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1 Variance expressions and their estimators

As Neyman (1923) shows (see also Imbens and Rubin, 2015, pp. 87-92), the variance of the

Difference-in-Means is

Var [τ̂ (Z,y (Z))] =
S2(1))

n1

+
S2(0))

n0

− S2(1, 0))

N
,(1)

where

S2(1) =
1

(N − 1)

N∑
i=1

(yi(1)− ȳ(1))2

S2(0) =
1

(N − 1)

N∑
i=1

(yi(0)− ȳ(0))2

S2(1, 0) =
1

(N − 1)

N∑
i=1

(τi − τ)2 .

This variance can be conservatively estimated by dropping the third term in (1) and plugging in

unbiased estimators for S2(1) and S2(0). This conservative variance estimator is

V̂ar [τ̂ (Z,y (Z))] =
Ŝ2(1)

n1

+
Ŝ2(0)

n0

,(2)

where

Ŝ2(1) =
1

(n1 − 1)

N∑
i=1

Zi

(
yi(1)−

1

n1

N∑
i=1

Ziyi(1)

)2

and

Ŝ2(0) =
1

(n0 − 1)

N∑
i=1

(1− Zi)

(
yi(0)−

1

n0

N∑
i=1

(1− Zi)yi(0)

)2

.

This variance estimator is conservative in the sense that its expected value is always greater than

or equal to the variance in (1).

The variance of the scaled Difference-in-Means is always at least as great as the variance in

(1). In general, for an arbitrary constant, a ∈ R, and random variable, X, Var [aX] = a2 Var [X].

Since the inverse proportion of Always-Openers is always greater than or equal to 1, it follows that
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the variance of the scaled Difference-in-Means is always greater than or equal to the variance of

the Difference-in-Means. More formally, the variance of the scaled Difference-in-Means is

(
1

π2
AO

)
Var [τ̂ (Z,y (Z))] ,(3)

and its conservative estimator is

(
1

π2
AO

)
V̂ar [τ̂ (Z,y (Z))] .(4)

When researchers measure opening without error, the Difference-in-Means conditional on measured

opening is equivalent to conditioning on a baseline covariate since, as Assumption 4 implies,

measured opening is fixed across assignments. Hence, the Difference-in-Means conditional on

measured opening is equivalent to the variance of the post-stratified Difference-in-Means in Miratrix

et al. (2013). To express this variance, first let WAO(z) denote the number of Always-Openers

randomized into either treatment or control:

WAO(1) =
N∑
i=1

Zim̃i(5)

WAO(0) =
N∑
i=1

(1− Zi)m̃i.(6)

Since the Difference-in-Means conditional on Always-Openers is undefined whenever WAO(1) <

1 or WAO(0) < 1, we follow Miratrix et al. (2013) by conditioning on the set of assignments in

which the estimator is defined. We leave this conditioning implicit and write the variance of the

Difference-in-Means conditional on opening as

1

NAO

(
βAO,1S

2
AO(1) + βAO,0S

2
AO(0) + 2γAO(1, 0)

)
,(7)
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where

βAO,z := E [WAO(1− z)/WAO(z)]

S2
AO(z) :=

1

NAO − 1

N∑
i=1

1 {m̃i = 1} (yi(z)− ȳAO(z))
2

γAO(1, 0) :=
1

NAO − 1

N∑
i=1

1 {m̃i = 1} (yi(1)− ȳAO(1)) (yi(0)− ȳAO(0))

ȳAO(z) :=
1

NAO

N∑
i=1

1 {m̃i = 1} yi(z).

Both βAO,0 and βAO,1 can be estimated via numerical simulation of the randomization process.

Each S2
AO(z) can be unbiasedly estimated by its sample analogue, Ŝ2

AO(z), as in (9) and (10) below.

However, γAO(1, 0) cannot be directly estimated. Instead, to be conservative, we use the expression

for the covariance when potential outcomes are perfectly positively correlated:

γAO(1, 0)√
S2

AO(1)S
2
AO(0)

= 1,

which implies

γAO(1, 0) =
√
S2

AO(1)S
2
AO(0).

The AM-GM inequality then implies that

√
S2

AO(1)S
2
AO(0) ≤

S2
AO(1) + S2

AO(0)

2
,(8)

which, after substituting the right hand side of (8) for γAO(1, 0), implies that

2γAO(1, 0) ≤ S2
AO(1) + S2

AO(0).
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Therefore, the upper-bound of Var
[
τ̂Open (Z, m̃,y(Z))

]
is given by

Var
[
τ̂Open (Z, m̃,y(Z))

]
≤ 1

NAO

(
βAO,1S

2
AO(1) + βAO,0S

2
AO(0) + S2

AO(1) + S2
AO(1)

)
.

All terms in this quantity can be directly estimated via

Ŝ2
AO(1) =

(
N∑
i=1

1 {m̃i = k}Zi − 1

)−1 N∑
i=1

1 {m̃i = k}Zi

(
yi(1)− ˆ̄yAO(1)

)2 or(9)

Ŝ2
AO(0) =

(
N∑
i=1

1 {m̃i = 1} (1− Zi)− 1

)−1 N∑
i=1

1 {m̃i = 1} (1− Zi)
(
yi(0)− ˆ̄yAO(0)

)2(10)

where

ˆ̄yAO(1) =

(
N∑
i=1

1 {m̃i = 1}Zi

)−1 n∑
i=1

1 {m̃i = 1}Ziyi(1) and

ˆ̄yAO(0) =

(
N∑
i=1

1 {m̃i = 1} (1− Zi)

)−1 N∑
i=1

1 {m̃i = 1} (1− Zi)yi(0).

2 Worked examples

We now provide simple worked analyses of our proposed solutions to facilitate their implementation.

The code for both of these examples is available at Leavitt and Rivera-Burgos (2024). To fix ideas,

imagine a simple example of only 10 state legislators. Each legislator is emailed a constituency

service request from an email address with a name and subject line independent of treatment

assignment. Then within the body of the emails, the researcher randomized a signal of race, either

Black (treatment) or white (control). In every email, both treated and control, the text also

includes a signal of co-partisanship with whichever legislator to whom the email is sent.

Imagine that the observed experimental data are as follows.
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Legislator Treatment Open Reply

1 1 1 1
2 1 0 0
3 1 0 0
4 0 1 1
5 0 0 0
6 1 0 0
7 0 1 0
8 0 0 0
9 0 0 0
10 1 1 0

Table 1: Imaginary audit experiment among legislators under no racial discrimination in opening

Consistent with Assumption 2, no legislators reply to an email without first opening it. In

addition, under the assumption of no racial discrimination in opening, all legislators with Open

= 1 are Always-Openers. In this example, there are no replies to emails marked as unopened, so

we would fail to reject the null hypothesis of no measurement error. We therefore conduct our

analysis among only these legislators, i.e., as if our data were as follows.

Legislator Treatment Open Reply

1 1 1 1
4 0 1 1
7 0 1 0
10 1 1 0

Table 2: Imaginary audit experiment among only Always-Open legislators

The post-stratified Difference-in-Means simply calculates the Difference-in-Means among only the

units in Table 2 ignoring the third column. Hence, in this simple example, τ̂Open (Z, m̃,y(Z)) =

(0 + 1)/2 − (1 + 0)/2 = 0. A conservative variance estimate (see Miratrix et al., 2013) is

approximately 0.58.

We can also imagine another example as follows.
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Legislator Treatment Open Reply

1 1 1 1
2 1 0 1
3 1 1 0
4 0 1 1
5 0 0 0
6 1 0 1
7 0 1 0
8 0 0 0
9 0 0 1
10 1 1 0

Table 3: Imaginary audit experiment among legislators under no racial discrimination in opening

In this example, because there are three legislators who replied to the email but are measured as

not opening the email, we would reject the null hypothesis of no measurement error. In addition,

because there are 5 other units measured as opening, it follows that the proportion of Always-

Openers is bounded between 0.8 and 1. In the baseline case in which we assume all units are

Always-Reporters, the point estimate is 0.2 and the variance estimate is 0.12. As we decrease the

proportion of Always-Openers from 1 to 0.9 and then to its lower-bound of 0.8, the point estimate

increases to 0.22 and 0.25, respectively. The variance estimate also increases to 0.15 and 0.19,

which would yield a wider CI in each case.

The aim of these two simple worked examples is to show that certain experimental designs

permit exceedingly simple data analyses. For the purposes of the argument in this paper, the

essential ingredient of such an experimental design is plausibly satisfying the no racial discrimination

in opening assumption (and, although not absolutely necessary, the measurement of opening).

Insofar as researchers design their audit experiments in thoughtful ways, then no complicated

post-hoc statistical adjustments are required to infer relevant causal targets, like the ATE among

Always-Openers.
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