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A Proof of Theorem 3.1
Proof. We first prove that if 𝐘 ⟂⟂ 𝐗 ∣ 𝐙, then 𝐘(𝐱, 𝐳)

𝑑
= 𝐘(𝐱′, 𝐳) for any 𝐱, 𝐱′ ∈  and 𝐳 ∈ .

𝑃 (𝐘 ∣ 𝐙 = 𝐳) = 𝑃 (𝐘 ∣ 𝐗 = 𝐱,𝐙 = 𝐳)
= 𝑃 (𝐘(𝐱, 𝐳) ∣ 𝐗 = 𝐱,𝐙 = 𝐳)
= 𝑃 (𝐘(𝐱, 𝐳) ∣ 𝐙 = 𝐳)
= 𝑃 (𝐘(𝐱, 𝐳)),

where the third and fourth equalities follow from the randomization of𝐗 and that of𝐙, respectively. Similarly,
we can show 𝑃 (𝐘 ∣ 𝐙 = 𝐳) = 𝑃 (𝐘(𝐱′, 𝐳)), thus we have shown 𝑃 (𝐘(𝐱, 𝐳)) = 𝑃 (𝐘(𝐱′, 𝐳)) for any 𝐱, 𝐱′ ∈ 
and 𝐳 ∈ .

To the prove the other direction, we want to show that 𝐘(𝐱, 𝐳) 𝑑
= 𝐘(𝐱′, 𝐳) implies 𝐘 ⟂⟂ 𝐗 ∣ 𝐙, or

equivalently 𝑃 (𝐘 ∣ 𝐗 = 𝐱,𝐙 = 𝐳) = 𝑃 (𝐘 ∣ 𝐗 = 𝐱′,𝐙 = 𝐳) for any value of 𝐳 ∈  and any value of 𝐱,
𝐱′ ∈  .

𝑃 (𝐘(𝐱, 𝐳)) = 𝑃 (𝐘(𝐱, 𝐳) ∣ 𝐙 = 𝐳)
= 𝑃 (𝐘(𝐱, 𝐳) ∣ 𝐗 = 𝐱,𝐙 = 𝐳)
= 𝑃 (𝐘 ∣ 𝐗 = 𝐱,𝐙 = 𝐳),

where the first two equalities follow from the randomization of 𝐙 and that of 𝐗, respectively. The same
argument shows 𝑃 (𝐘(𝐱′, 𝐳)) = 𝑃 (𝐘 ∣ 𝐗 = 𝐱′,𝐙 = 𝐳). Finally, because 𝐘(𝐱, 𝐳)

𝑑
= 𝐘(𝐱′, 𝐳) we have that

𝑃 (𝐘(𝐱, 𝐳)) = 𝑃 (𝐘(𝐱′, 𝐳)), implying 𝑃 (𝐘 ∣ 𝐗 = 𝐱,𝐙 = 𝐳) = 𝑃 (𝐘 ∣ 𝐗 = 𝐱′,𝐙 = 𝐳) for any value of 𝐳 ∈ 
and any value of 𝐱, 𝐱′ ∈  .

B Relation to Finite-Population Inference
In Section 3, we introduced𝐻0 under the super-population framework. Here, we consider the relationship be-
tween𝐻0 and Fisher’s sharp null of no treatment effect (Fisher, 1935). Under the finite-population framework
where the potential outcomes are fixed and the randomness comes only from the randomization of treatment
assignment, if we assume no interference between units, 𝐻0 reduces to testing 𝑌𝑖𝑗(𝐱𝑖𝑗 , 𝐳𝑖𝑗) = 𝑌𝑖𝑗(𝐱′𝑖𝑗 , 𝐳𝑖𝑗) for
all 𝑖, 𝑗 and all possible values of 𝐱𝑖𝑗 , 𝐱′𝑖𝑗 ∈  and 𝐳𝑖𝑗 ∈ . Under the super-population framework, if we make
the same no-interference assumption, 𝐻0 reduces to testing 𝑌𝑖𝑗(𝐱𝑖𝑗 , 𝐳𝑖𝑗)

𝑑
= 𝑌𝑖𝑗(𝐱′𝑖𝑗 , 𝐳𝑖𝑗) for all 𝑖, 𝑗 and all pos-

sible values of 𝐱𝑖𝑗 , 𝐱′𝑖𝑗 , 𝐳𝑖𝑗 , where the potential outcomes are assumed to be drawn from a population. These
two null hypotheses are not equivalent even though the CRT can test 𝐻0 under both the finite-population and
super-population frameworks (as proven in Theorem 3.1). This is because the distribution of 𝐘(𝐱, 𝐳) can still
be equal to 𝐘(𝐱′, 𝐳) even if 𝑌𝑖𝑗(𝐱, 𝐳) is different than 𝑌𝑖𝑗(𝐱′, 𝐳) for some 𝑖, 𝑗.

C Grouping Factor Levels
In this appendix, we further detail how to test 𝐻General

0 when the analyst is interested in grouping multiple
factor levels. For example, in the immigration conjoint application (Section 4), we wish to test whether
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respondents differentiate immigrants from Mexico and those from Europe where there are three distinct
levels for countries from Europe: Germany, France, and Poland. We now formally show how to group these
levels up into one category Europe and test the hypothesis 𝐻General

0 .
We introduce a coarsening function 𝑐 that takes 𝑞 factors of interest 𝐗 as input and transforms them to

a new set of grouped factors 𝐗. Formally, this function is defined as 𝑐 ∶  ↦  where  represents the
support of the grouped factors 𝐗 with || ≥ ||. For the above example, we define the function 𝑐 on the
“country of origin” factors such that the Mexico level takes one value whereas the France, Germany, and
Poland levels all take another value: Europe ∈ 𝐗. All other factor levels are mapped to different values in
𝐗.

Next, we define the outcome for each level of newly transformed factor levels. Given the coarsening
function 𝑐 defined above, we introduce the marginalized potential outcome variable 𝐘(𝐱, 𝐳), which averages
over the distribution of original factor levels that are grouped. Formally, this new outcome variable has the
following mixture structure,

𝐘(𝐱, 𝐳) =
∑

𝐱′∈ 𝟏{𝑐(𝐱′) = 𝐱}𝐘(𝐱′, 𝐳)𝑃 (𝐗 = 𝐱′ ∣ 𝐙 = 𝐳)
∑

𝐱′∈ 𝟏{𝑐(𝐱′) = 𝐱}𝑃 (𝐗 = 𝐱′ ∣ 𝐙 = 𝐳)
, (11)

where 𝐳 ∈ , 𝐱 ∈  , and 𝑃 (𝐗 = 𝐱 ∣ 𝐙 = 𝐳) represents the conditional distribution of 𝐗 given 𝐙 used in
the experiment. For example, if we group three European countries—France, Germany, and Poland—and
create one new factor level Europe, then its marginalized potential outcome will be a mixture distribution of
the original potential outcomes for the three countries weighted by their known randomization probabilities
conditional on the other factors.

Furthermore, the previously introduced coarsening function ℎ now takes the newly grouped up factor
𝐗 and maps it to the new coarsened factor, i.e., ℎ ∶  ↦ ̃ . Consequently, our updated generalized null
hypothesis is,

𝐻
General
0 ∶ 𝐘(𝐱, 𝐳)

𝑑
= 𝐘(𝐱′, 𝐳) for all 𝐱, 𝐱′ ∈  , such that ℎ(𝐱) = ℎ(𝐱′) and 𝐳 ∈ . (12)

Finally, it can also be shown by applying the same argument as the one used to prove Theorem 3.1 that
𝐻

General
0 is equivalent to the following conditional independence relation,

𝐘 ⟂⟂ 𝐗 ∣ ℎ(𝐗),𝐙. (13)
To test this null hypothesis, we keep the original test statistic 𝑇HierNet shown in Equation (5) under the

same symmetry constraints given in Equation (6) except that we use 𝐗 in place of 𝐗 to account for coarsening
based on the function 𝑐.

D Simulations
A primary advantage of the CRT is that it can yield powerful statistical tests by incorporating machine learn-
ing algorithms to capture complex interactions in high dimensions. The CRT achieves this while maintaining
the finite sample validity of the resulting 𝑝-values. In this section, we conduct simulation studies to show
that the CRT with the HierNet test statistic can be substantially more powerful than the AMCE-based test.

For simplicity, we focus on the setting in which each respondent only has one evaluation, i.e., 𝐽 = 1.
Figure 5 in Appendix D.5 presents additional simulations that have multiple evaluations per respondent based
on respondent random effects. In the setting where each respondent evaluates only one task, we treat each
response as an independent observation and drop subscript 𝑗. We also assume that every factor (𝐗,𝐙) is
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uniformly and independently randomized, implying that all treatment combinations are equally likely. As
before, 𝐗 represents the main factors of interest while 𝐙 denotes the other factors. For simplicity, we assume
that all factors (𝐗,𝐙) are binary with their success probabilities equal to 0.5, and we have one factor of
interest (𝑞 = 1) with no respondent characteristics 𝐕.

D.1 The Basic Setup
To clearly separate main and interaction effects, we use the sum-to-zero constraint by coding each binary
factor as (−0.5, 0.5). Our data generating process uses the following logistic regression model under the
forced-choice design,

Pr(𝑌𝑖 = 1 ∣ 𝑋𝑖,𝐙𝑖) = logit−1 [𝛽𝑋(𝑋𝐿
𝑖 −𝑋𝑅

𝑖 ) + 𝛽⊤𝑍(𝐙
𝐿
𝑖 − 𝐙𝑅

𝑖 )
+ 2𝛾⊤{(𝑋𝐿

𝑖 𝐙
𝐿
𝑖 ) − (𝑋𝑅

𝑖 𝐙
𝑅
𝑖 )} + 2𝛿⊤{(𝑋𝐿

𝑖 𝐙
𝑅
𝑖 ) − (𝑋𝑅

𝑖 𝐙
𝐿
𝑖 )} + 2�̃�⊤{(𝐙𝐿

𝑖 × 𝐙𝐿
𝑖 ) − (𝐙𝑅

𝑖 × 𝐙𝑅
𝑖 )}

]

,

where 𝛽𝑋 and 𝛽𝑍 represent the coefficient vectors for the main effects of 𝐗 and 𝐙, respectively, and 𝛾 and
𝛿 denote the coefficient column vectors for the within-profile and between-profile interactions between 𝐗
and 𝐙, respectively. For simplicity, we omit between-profile interactions among 𝐙 and consider only within-
profile interactions among 𝐙 with effect sizes �̃� . To facilitate interpretation, each interaction coefficient
is multiplied by 2 because our encoding of interaction effects, e.g., {(𝑋𝐿

𝑖 𝐙
𝐿
𝑖 ) − (𝑋𝑅

𝑖 𝐙
𝑅
𝑖 )}, results in three

possible values (−0.5, 0, 0.5).
This data generating process also implies the absence of profile order effects. Lastly, we note that the

logistic regression has a latent variable, 𝑌 ′
𝑖 , representation such that 𝑌𝑖 = 1 if 𝑌 ′

𝑖 > 0 and 0 otherwise, where
we let 𝜖𝑖 follow a standard logistic distribution and

𝑌 ′
𝑖 = 𝛽𝑋(𝑋𝐿

𝑖 −𝑋𝑅
𝑖 ) + 𝛽⊤𝑍(𝐙

𝐿
𝑖 − 𝐙𝑅

𝑖 )
+ 2𝛾⊤{(𝑋𝐿

𝑖 𝐙
𝐿
𝑖 ) − (𝑋𝑅

𝑖 𝐙
𝑅
𝑖 )} + 2𝛿⊤{(𝑋𝐿

𝑖 𝐙
𝑅
𝑖 ) − (𝑋𝑅

𝑖 𝐙
𝐿
𝑖 )} + 2�̃�⊤{(𝐙𝐿

𝑖 × 𝐙𝐿
𝑖 ) − (𝐙𝑅

𝑖 × 𝐙𝑅
𝑖 )} + 𝜖𝑖.

We consider settings in which 𝐗 has one main effect of 𝛽𝑋 = 0.1, which is fixed for all simulations. In
addition, 𝐙 consists of ten factors with four non-zero main effects with a magnitude of 0.1 with alternat-
ing signs, which is fixed for all simulations, i.e., 𝛽𝑍 = (0.1,−0.1, 0.1,−0.1, 0,… , 0). Lastly, we fix �̃�⊤ to
have fifteen non-zero entries of 0.05, where the non-zero interactions are randomly chosen from all possible
within-profile interactions among 𝐙. The remaining entries are all zero.

The sample size is fixed to 𝑛 = 3, 000 throughout the simulations. For each simulation, we generate
within-profile and between-profile interactions between 𝐗 and 𝐙 by randomly selecting the specified number
of interactions from all possible interactions. The total number of non-zero interaction effects between 𝐗 and
𝐙 varies from 0 to 18. The number of non-zero within-profile interactions between 𝐗 and 𝐙 is kept identical
to that of non-zero between-profile interactions between 𝐗 and 𝐙. We make all non-zero within-profile inter-
actions positive and all non-zero between-profile interactions negative while fixing all non-zero interaction
effects between 𝐗 and 𝐙 to be equal in magnitude. We explore additional simulations in Appendix D.3 where
there are heterogeneous interaction effects. We set 𝐵 = 200 for all simulations presented in this paper.

To calculate the statistical power of each test, we compute a 𝑝-value for each of 1,000 Monte Carlo data
sets. For the CRT, we use the HierNet test statistic given in Equation (5) and impose the constraints in
Equation (6), whereas we use the 𝑡-test based on the estimated regression coefficient of 𝐗 for the AMCE-
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Figure 2: The figure shows how the power of the CRT and AMCE-based tests varies as the size of interaction effects
(left plot) or the number of non-zero interaction effects (right) increases. The AMCE-based test (red circles) is based
on the 𝑡-test from the estimated regression coefficient. The CRT uses the HierNet test statistic given in Equation (5).
The sample size is 𝑛 = 3, 000. Finally, the standard errors are negligible with a maximum value of 0.016.

based test.11 The AMCE-based analysis assumes no profile-order effect. Therefore, as suggested by Hain-
mueller, Hopkins and Yamamoto (2014), we run the linear regression by stacking all the left and right pro-
files, resulting in 2𝑛 rows. More formally, we have the new response 𝐘AMCE = [𝐘; 𝟏 − 𝐘] regressed on
𝐗AMCE = [𝐗𝐿;𝐗𝑅], where 𝐗𝐿 = [𝑋𝐿

1 ;𝑋
𝐿
2 ;… ;𝑋𝐿

𝑛 ] and 𝐗𝑅 is defined similarly (note we have dropped the
𝑗 subscript since 𝐽 = 1). Finally, the standard errors are clustered by respondents as suggested by Hain-
mueller, Hopkins and Yamamoto. Since 𝐽 = 1 for our simulation, we cluster the standard errors on each
evaluation task, i.e., each unique cluster consists of the left and right profile for each task. We then compute
the power as the proportion of 𝑝-values that are less than 𝛼 = 0.05.

D.2 Main Simulation Results
We now present the results for the simulations described above. The left plot of Figure 2 shows how the
statistical power of each test varies as the size of interaction effects between𝐗 and𝐙 increases. The number of
non-zero interaction effects between 𝐗 and 𝐙 is fixed at six. For ease of interpretation, we plot the percentage
of total outcome variance explained by the interaction effects between 𝐗 and 𝐙 on the 𝑥-axis.12 In our setup,
the total variance represents the outcome variance explained by all main and interaction effects under the
latent representation of the logistic regression model. Consequently, we define the variance explained by the
interaction effects between 𝐗 and 𝐙 and all other “remaining” effects (main effects of 𝐗, 𝐙, and interactions

11Although this is a valid procedure to compute the AMCE estimate for𝐗, practitioners typically compute the AMCE
estimates of all factors (𝐗,𝐙) simultaneously with a single linear regression of𝐘 on all (𝐗,𝐙). Figure 4 of Appendix D.4
shows that the power of the AMCE remains indistinguishable when using all factors (𝐗,𝐙) in a single linear regression.
Lastly, although our goal is to compare the CRT with the AMCE, we acknowledge that practitioners may also use the
omnibus 𝐹 -test for testing interactions by including all the two-way interactions. We show in Appendix J that such an
approach leads to inflated 𝑝-values, thus we omit this as a baseline comparison here.

12The 𝑥-axis ticks correspond to interaction sizes of 0, 0.025, 0.05, 0.075, 0.1, and 0.125, respectively. For example,
the 20% point on the 𝑥-axis refers to an interaction size of 0.05.
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among 𝐙) as,
𝜎2

Interaction ∶= 𝕍 (2𝛾⊤{(𝑋𝐿
𝑖 𝐙

𝐿
𝑖 ) − (𝑋𝑅

𝑖 𝐙
𝑅
𝑖 )} + 2𝛿⊤{(𝑋𝐿

𝑖 𝐙
𝑅
𝑖 ) − (𝑋𝑅

𝑖 𝐙
𝐿
𝑖 )})

𝜎2
Remaining ∶= 𝕍 (𝛽𝑋(𝑋𝐿

𝑖 −𝑋𝑅
𝑖 ) + 𝛽⊤𝑍(𝐙

𝐿
𝑖 − 𝐙𝑅

𝑖 ) + 2�̃�⊤{(𝐙𝐿
𝑖 × 𝐙𝐿

𝑖 ) − (𝐙𝑅
𝑖 × 𝐙𝑅

𝑖 )}),

where 𝕍 (⋅) denotes the variance of the respective random variable. The total variance is defined as 𝜎2
Interaction+

𝜎2
Remaining. Since 𝛽𝑋 , 𝛽𝑍 , �̃� are fixed for all simulations, 𝜎2

Remaining is fixed with a value of:

𝜎2
Remaining = 9× 0.12 ×2𝕍 (𝑋𝐿

𝑖 ) + 15× 4× 0.0522𝕍 (𝑋𝐿
𝑖 𝑋

𝑅
𝑖 ) = 9× 0.12 × 1

2
+ 15× 4× 0.052 × 1

8
= 0.06375,

where the first equality holds because all random variables (𝑋𝐿
𝑖 , 𝑋

𝑅
𝑖 ,𝐙

𝐿
𝑖 ,𝐙

𝑅
𝑖 ) are independent, centered at

zero, and identically distributed (element-wise identically distributed for the multivariate 𝐙𝐿
𝑖 and 𝐙𝑅

𝑖 ).
Furthermore, given a signal size 𝐼 and the number of interactions 𝑛𝐼 (𝑛𝐼 denotes the total number of

within-profile and between-profile interactions), we have that:

𝜎2
Interaction = 8𝐼2𝕍 (𝑋𝐿

𝑖 𝑋
𝑅
𝑖 )𝑛𝐼 =

𝐼2𝑛𝐼
2

.

Finally, since the left plot of Figure 2 contains six interactions (𝑛𝐼 = 6), the 𝑥-axis is computed by 3𝐼2

3𝐼2+0.06375 ,
where 𝐼 takes the following values (0, 0.025, 0.05, 0.075, 0.1, 0.125).

Consistent with our theoretical expectation, the CRT (blue triangles) becomes more powerful than the
AMCE-based test (red circles) as the interaction size increases. For example, when the interaction size is
strong enough to account for about 30% of the total variance, the CRT is approximately 20 percentage points
more powerful than the AMCE-based test. When there is no interaction effect, the CRT is only slightly less
powerful (by about 3 percentage points) than the AMCE-based test.

The right plot of Figure 2 shows how the power of the tests change as one varies the number of non-zero
interaction effects. The size of interaction effects is fixed to 0.06, around half the size of the main effect. We
find that as expected, the CRT becomes more powerful than the AMCE-based test as the number of interaction
increases. For example, when there are twelve interactions the CRT is approximately 10 percentage points
more powerful than the AMCE-based test. Even when there is no interaction effect at all, the loss of statistical
power is minimal. Appendix E presents additional simulation results, showing that the use of no profile order
constraints given in Equation (6) increases the power of test.

D.3 Heterogeneous Interaction Size
As shown in the above simulations, we fix all interaction sizes to be equal for every simulation. Here, we
examine if the simulation results presented in Figure 2 change if there are heterogeneous interaction effects.

We compare the statistical power under two different data generating processes using the CRT with test
statistic in Equation (5). We denote the original data generating process as the “homogeneous” scenario
since all interaction sizes are equal under this scenario. We create an additional “heterogeneous” scenario
that contains two unique varying interaction effects - one that is strong, 𝐼𝑠, and one that is weak 𝐼𝑤. To
facilitate a fair comparison between the “heterogeneous” and “homogeneous” scenario, we force the total
variance explained by the interactions to be equal under both scenarios. We assign all strong interaction
effects to the within-profile interaction and all weak interaction effects to the between-profile interaction.
Suppose there are only two non-zero interactions between 𝐗 and 𝐙. Since we impose 𝜎2

Interaction to be equal
under both the “homogeneous” and “heterogeneous” scenario, we have the following equation:

𝐼2𝑤 + 𝐼2𝑠 = 2𝐼2,
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Figure 3: The figure shows the power of the “heterogeneous” (light green circles) and “homogeneous” (blue triangles)
scenario in the same simulation setting as in Figure 2.

where 𝐼 is the interaction size for the “homogeneous” scenario.
The possible values of strong and weak effects lie on the circle of radius √

2𝐼 centered at the origin.
We pick 𝐼𝑠(𝐼) =

√

4
3
𝐼 and 𝐼𝑤(𝐼) =

√

2
3
𝐼 , i.e., the point corresponding to the thirty degree angle of the

circle. The variance explained by the interaction is equal for both the “heterogeneous” and “homogeneous”
scenario when there are two non-zero interactions. To create a power curve for the “heterogeneous” scenario
analogous to the left plot in Figure 2, we create three interactions of size 𝐼𝑠(𝐼) for the within-profile interac-
tion and three interactions of size 𝐼𝑤(𝐼) for the between-profile interaction. The two scenarios still maintain
equal variance explained by the interaction effects because all random variables are independent and centered
at zero. For the analogue of the right plot of Figure 2, we similarly keep the relative proportion of 𝐼𝑤(𝐼)
and 𝐼𝑠(𝐼) fixed and increase the number of non-zero interactions to match the “homogeneous” scenario. For
example, if there are twelve non-zero interaction effects, then there are six within-profile interactions of size
𝐼𝑠(𝐼) and six between-profile interactions of size 𝐼𝑤(𝐼) for the “heterogeneous” scenario.

Figure 3 shows that the power of the “heterogeneous” and “homogeneous” scenario is indistinguishable
under the same simulation setting in Figure 2. This shows that we lose no generality by considering only the
simple “homogeneous” scenario in the main simulations in Figure 2.

D.4 Additional AMCE Simulations
The AMCE computed in Figure 2 was based on a linear regression of 𝐘 on 𝐗, without 𝐙 included among the
predictors. Although this is valid and sufficient to compute the AMCE of 𝐗, practitioners often compute the
AMCE of all factors (𝐗,𝐙) simultaneously with a single linear regression of 𝐘 on all (𝐗,𝐙). We compute the
power of the “long AMCE” that is based on the 𝑡-test for the estimated regression coefficient of 𝐗 obtained
by regressing the response 𝐘 on all (𝐗,𝐙). Figure 4 shows that the power of the “long AMCE” (orange
squares) is indistinguishable from that of the original AMCE presented in Figure 2 (red circles).
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Figure 4: The figure shows the power of the “long AMCE” that uses all (𝐗,𝐙) in the linear regression fit (orange
squares) and the original AMCE that uses only 𝐗 in the linear regression fit (red circles) in the same simulation setting
as in Figure 2.

D.5 Simulations with Multiple Tasks per Respondent
Appendix D.1 presents the simulation results where each respondent evaluates only one task (𝐽 = 1). Here,
we consider a simulation setup where each respondent evaluates 𝐽 = 5 tasks while still fixing the total sample
size 𝑛𝐽 = 3, 000. We keep the same simulation setup as the one described in Appendix D.1 except that we
allow each respondent to have a random effect 𝑈𝑗 ∼ 𝑁(0, 𝜎2

𝑅𝐸). More formally, our new data generating
process is,

Pr(𝑌𝑖𝑗 = 1 ∣ 𝑋𝑖𝑗 ,𝐙𝑖𝑗) = logit−1
[

𝛽𝑋(𝑋𝐿
𝑖𝑗 −𝑋𝑅

𝑖𝑗 ) + 𝛽⊤𝑍(𝐙
𝐿
𝑖𝑗 − 𝐙𝑅

𝑖𝑗)

+ 2𝛾⊤{(𝑋𝐿
𝑖𝑗𝐙

𝐿
𝑖𝑗) − (𝑋𝑅

𝑖𝑗𝐙
𝑅
𝑖𝑗)} + 2𝛿⊤{(𝑋𝐿

𝑖𝑗𝐙
𝑅
𝑖𝑗) − (𝑋𝑅

𝑖𝑗𝐙
𝐿
𝑖𝑗)} + 2�̃�⊤{(𝐙𝐿

𝑖𝑗 × 𝐙𝐿
𝑖𝑗) − (𝐙𝑅

𝑖𝑗 × 𝐙𝑅
𝑖𝑗)} + 𝑈𝑗

]

,

where 𝑈𝑗 is the random effect for each respondent 𝑗. We keep all simulation parameters the same as that in
Figure 2 except we use the above data generating process with 𝐽 = 5 evaluation tasks and random effects
with 𝜎2

𝑅𝐸 = 0.1 to produce Figure 5.
Although the CRT HierNet test statistic does not change with the addition of multiple respondent eval-

uations, the AMCE estimate must properly account for the respondent effect. As suggested by Hainmueller,
Hopkins and Yamamoto (2014), we use the robust clustered standard errors clustered on respondents for the
linear regression of 𝐘 on 𝐗 and use the 𝑡-test based on the estimated regression coefficient of 𝐗 to produce
the power curve (red). Figure 5 shows the results are similar to those shown in Figure 2, suggesting that our
results are not sensitive to the number of evaluations per respondent.

E Enforcing The No Profile Order Effect
We detail here a way to enforce the no profile order effect constraints in Equation (6) for general test statistics.
We show through simulations that these constraints, when they hold, can substantially improve statistical
power.
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Figure 5: The figure shows the power of the AMCE (red circles) and the CRT (blue triangles) using the HierNet test
statistic in Equation (5). We modify the simulation setting in Figure 2 by having each respondent evaluate 𝐽 = 5 tasks
with a total of 𝑛𝐽 = 3, 000 responses. Otherwise, the simulation setup remains identical to that in Figure 2. Each
respondent has a random effect of 𝜎2𝑅𝐸 = 0.1.

Row Number Country𝐿 Country𝑅 Gender𝐿 Gender𝑅 Respondent Age 𝐘
1 Mexico Germany Male Female 27 1
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝑛𝐽 + 1 Germany Mexico Female Male 27 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

Table 2: Visual example of 𝐷𝑐 data matrix with 𝐗 as country of origin, 𝐙 as gender, and 𝐕 as the respondent’s age.
With a slight abuse of notation Country𝐿 denotes the left profile’s country values. Country𝑅, Gender𝐿, and Gender𝑅
are defined similarly.

Under these constraints, switching the "left" and "right" profile order does not change the value of the
test statistic. We now formalize this intuition. First denote 𝐷 ∈ ℝ𝑛𝐽×(2𝑝+𝑟+1) as the regression data matrix
composed of (𝐗,𝐙,𝐕,𝐘). Let 𝑠𝐸 ∶ ℝ𝑛𝐽×(2𝑝+𝑟+1) → ℝ𝑛𝐽×(2𝑝+𝑟+1) denote a function that takes a data matrix as
an input and swaps the “left” and “right” profile order for rows𝐸 of the data matrix, where𝐸 ⊂ {1, 2,… , 𝑛𝐽}.
For example, suppose we swap just the first row and we denote (�̃�, �̃�, �̃�, �̃�) as the columns for the output
𝑠{1}(𝐷). Then �̃�𝐿

11 = 𝐗𝑅
11, �̃�𝑅

11 = 𝐗𝐿
11, �̃�𝐿

11 = 𝐙𝑅
11, �̃�𝑅

11 = 𝐙𝐿
11, and 𝑌11 = 1 − 𝑌11 and all remaining rows

remain identical as the original data 𝐷. The function applies no swap to the respondent characteristic 𝐕
(�̃� = 𝐕).

We introduce a new data matrix 𝐷𝑐 that appends the original data matrix with a data matrix that swaps
the profile order for all rows. Formally, 𝐷𝑐 = [𝐷; 𝑠{1,2,…,𝑛𝐽}(𝐷)]. Table 2 shows an example of 𝐷𝑐 with 𝐗
as country, 𝐙 as gender, and 𝐕 as the respondent’s age. Conceptually, 𝐷𝑐 aims to destroy all information
about the profile order since the “left” and “right” profile are now indistinguishable, thus ensuring any test
statistic that uses 𝐷𝑐 will respect the no profile order effect constraints. The following lemma formally states
this result.
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Figure 6: This figure represents the power gain from imposing the no “Profile Order Effect” constraints in Equation (6)
under the same simulation setup in Figure 2. We keep the AMCE and the original HierNet statistical power curves (red
circles and blue triangles respectively) and add the new unconstrained HierNet test statistic (purple squares).

Lemma E.1. Let 𝑇 (⋅) be a row invariant test statistic,13 then for any 𝐸 ⊂ {1, 2,… , 𝑛𝐽} we have that
𝑇 (𝐷𝑐) = 𝑇 (𝑠𝐸(𝐷)𝑐), where 𝑠𝐸(𝐷)𝑐 = [𝑠𝐸(𝐷); 𝑠1,2,…,𝑛𝐽 (𝑠𝐸(𝐷))].
Proof. The lemma holds because 𝐷𝑐 = 𝑠𝐸(𝐷)𝑐 up to row permutations. Using the assumption that 𝑇 (⋅)
is a row invariant test statistic we obtain the equality. Many algorithms like Random Forest have random
initializations in the process so 𝑇 (𝐷𝑐) = 𝑇 (𝑠𝐸(𝐷)𝑐) may only hold up to distributional equality.

Lemma E.1 states that the test statistic will remain invariant to any relabelling of “left” and “right” profiles
as long the test statistic is a function of the 𝐷𝑐 data matrix. All regression based algorithms will respect exact
row invariance. Lemma E.1 allows practitioners to build any test statistic, even ones that do not have natural
“left” and “right” coefficients, while still enforcing the no profile order effect. In particular, we enforce the
constraints in Equation (6) by using 𝐷𝑐 as the input in HierNet.

Simulations. We now show that imposing the no profile order effect constraints in Equation (6) can sub-
stantially increase statistical power under the same simulation setup in Figure 2 when the no profile order
effect assumption is satisfied. To evaluate the power gain, we also fit HierNet without imposing the con-
straints in Equation (6) by using the original data 𝐷. We use 𝑇HierNet(𝐗,𝐘,𝐙)𝐿 + 𝑇HierNet(𝐗,𝐘,𝐙)𝑅 as the
test statistic, where 𝑇HierNet(𝐗,𝐘,𝐙)𝐿 is the same as 𝑇HierNet(𝐗,𝐘,𝐙) in Equation (5) but all coefficients
correspond to their respective estimates for the left profile. We similarly define 𝑇HierNet(𝐗,𝐘,𝐙)𝑅.

Figure 6 shows that imposing the no profile order effect constraints can significantly increase power.
For example, the power of HierNet without the constraints (purple squares) is roughly equal or smaller than
that of even the AMCE (red circles) when the interaction effect accounts for 20% of the variance or when
there are as many interactions as twelve. Furthermore, we see the power of using HierNet that imposes the
constraints (blue triangles) is consistently higher than that of the HierNet without the constraints.

13More formally we say 𝑇 (𝐷) is row invariant if 𝑇 (𝐷) = 𝑇 (𝜋(𝐷)) for any possible 𝜋, where 𝜋 denotes a possible
permutation of the rows of 𝐷.
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Algorithm 2: Generalized 𝐻0: Testing 𝐻General
0

Input: Data (𝐗,𝐘,𝐙,𝐕), test statistic 𝑇 (𝐱, 𝐲, 𝐳, 𝐯), ℎ(𝐱), total number of re-samples 𝐵;
for 𝑏 = 1, 2,… , 𝐵 do

Sample 𝐗(𝑏) from the distribution of 𝐗 ∣ (ℎ(𝐗),𝐙,𝐕) conditionally independently of 𝐗
and 𝐘;

Output: 𝑝-value ∶= 1
𝐵+1

[

1 +
∑𝐵

𝑏=1 1{𝑇 (𝐗
(𝑏),𝐘,𝐙,𝐕) ≥ 𝑇 (𝐗,𝐘,𝐙,𝐕)}

]

Enforcing No Profile Order Effect in the Carryover Effect Test Statistic. As mentioned in Sec-
tion 3.5, we enforce the no profile order effect constraints when conducting the test of no carryover effect.
We detail here how to implement this.

Since 𝐗∗ represents the lag-1 profile values, we do not expect 𝐗∗ alone (without interactions with 𝐙∗) to
influence respondents’ choice of the left versus right profile. Therefore, we force all main effects and interac-
tions among 𝐗∗ to be zero in the following way. Let 𝐗∗𝐿

𝑖 ∈ ℝ
𝐽
2 ×𝑝 denote the columns of 𝐗∗

𝑖 that correspond
to the left profile in 𝐗∗

𝑖 . More formally, 𝐗∗𝐿
𝑖 = [[(𝐗𝐿

𝑖1); (𝐙
𝐿
𝑖1)]

⊤; [(𝐗𝐿
𝑖3); (𝐙

𝐿
𝑖3)]

⊤;… ; [(𝐗𝐿
𝑖,𝐽−1); (𝐙

𝐿
𝑖,𝐽−1)]

⊤].
If 𝐽 is not even, consider up to 𝐽 − 1 instead. We define 𝐗∗𝑅

𝑖 ,𝐙∗𝐿
𝑖 ,𝐙∗𝑅

𝑖 similarly. We also define 𝐗∗𝐿 =
[𝐗∗𝐿

1 ;… ;𝐗∗𝐿
𝑛 ] ∈ ℝ

𝑛𝐽
2 ×𝑝 with 𝐗∗𝑅,𝐙∗,𝐿,𝐙∗,𝑅 defined similarly. Then, we append copies of the following:

[[(𝐗∗𝑅)⊤; (𝐗∗𝐿)⊤; (𝐙∗𝑅)⊤; (𝐙∗𝐿)⊤]⊤; [(𝐗∗𝐿)⊤; (𝐗∗𝑅)⊤; (𝐙∗𝑅)⊤; (𝐙∗𝐿)⊤]⊤; [(𝐗∗𝑅)⊤; (𝐗∗𝐿)⊤; (𝐙∗𝐿)⊤; (𝐙∗𝑅)⊤]⊤
to the original data matrix [(𝐗∗𝐿)⊤; (𝐗∗𝑅)⊤; (𝐙∗𝐿)⊤; (𝐙∗𝑅)⊤]⊤, resulting in a total of 2𝑛𝐽 rows. Lastly,
we also append copies of [𝟏 − 𝐘∗

𝑖 ; 𝟏 − 𝐘∗
𝑖 ;𝐘

∗
𝑖 ] to the original response 𝐘∗

𝑖 . Appending the first copy of
[(𝐗∗𝑅)⊤; (𝐗∗𝐿)⊤; (𝐙∗𝑅)⊤; (𝐙∗𝐿)⊤]⊤ to the original data matrix enforces the familiar constraint in Equation (6)
using Lemma E.1. The remaining copies force all the main effects and interactions among 𝐗∗ to be zero by
appealing to the same reasoning in Lemma E.1.

F CRT Procedure for Testing Extensions
In this appendix, we describe in further detail how to carry out all the resampling procedures for the tests
introduced in Sections 3.4 and 3.5.

F.1 Testing 𝐻General
0

When testing 𝐻General
0 , the resampling procedure is different than Algorithm 1 because Equation (8) forces us

to hold (ℎ(𝐗),𝐙) constant rather than holding only 𝐙 constant. The conditional distribution of 𝐗 ∣ (ℎ(𝐗),𝐙)
constrains 𝐗 to be randomized only within the factor levels of interest. For concreteness, consider the im-
migration example in Section 4. In this case, ℎ(𝐗) groups levels Mexico and Europe to one output while
keeping all the other countries of origin the same. Therefore, when obtaining the resamples for the “country
of origin” factor, we keep all countries except Mexico and Europe constant, i.e., countries such as China do
not get re-randomized. For the entries corresponding to Mexico and Europe, we resample values Mexico
and Europe with probabilities (0.25, 0.75) respectively (since 3 countries make up Europe). We present this
resampling procedure in Algorithm 2. Lastly, we remark that Algorithm 2 remains the same when testing
𝐻

General
0 except we repalce 𝐗 with 𝐗.
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Algorithm 3: CRT: Profile Order Effect
Input: Data (𝐗,𝐘,𝐙), test statistic 𝑇 (𝐱, 𝐲, 𝐳), total number of re-samples 𝐵;
for 𝑏 = 1, 2,… , 𝐵 do

Sample 𝑛𝐽 independent Bernoulli(0.5) independently of (𝐗,𝐘,𝐙). 𝐸𝑏 is the index set
corresponding to values of 1 in the 𝑛𝐽 Bernoulli’s;

Output: 𝑝-value ∶= 1
𝐵+1

[

1 +
∑𝐵

𝑏=1 1{𝑇 (𝐗
(𝐸𝑏),𝐘(𝐸𝑏),𝐙(𝐸𝑏)) ≥ 𝑇 (𝐗,𝐘,𝐙)}

]

Algorithm 4: CRT: Carryover Effects
Input: Data (𝐗∗,𝐘∗,𝐙∗), test statistic 𝑇 (𝐱∗, 𝐲∗, 𝐳∗), total number of re-samples 𝐵;
for 𝑏 = 1, 2,… , 𝐵 do

Sample (𝐗𝑏
𝑖𝑗 ,𝐙

𝑏
𝑖𝑗) from the distribution of (𝐗𝑖𝑗 ,𝐙𝑖𝑗) independently of 𝐘 for

𝑖 = 1, 2,… , 𝑛 and 𝑗 = 1, 3,… 𝐽 − 1. Let (𝐗𝑏
𝑖 )

∗ = [[𝐗𝑏
𝑖1;𝐙

𝑏
𝑖1]

⊤; [𝐗𝑏
𝑖3;𝐙

𝑏
𝑖3]

⊤;
… ; [𝐗𝑏

𝑖,𝐽−1;𝐙
𝑏
𝑖,𝐽−1]

⊤] and (𝐗𝑏)∗ = [(𝐗∗
1)

𝑏; (𝐗∗
2)

𝑏;… ; (𝐗∗
𝑛)

𝑏];
Output: 𝑝-value ∶= 1

𝐵+1

[

1 +
∑𝐵

𝑏=1 1{𝑇 ((𝐗
𝑏)∗,𝐘∗,𝐙∗) ≥ 𝑇 (𝐗∗,𝐘∗,𝐙∗)}

]

F.2 Testing the Regularity Assumptions
Profile Order Effect. We first describe testing the assumption of no profile order effect without imposing
SUTVA. For any 𝐸 ⊂ {1,… , 𝑛𝐽}, let 𝐱(𝐸) swap the left and right profile values in rows 𝐸 of 𝐱 while leaving
the remaining rows unchanged. We similarly define 𝐳(𝐸). Then, let 𝐘(𝐸)(𝐱, 𝐳) flip the bits of (replace 1’s with
0’s and vice versa) the entries of 𝐘(𝐱, 𝐳) corresponding to indices in 𝐸 while leaving the remaining entries
unchanged. For example, for simplicity, assume no 𝐙 while 𝑛𝐽 = 3, 𝐸 = {1}, 𝐱 = [(𝐺, 𝐹 ); (𝑃 ,𝐺); (𝑀,𝐹 )]
(the left profile values come first), and 𝐘(𝐱) = (1, 0, 1). Then 𝐱(𝐸) = [(𝐹 ,𝐺); (𝑃 ,𝐺); (𝑀,𝐹 )] and 𝐘(𝐸)(𝐱) =
(0, 0, 1). The observed 𝐘(𝐸) is defined similarly. We can formally state the null hypothesis of no profile order
effect as follows:

𝐻Order
0 ∶ 𝐘(𝐱, 𝐳)

𝑑
= 𝐘(𝐸)(𝐱(𝐸), 𝐳(𝐸)) for all 𝐸 ⊂ {1,… , 𝑛𝐽}, 𝐱 ∈  , and 𝐳 ∈ .

This null hypothesis states that for all possible reorderings of the left and right profiles there is no causal
impact on which profile is chosen. For the resampling procedure, we hold the realized values of all (𝐗,𝐙)
constant while only resampling the subset 𝐸, i.e., drawing 𝑛𝐽 independent Bernoulli coin flips to determine
which of the 𝑛𝐽 rows to include as part of 𝐸 as described above. Algorithm 3 details the procedure to
calculate the CRT 𝑝-value for testing 𝐻Order

0 . Lastly, to not enforce Equation (6) in 𝑇 Order
HierNet, we fit HierNet

on the original data matrix (𝐗,𝐘,𝐙) rather than 𝐷𝑐 .

Carryover Effect. When testing the carryover effect, we need to hold the even numbered tasks 𝐙∗

fixed while resampling all odd numbered tasks 𝐗∗. Therefore, we resample all factors (𝐗𝑖𝑗 ,𝐙𝑖𝑗) for 𝑗 =
1, 3,… , 𝐽−1 from the experimental distribution for all the factors while holding (𝐗𝑖𝑗 ,𝐙𝑖𝑗) for 𝑗 = 2, 4,… , 𝐽
constant. Algorithm 4 details the procedure to calculate the CRT 𝑝-value for testing 𝐻Carryover

0 .

Fatigue Effect. To carry out the CRT to test the fatigue effect, we re-sample only the task evaluation
order index 𝐅 for each respondent uniformly from the set of all permutations on {1,… , 𝐽}, denoted as Π𝐽 ,
while holding all the experimental factor values fixed. Algorithm 5 details the procedure to calculate the
CRT 𝑝-value for testing 𝐻Fatigue

0 .
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Algorithm 5: CRT: Fatigue Effect
Input: Data (𝐗,𝐘,𝐙,𝐅), test statistic 𝑇 (𝐱, 𝐲, 𝐳, 𝐟 ), total number of re-samples 𝐵;
for 𝑏 = 1, 2,… , 𝐵 do

Sample 𝐅𝑏 uniformly from Π𝐽 the set of all permutations on {1,… , 𝐽};
Output: 𝑝-value ∶= 1

𝐵+1

[

1 +
∑𝐵

𝑏=1 1{𝑇 (𝐗,𝐘,𝐙,𝐅
𝑏) ≥ 𝑇 (𝐗,𝐘,𝐙,𝐅)}

]
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Figure 7: The estimated Average Marginal Component Effect (AMCE) of candidate’s gender in the Ono and Burden
(2018) study. We present the estimates for congressional candidates (left) and presidential candidates (right). The 95%
confidence intervals are also shown.

G Additional Conjoint Application - Role of Gender in Political
Candidate Evaluation

We present here an additional empirical application concerning the role of gender discrimination in political
candidate evaluations. Recently, several scholars have used conjoint analysis to study the role of gender
discrimination in candidate evaluation (e.g., Ono and Burden, 2018; Teele, Kalla and Rosenbluth, 2018).
We revisit the study by Ono and Burden (2018) which examines whether voters prefer candidates of one
gender over those of another after controlling for other candidate characteristics.14 The study is based on a
sample of voting-eligible adults in the U.S. collected in March 2016 and also uses the forced-choice conjoint
design. The following 13 factors are independently and uniformly randomized across their levels: gender,
age, race, family, experience in public office, salient personal characteristics, party affiliation, policy area of
expertise, position on national security, position on immigrants, position on abortion, position on government
deficit, and favorability among the public (see Table 6 in Appendix H and the original article for details).
The survey also contains information about the respondents’ educational background, gender, age, region,
social class, partisanship, political interest, and ethnocentrism. There were 1,583 respondents each given 10
tasks, resulting in 15,830 observations, half of which were for congressional candidates and the other half
for presidential candidates.

The original study yields a negative estimate of the AMCE of female candidates, relative to male coun-
terparts, for presidential candidates. However, the estimated AMCE of female candidates is not statistically
distinguishable from zero for congressional candidates, based on a simple 𝑡-test for the coefficient of Male
from the linear regression with cluster standard errors. This finding led to the authors’ conclusion that gender

14This study treats gender as a binary factor with levels Male and Female.
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CRT AMCE Profile order effect Carryover effect Fatigue effect
𝑝-values 0.026 0.93, 0.40 0.15 0.97 0.66

Table 3: The 𝑝-values based on the Conditional Randomization Test (CRT) and the Average Marginal Component
Effect (AMCE) Estimation. The first 𝑝-values are from the HierNet-based CRT and AMCE-based test statistics, testing
whether whether candidate’s “gender” matters for voters’ preferences of Congressional candidates. The second AMCE-
based 𝑝-value for “gender” corresponds to a fair comparison with the CRT-based 𝑝-value by additionally testing the
“gender” interaction with the candidate’s “party affiliation” (Democratic or Republican). The remaining columns report
the 𝑝-values for testing no profile order effect, no carryover effect, and no fatigue effect for the respective application.

discrimination “is limited to presidential rather than congressional elections” (p. 583). Figure 7 reproduces
these AMCE estimates. Like the immigration example, the authors fit a linear regression with all fourteen
factors as predictors to obtain these estimates.

In this section, we use the CRT to formally test whether the gender of congressional candidates matters
in any way for voters’ preferences while controlling for the other candidate characteristics. The rejection of
this null hypothesis would indicate that gender does matter even for congressional candidates.

G.1 Application Results
To test whether or not the gender of Congressional candidates matters in voter preferences, we use the same
data as the one used in Ono and Burden (2018). The Congressional dataset consists of 7,915 observations
with 5 tasks performed by each of 𝑛 = 1, 583 respondents. Our main factor of interest 𝐗 is a binary variable
representing male or female. In addition, we use the remaining 12 randomized factors𝐙 and all the respondent
characteristics 𝐕. We test the main null hypothesis 𝐻0 introduced in Section 3.2.

As mentioned in Section 3.3, the use of substantive knowledge can improve the power of the test. To
demonstrate this, we leverage the Presidential candidate dataset from the same conjoint experiment to find
the strongest interaction with the gender of candidates. We then include this interaction term as an additional
main effect in HierNet when computing the test statistic given in Equation (10).15 By including it as a main
effect, HierNet applies less shrinkage on this interaction term. In addition, HierNet will consider potential
three-way interactions involving this interaction term and other variables in 𝐙. The power will be greater if
strong interactions in the Presidential candidate data are also present in the Congressional candidate data.

To find the strongest interaction in the Presidential candidate dataset, we obtain a CRT 𝑝-value for each
variable in (𝐙,𝐕) with a test statistic that focuses on the interaction strength for the corresponding variable
under consideration. Specifically, the test statistic uses Lasso logistic regression with all main effects of
(𝐗,𝐙,𝐕) and an additional interaction between 𝐗 and one variable from (𝐙,𝐕). We choose the variable with
the lowest 𝑝-value as the strongest interaction. The Presidential data shows that the candidate’s “party affil-
iation” (Democratic or Republican) had the most significant interaction with their “gender”. Appendix G.2
contains further details and a robustness check by repeating the same analysis but choosing the variable with
the second lowest 𝑝-value as the additional main effect.

As shown in the second row of Table 3, the CRT 𝑝-value using the HierNet test statistic is 0.026, show-
ing that gender may matter even for Congressional candidates. We find the largest two interactions in the
observed test statistic were two three-way interactions: one between “gender”, “party affiliation”, and “re-
spondent’s political interest” and the other between “gender”, “party affiliation”, and the “respondent’s party

15Our test statistic 𝑇HierNet(𝐗,𝐘,𝐙,𝐕) is not only a function of the Congressional dataset (𝐗,𝐘,𝐙,𝐕) but also the
entire presidential dataset (𝐏). Therefore, we must now hold all (𝐙,𝐕,𝐏) fixed in the resampling procedure. However,
this does not change Algorithm 1 and the resulting 𝑝-value remains valid because 𝐗 ∣ (𝐙,𝐕,𝐏) is still an independent
fair coin flip between the levels of male and female.
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affiliation”. This result is consistent with the findings in de la Cuesta, Egami and Imai (2022), which suggests
the existence of higher order interactions involving party affiliation. We assess the role of interaction effects
using the same procedure described in the immigration example in Section 4. The resulting CRT 𝑝-value
from a Lasso logistic regression with only the main effects of (𝐗,𝐙,𝐕) and the additional interaction with
“gender” and “party affiliation” is 0.15, suggesting that the other interactions were also helpful in detecting
significance.

For comparison, we compute the 𝑝-value based on the estimated AMCE of “gender” for Congressional
candidates as presented in Figure 7. Similar to the common strategy used for the immigration conjoint ex-
periment, we fit a linear regression model using “gender” as the sole predictor while clustering standard
errors by respondents. We find that the 𝑝-value is 0.89. However, since the CRT leveraged the Presiden-
tial candidate data to up-weight the interaction with “party affiliation”, we also create a fair comparison by
obtaining analogous 𝑝-values for the AMCE. To do this, we again fit a linear regression using “gender” but
with an additional main effect of “party affiliation” and the interaction of “gender” and “party affiliation”.
We then report the 𝑝-value from a 𝐹 -test for both the main effect of “gender” and the interaction with “party
affiliation”. The resulting 𝑝-value is 0.40, showing that the AMCE-based result remains statistically insignif-
icant. Finally, the last three columns in the second row show no evidence that the regularity assumptions are
violated for this conjoint experiment.16

G.2 Leveraging Presidential Data in the Gender Application
We detail here how we leverage the Presidential candidate data to find the strongest interaction, as mentioned
above. Because we are only interested in whether the additional interactions are significant, we run the Lasso
logistic regression with main effects of (𝐗,𝐙,𝐕) and one interaction between 𝐗 (“gender”) and one variable
in (𝐙,𝐕), producing one CRT 𝑝-value for each variable in (𝐙,𝐕). For example, when including an interaction
between “gender” and “profession”, we include both within-profile and between-profile interactions between
all levels of “gender” and “profession”. Consequently, the test statistic for testing the interaction between 𝐗
(“gender”) and factor 𝓁 of 𝐙 is:

𝑇 Candidate Factor, 𝓁
Presidential =

𝐾
∑

𝑘=1

𝐾𝓁
∑

𝑘′=1
(�̂�1𝓁𝑘𝑘′ − �̄�1𝓁𝑘′)2 +

𝐾
∑

𝑘=1

𝐾𝓁
∑

𝑘′=1
(𝛿1𝓁𝑘𝑘′ − 𝛿1𝓁𝑘′)2. (14)

The test statistic for testing the interaction between 𝐗 and factor 𝑚 of the respondent characteristic 𝐕 is:

𝑇 Respondent Characteristic, 𝑚
Presidential =

𝐾
∑

𝑘=1

𝐿𝑚
∑

𝑤=1
(𝜉1𝑚𝑘𝑤 − 𝜉1𝑚𝑤)2, (15)

where all coefficient estimates refer to the same corresponding estimates in Equation (10) and 𝐾 = 2 refers
to levels male and female. Lastly, when running the CRT we similarly enforce the constraints in Equation (6)
(along with the constraints on the respondent characteristics) by fitting the Lasso logistic regression on the
appended 𝐷𝑐 data matrix.

Table 4 shows the resulting 𝑝-value for each variable in (𝐙,𝐕). Many of the variables have 𝑝-values lower
than 0.1. The variables such as “position on immigrants”, “position on abortion”, “position on government
deficit”, and “position on national security”, are all related to the disparate views Democratic and Republican
candidates may have, in line with “party affiliation” being the most significant. Even among the respondent

16We only test the no profile order effect assumption for Congressional candidates because this is the data relevant
to the research question. However, for testing the carryover effect and fatigue effect, we use the full dataset including
the Presidential candidates in order to increase power.
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Variable 𝑝-value
Age 0.060
Race 0.31
Family 0.22
Experience in public office 0.30
Salient personal characteristic 0.45
Party affiliation 0.0049
Policy area of expertise 0.25
Position on national security 0.067
Position on immigrants 0.067
Position on abortion 0.022
Position on government deficit 0.032
Favorability rating among public 0.63
Respondent gender 1.00
Respondent education 1.00
Respondent age 1.00
Respondent class 0.41
Respondent region 1.00
Respondent race 1.00
Respondent partisanship 0.11
Respondent thought on Hillary Clinton 1.00
Respondent interest in politics 0.43
Respondent political ideology 0.042

Table 4: Resulting 𝑝-values using the CRT Lasso logistic regression with main effects of (𝐗,𝐙,𝐕) and an additional
interaction between 𝐗 and one variable in (𝐙,𝐕) from the Presidential candidate data. The test statistic captures the
interaction terms with each variable in (𝐙,𝐕) as shown in Equation (14) and Equation (15), respectively. All respondent
characteristic variables are labelled with “respondent”.

characteristics, the respondent’s political ideology, a measure of how conservative or liberal the respondent
is, is the most significant variable. We conduct a robustness analysis by repeating the above analysis in
Appendix G.1 but using the second most significant variable, the “position on abortion” factor, to interact
and include as the additional main effect in HierNet, though we note that “position on abortion” is quite a bit
less significant than “party affiliation” with more than four times as large a 𝑝-value. The resulting 𝑝-value
is 0.078. Although this is not as significant as the main analysis, it still provides suggestive evidence that
gender plays a role in voting for Congressional candidates.
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H Data Description
Tables 5 and 6 present all the factors and their respective levels used in the immigration conjoint experiment
(Section 2.1) and the gender candidate conjoint experiment (Appendix G), respectively.

Factor for Immigration Conjoint Experiment Factor Levels

Education level No Formal Education, Fourth Grade, Eight Grade, High
School, Two Years College, College Degree, Graduate Degree

Gender Female, Male
Country of origin Germany, France, Mexico, Philippines, Poland, India, China,

Sudan, Somalia, Iraq
Language Fluent English, Broken English, Tried to speak English but

unable to, Spoke through an interpreter
Reason for application Reunite with family members, Seek better job, Escape

political/religious persecution
Profession Gardener, Waiter, Nurse, Teacher, Child Care Provider,

Janitor, Construction Worker, Financial Analyst, Research
Scientist, Doctor, Computer Programmer

Job experience No job training or prior experience, One to two years, Three to
five years, More than five years

Employment plan Has a contract with a U.S. employer, Does not have a contract
with a U.S. employer, but has done job interviews, Will look
for work after arriving in the U.S., Has no plans to look for
work at this time

Prior trips to the U.S. Never been to the U.S., Entered the U.S. once before on a
tourist visa, Entered the U.S. once before without legal
authorization, Has visited the U.S. many times before on
tourist visas, Spent six months with family members in the
U.S.

Table 5: All nine randomized factors and their respective levels in the conjoint experiment used in Hainmueller and
Hopkins (2015).

I Computational Details
The HierNet test statistic introduced in Equation (5) is powerful but can be computationally expensive be-
cause the CRT requires a total of 𝐵 + 1 cross-validated HierNet fits. To address this problem, we speed up
HierNet in three ways. First, we reduce the default convergence tolerance for the optimization algorithm in
the HierNet package from 10−6 to 10−3. Second, following the “distillation” idea introduced in (Liu et al.,
2020), we cross-validate the sparsity parameter lambda only through a HierNet fit of 𝐘 on 𝐙 without involv-
ing any 𝐗. Because (𝐘,𝐙) remains constant for all 𝐵 + 1 fits, we only need one cross-validation fit. Lastly,
we initialize the starting parameters in the optimization algorithm with one HierNet fit that is uniformly and
randomly chosen from the 𝐵 + 1 HierNet fits. Since we uniformly choose one out of 𝐵 + 1 HierNet fits as
the initialization, this procedure still satisfies the exchangeability needed for the CRT’s validity. Because
many of the parameters estimated from the 𝐵 + 1 different HierNet fits will likely be similar to each other,
the initialization likely saves computation time.

Although the above procedure significantly reduces computational complexity, practitioners may worry
if there is a significant loss of power from this simplification. Consequently, we plot in Figure 8 the original
HierNet power curve shown in Figure 2 that leverages the aforementioned three speed-ups (in blue) and the
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Factor For Gender Conjoint Experiment Factor Levels

Gender Male, Female
Age 36, 44, 52, 60, 68, 76

Race/ethnicity White, Black, Hispanic, Asian American
Family Single (never married), Single (divorced), Married (no

child), Married (two children)
Experience in public office 12 years, 8 years, 4 years, No experience

Salient personal characteristics Strong leadership, Really cares about people like you,
Honest, Knowledgeable, Compassionate, Intelligent

Party affiliation Republican, Democrat
Policy area of expertise Foreign policy, Public safety (crime), Economic policy,

Health care, Education, Environmental issues
Position on national security Cut military budget and keep U.S. out of war, Maintain

strong defense and increase U.S. influence
Position on immigrants Favors guest worker program, Opposes guest worker

program
Position on abortion Pro-choice, Pro-life, Neutral

Position on government deficit Reduce through tax increase, Reduce through spending
cuts, Does not want to reduce

Favorability rating among public 34%, 43%, 52%, 61%, 70%
Table 6: All thirteen randomized factors and their respective levels in the conjoint experiment used in Ono and Burden
(2018).

computationally slower HierNet power curve without the three speed-ups (in black). Figure 8 shows that the
computational modifications have no significant impact on power.

J Inflated 𝑝-values for Logistic Regression
Although the AMCE is popular in conjoint analysis, especially among political scientists, there also exist
model-based approaches. Logistic regression remains a popular model-based approach to conjoint analysis
(McFadden, 1973; Green and Srinivasan, 1990; Campbell, Mhlanga and Lesschaeve, 2013). We explore in
this section how this modeling approach can lead to invalid inference in conjoint analysis. When testing 𝐻0,
researchers may want to account for not only the main effects of (𝐗,𝐙) but also all two-way interactions, as
done similarly in HierNet, to reduce model misspecification. Under this scenario, we show through simu-
lations in Figure 9 that even reasonable sample sizes and dimensions of (𝐗,𝐙) can lead to invalid 𝑝-values,
i.e., the type 1 error is greater than the desired 𝛼 ∈ [0, 1].

We use a similar simulation setting as the one in Appendix D.1 but simplify it further. Since we are
interested in showing how the 𝑝-values obtained from a logistic regression may be invalid in general, we do
not have “left” or “right” profiles but only one profile, leading to the following data generating process,

Pr(𝑌𝑖 = 1 ∣ 𝑋𝑖,𝐙𝑖) = logit−1 [𝛽𝑋𝑋𝑖 + 𝛽⊤𝑍𝐙𝑖 + 𝛾⊤(𝑋𝑖𝐙𝑖) + �̃�⊤(𝐙𝑖 × 𝐙𝑖)
]

.

All factors have four levels, and we similarly assume one factor of interest 𝑞 = 1 while varying the number
of other factors. Since we are interested in the behavior of the 𝑝-values under the null 𝐻0, we force all
effects of 𝑋 on the response to be zero, i.e., 𝛽𝑋 = 𝛾 = 0. For simplicity we also make all effects of 𝐙 zero,
i.e., 𝛽𝑍 = �̃� = 0 and fix the sample size to 𝑛 = 5, 000. To reflect the researcher’s desire to reduce model
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Figure 8: This figure represents the power of the original faster HierNet test statistic (blue triangles) with the three
computational speedups and the slower HierNet test statistic (black squares) without the computational speedups in the
same simulation setting as in Figure 2.

misspecification by accounting for all two-way interactions as HierNet does, we fit a logistic regression of 𝐘
on all main effects and two-way interactions of (𝐗,𝐙). We then obtain a 𝑝-value for testing 𝐻0 by an 𝐹 -test
that tests 𝛽𝑋 = 𝛾 = 0. We obtain 1,000 Monte-Carlo 𝑝-values and plot the proportion of 𝑝-values less than
𝛼 = 0.05 in the left plot of Figure 9. We also vary the number of factors of 𝐙, which is shown in the 𝑥-axis
of the left plot. On the right plot of Figure 9, we plot the histogram of the 1,000 𝑝-values obtained when the
number of factors of 𝐙 is 12.

Under the null hypothesis, we expect any valid 𝑝-value to have type 1 error control, i.e., 𝑃 (𝑝-value ≤
𝛼) ≤ 𝛼 for all 𝛼 ∈ [0, 1]. The left plot of Figure 9 shows that only five other factors of 𝐙 is enough to
cause the proportion of 𝑝-values less than 𝛼 = 0.05 to be noticeably inflated at 7%. The inflation becomes
particularly apparent when there are twelve other factors of 𝐙, which causes the proportion of 𝑝-values less
than 0.05 to be as high as 34%. The histogram on the right plot of Figure 9 visually shows how the 𝑝-values
are clearly far from the expected uniform distribution and have an undesirable peak at zero, resulting in poor
type 1 error control. This phenomenon is studied in (Candès and Sur, 2018) and arises because the 𝑝-values’
validity in a logistic regression depends on a low-dimensional asymptotic result. We note that a conjoint
analysis has typically more than ten factors, where each factor usually has more than three levels. Therefore,
Figure 9 shows the potential dangers of using a model-based approach like the logistic regression to flexibly
capture all interactions.
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Figure 9: Inflated 𝑝-values from logistic regression. The left figure shows the proportion of 𝑝-values, obtained through
a 𝐹 -test from a logistic regression, less than 𝛼 = 0.05 when the number of other factors in 𝐙 is (3, 5, 10, 11, 12, 13) and
𝐻0 is true. The red dotted line at 𝛼 = 0.05 represents the expected proportion of 𝑝-values less than 0.05 if the 𝑝-values
are valid. The right figure shows the histogram of 1,000 Monte-Carlo 𝑝-values when the number of other factors of 𝐙
is 12. The sample size is 𝑛 = 5, 000 and each factor has four factor levels. All Monte Carlo standard errors are below
0.016.
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