and to simply generate extra sequences until
they expect 1,500 of them to be uniquely cast. In this case, using the Bernoulli approximation,
that requires a dramatically larger investment: they must assign about 10,710 sequences. Then
they have the delicate challenge of deciding whether to reward only those voters who were lucky
enough to cast a unique sequence, or paying all 10,710 voters even though only 1,500 of them are
expected to cast a unique sequence.

This dilemma suggests the third approach, which is much more complicated but also much
more efficient: the vote buyer could actually compute the number of expected times that each
sequence will appear in the population, and then assume that a vote was successfully purchased if
that vote appeared above the expected number of times in the election results. Of course, while this
approach seems theoretically much better, it has two sharp practical downsides: first that it requires
highly accurate expectations about precisely how many people will submit each possible ordering,
and second that it admits randomness into whether or not voters are rewarded for colluding.

6 Data from other IRV races
Table 5 presents summary information for 36 IRV races obtained via a library of voting preference
data (Mattei and Walsh 2013). The number of candidates and ranks in many of these races suggests
that they would have similar hypothetical opportunities for vote-buying.
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Election Candidates Ranks Possible Seqs Ballots Cast Coverage
Aspen City Council 2009 9 9 986409 2487 <1%
Aspen Mayor 2009 4 4 64 2528 62%
2010 Berkeley City Council (d7) 3 3 15 4189 60%
2006 Burlington Mayoral Election 5 5 325 9788 45%
2009 Burlington Mayoral Election 5 5 325 8980 46%
2009 Minneapolis Parks & Rec 8 3 400 36655 100%
2009 Minneapolis Tax Board 6 3 156 32086 100%
2010 Oakland City Council (d4) 7 3 259 21040 100%
2010 Oakland Mayor 10 3 820 119962 99%
2010 Oakland City Council (AL) 5 3 85 145443 100%
2010 Oakland City Council (d1) 7 3 259 28766 100%
2010 Oakland City Council (d3) 6 3 156 22193 100%
2010 Oakland City Council (d5) 4 3 40 11358 100%
2010 Oakland School Director (d3) 3 3 15 20753 60%
2009 Pierce County Auditor 3 3 15 153721 60%
2008 Pierce County Council (d2) 3 3 15 40031 60%
2008 Pierce County Executive 4 3 40 299664 100%
2008 Pierce County Treasurer 6 3 156 262810 100%
2008 S.F. Board of Sups. (d1) 9 3 585 28998 97%
2011 S.F. District Attorney 5 3 85 184046 100%
2011 S.F. Mayor 16 3 3616 195237 85%
2011 S.F. Sheriff 4 3 40 183611 100%
2012 S.F. Board of Sups. (d5) 8 3 400 35356 100%
2012 S.F. Board of Sups. (d7) 9 3 585 31566 99%
2008 S.F. Board of Sups. (d11) 9 3 585 25083 67%
2008 S.F. Board of Sups. (d3) 9 3 585 27482 97%
2008 S.F. Board of Sups. (d4) 3 3 15 29522 60%
2008 S.F. Board of Sups. (d9) 7 3 259 26799 100%
2010 S.F. Board of Sups. (d10) 21 3 8421 18308 39%
2010 S.F. Board of Sups. (d2) 6 3 156 24180 99%
2010 S.F. Board of Sups. (d6) 14 3 2380 21443 67%
2010 S.F. Board of Sups. (d8) 4 3 40 35029 100%
2010 San Leandro Mayor 6 3 156 22539 54%
2012 San Leandro City Council (d2) 3 3 15 25564 60%
2012 San Leandro City Council (d4) 4 3 40 23359 100%
2007 Takoma Park City Council 3 3 15 204 60%

Table 5. The sample coverage of some real elections. District numbers are identified by “d” and then a number
in parentheses, with at-large races denoted AL. Data are from the PrefLib library (Mattei and Walsh 2013). We
drop every vote that includes a write-in candidate, and every invalid vote, for example votes that rank the
same candidate in multiple positions.
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7 Proportion cast of Any Blanks ballots
The following corresponds to Figure 3 in the text, but under the Any Blanks ruleset instead of the
Blanks Last ruleset.

Figure 2. The proportion of all possible sequences cast in three San Francisco IRV races, using the Any Blanks
ruleset. Each dot represents the proportion cast in a precinct, with the total number of ballots cast in that
precinct on the x-axis. The solid horizontal line is the proportion of possible ballots cast across the whole
election, and the dashed curve is the expected number of ballots cast in a precinct of a given size under our
conservative assumption that p = 1

S
.

8 Connection between number of types and “sample coverage”
Here we establish why we use the phrase “sample coverage” for the proportion of rankings rep-
resented in the election. “Sample coverage” is the proportion of individuals of any type that is
represented in the sample. Let us illustrate this idea in our application. Consider a 3-way contest
between candidates A, B, and C under the No Blanks ruleset. The possible sequences are:

{ABC,ACB,BAC,BCA,CAB,CBA}

Imagine a poll is taken before the election and we find that 45% of people expect to be ABC

voters, 35% are BCA voters, 11% are CBA voters, and the remaining 9% are split equally across
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the other three options. Then the election occurs, and among all of the ballots cast, we observe four
distinct rankings: at least one voter cast each of ABC, BCA, CBA, and CAB. Then the coverage
of this sample is 0.45 + 0.35 + 0.11 + 0.03 = 0.94, or 94%.2 Figure 3 illustrates the example
graphically.

(a) Population types (b) Sampled types

Figure 3. The size of the rectangle indicates the share of voters of each type in the population of eligible
voters. On the right, the shaded regions represent sequences that were cast in the election. The proportion of
the area that is shaded is the coverage.

We will show that, under the conservative assumption that each voter has equal probability of
casting each possible ranking, the expected sample coverage is the same as the expected share of
the types that are represented in the sample. From Good (1953), the expected number of types
represented in a sample is

E[Sm] = S −
S∑

i=1

(1− pi)
m

The proportion of all of the types represented in that sample is therefore

E[Sm]

S
= 1− 1

S

S∑
i=1

(1− pi)
m

We have identified that the most scientifically conservative assumption we can make is that
that pi = pj ∀i, j. With that assumption,

E[Sm]

S
= 1− (1− p)m

Now note that expected coverage, per Chao and Jost (2012, p. 2535), is

E[Cm] = 1−
S∑

i=1

pi(1− pi)
m

Under our assumption,

E[Cm] = 1− Sp(1− p)m

Since we assume p = 1
S ,

2. This is closely adapted from an example in Chao and Jost (2012, p. 2534).
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E[Cm] = 1− (1− p)m

E[Cm] =
E[Sm]

S

□

9 Simulated effectiveness of buying sequences
We simulate bought votes by assigning unique sequences to be bought, and then counting the
overlap at two hypothetical reporting levels: precinct-by-precinct using CVRs, and city-wide. One
small complication is that San Francisco’s CVRs include two ballot styles: one type includes the
board of supervisors race for District 5 and the other type does not. We analyze these separately, as
they correspond to different possible sequences.

In the simulations we fix the first rank of one of the races for a particular candidate and generate
all possible sequences with that candidate first. We take a sample of these sequences as a proportion
of all ballots cast in a race, and increase the number of sequences sampled until we have simulated
as many bought votes as there were real votes cast in the election. We repeat the samples 500
times, and report the average collision rate across simulations. Figure 4 shows that the rate of
collisions, when votes are bought for any candidate, remain well under 1%: fewer than 1% of the
bought votes collide with legitimate votes.
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Figure 4. Ballot-type-level (without the Board of Supervisors race) simulations for the 2019 San Francisco
Mayoral race. 500 simulations were run where a varying proportion of the votes cast in the election are bought,
up to the point where there are as many bought votes as real votes. The figure shows the average number of
collisions as a share of the sampled sequences.

Figure 5a shows that as ballot sequences are assigned until the number of bought votes equals
the number of real votes, the simulations for a candidate will converge to the sample coverage for
the candidate. The degree that this is a consequence of the ballot identifiers available on the CVRs
can be tested by taking the combinations of sequences alone and running the same simulations
citywide. Figure 5b shows the number of collisions a vote-buyer could expect only knowing the
ballot level combinations, without the type of ballot, is still less than 4.5%.
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(a) Ballot-type level (b) City-wide

Figure 5. Simulations (without the Board of Supervisors race) of the collision rate a hypothetical vote buyer
would encounter if they bought votes for the winning candidate in the 2019 San Francisco mayoral race. 500
simulations were run at varying percentages of votes cast, until the number of bought votes equals the number
of real votes. Reported is the average number of collisions in the sampled vote sequences, along with the 95
percent interval for the simulations.
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