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A Mathematical Set-up

This section lays out the mathematical set-up of our model in more detail, heavily drawing

from Kojevnikov et al. (2021). We conclude with a discussion of the related statistical

literature.

We first define a collection of pairs of sets of dyads. For any positive integers a, b and s,

define

PM(a, b; s) := {(A,B) : A,B ⊂MN , |A| = a, |B| = b, ρM(A,B) ≥ s},

where

ρM(A,B) := min
m∈A

min
m′∈B

ρM(m,m′), (19)

with ρM(m,m′) denoting the geodesic distance between dyads m and m′, i.e., the smallest

number of adjacent dyads between dyads m and m′. In words, the set PM(a, b; s) collects all

two distinct sets of active dyads whose sizes are a and b and that have no dyads in common.

Next we consider a collection of bounded Lipschitz functions. Define

LK := {LK,c : c ∈ N},

where

LK,c := {f : RK×c → R : ‖f‖∞ <∞,Lip(f) <∞},

with ‖ · ‖∞ representing the supremum norm and Lip(f) being the Lipschitz constant.22 In

words, the set LK,c collects all the bounded Lipschitz functions on RK×c and the set LK
moreover gathers such sets with respect to c ∈ N.

22It is immediate to see that R is a normed space with respect to the Euclidean norm, while the RK×c

can be equipped with the norm ρc(x, y) :=
∑c

`=1 ‖x` − y`‖ where x, y ∈ RK×c and ‖z‖ := (z′z)
1
2 , thereby

the Lipschitz constant is defined as Lip(f) := min{w ∈ R : |f(x)− f(y)| ≤ wρc(x, y) ∀x, y ∈ RK×c}.
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Lastly, we write

YM,A := (YM,m)m∈A,

and YM,B is analogously defined. Let {CM}M≥1 denote a sequence of σ-algebras and be

suppressed as {CM}.
The network dependent random variables are characterized by the upper bound of their

covariances, first defined in Definition 2.2 of Kojevnikov et al. (2021).

Definition A.1 (Conditional ψ-Dependence given {CM}). A triangular array {YM,m ∈ RK :

M ≥ 1,m ∈ {1, . . . ,M}} is called conditionally ψ-dependent given {CM}, if for each M ∈ N,

there exist a CM -measurable sequence θM := {θM,s}s≥0 with θM,0 = 1, and a collection of

nonrandom function (ψa,b)a,b∈N where ψa,b : LK,a ×LK,b → [0.∞), such that for all (A,B) ∈
PM(a, b; s) with s > 0 and all f ∈ LK,a and g ∈ LK,b,∣∣Cov(f(YM,A), g(YM,B) | CM

)∣∣ ≤ ψa,b(f, g)θM,s a.s.

Intuitively, this definition states that the upper bound must be decomposed into two

components. The first part ψa,b(f, g) is deterministic and depends on nonlinear Lipschitz

functions f and g. The other component θM,s is stochastic and depends only on the distance

of the random variables on the underlying network. The former, nonrandom component

reflects the scaling of the random variables as well as that of the Lipschitz transformations,

while the latter random part stands for the covariability of the two random variables. We call

θM,s the dependence coefficient. We follow Kojevnikov et al. (2021) in assuming boundedness

for these two components.

Assumption A.1 (Kojevnikov et al. (2021), Assumption 2.1). The triangular array {YM,m ∈
R
K : M ≥ 1,m ∈ {1, . . . ,M}} is conditionally ψ-dependent given {C} with the dependence

coefficients {θM,s} satisfying the following conditions: (a) there exists a constant C > 0 such

that ψa,b(f, g) ≤ C × ab
(
‖f‖∞ + Lip(f)

)(
‖g‖∞ + Lip(g)

)
; (b) supM≥1 maxs≥1 θM,s <∞ a.s.

Assumption A.1 is maintained throughout the paper and employed to show asymptotic

properties of our estimators such as the consistency and asymptotic normality, and the

consistency of the network-robust variance estimator for dyadic data.

A.1 Additional Discussion of Assumption 3.1

Assumption 3.1 assumed thatM →∞ asN →∞. This is consistent with many applications.

For example, in international trade, the entry of a new country/firm to a market will most
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likely increase the number of trade flows in the economy; in political economy, the more

members of parliaments (MEPs) there are, the more pairs of the MEPs sitting next to each

other there will be (see Section 5).

This assumption is similar in spirit to Assumption 2.3 of Tabord-Meehan (2019) in which

the minimum degree is assumed to grow at some constant rate relative to the number of

individuals. It is milder than Assumption 2.3 of Tabord-Meehan (2019) since the latter does

not allow any individual to be isolated, while Assumption 3.1 merely constrains the average

degree. Similarly, this assumption is weaker than the assumption that the maximum degree

in a network is bounded even when N →∞ (e.g., Penrose and Yukich (2003) and de Paula

et al. (2018)).

A.2 Related Literature

As stated in the main text, our paper is related to the recent literature on inference for mul-

tiway clustering, whether OLS estimation with multiway clustering (Cameron et al. (2011));

a clustering method in high-dimensional set-ups (Chiang et al. (2021)); clustering within the

time dimension (Chiang et al. (2022)); clustered inference with empirical likelihood (Chiang

et al. (2022)); bootstrap methods in multiway clustering (Davezies et al., 2021; Menzel, 2021;

MacKinnon et al., 2022b); clustering in the context of average treatment effects (Abadie et al.

(2022)), to name but a few (see MacKinnon et al. (2022a) for review). Again, one of the

common assumptions in this literature is that individual observations are divided into dis-

joint groups – clusters – and observations in different clusters are not correlated. To that

end, MacKinnon et al. (2022c) propose measures of cluster-level influence that can be used to

assess whether the underlying assumption of cluster-robust variance estimation is satisfied.

Our approach complements the existing methods similar to how inference with spatial

data (e.g., Conley (1999) and Jenish and Prucha (2009)) complements one-way clustering

inference. Our approach still differs from such inference with spatial data, since the latter

routinely assumes the index set to be a Euclidean metric space, whose metric relies solely

on the nature of the space, and uses it to define the dependence between variables. See also

Ibragimov and Müller (2010) and references therein. In our context, however, the index set of

dyads alone does not suffice to dictate the dependence structure because indices themselves

do not inform us of the network topology. Instead, we first introduce a metric on a network

among dyads and our mixing condition is based on dependence as dyads grow further apart

along the network.

Our main insight in accommodating indirect spillovers is that we can rewrite the corre-

lation structure among dyads as a dyadic network, where links denote whether they share a
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common member. As a result, this dyadic network describes how close/far certain dyads are

from sharing members with other dyads. In doing so, the transformed problem is amenable

to appropriate applications of recent developments in the statistics of random variables which

are correlated along an (observable, exogenous) network. In particular, we apply asymptotic

results for network-dependent random variables developed by Kojevnikov et al. (2021)23 to

an appropriately defined dyadic network, with assumptions imposed on the latter. Leung

(2021) and Leung (2022) also apply the framework of Kojevnikov et al. (2021) to study,

respectively, cluster-robust inference and causal inference for the case of individual-specific

random variables. These papers focus on the correlation along a network over individuals,

rather than over dyads. Meanwhile, Leung and Moon (2021) derive an asymptotic theory

for dyadic variables in the context of networks, primarily for endogenous network formation

models.

B Proofs of Main Theorems and Results

B.1 Identification of β

Assumption B.1. For each N ∈ N:

(a) supm∈MN
E
[
|εM,m|2

]
exists and is finite;

(b) supm∈MN
E
[
‖xM,m‖

]
exists and is finite;

(c) E
[
xM,mx

′
M,m

]
exists with finite elements and positive definite for all m ∈MN ;

(d) E
[
εM,m | XM

]
= 0 for all m ∈MN .

Assumption B.1 (a) and (b) are standard and jointly imply the finite existence of the

second moment of yM,m for all m ∈ MN , which in turn implies the finite existence of the

cross moment of yM,m and xM,m for all m ∈MN . The third and fourth assumptions are also

standard in the context of the linear regression models and require no multicolinearity and

strict exogeneity, respectively.

Identification of the linear parameter in equation (1) follows from Assumption B.1 (see

Proposition B.1 in Appendix B.1).

Proposition B.1 (Identification). Under Assumption B.1, the regression parameter β in

(1) is identified.

Proof. For each m ∈MN , premultiply the model (1) by xM,m to obtain

xM,myM,m = xM,mx
′
M,mβ + xM,mεM,m ∀m ∈MN .

23Vainora (2020) provides another such theoretical contribution.

29



Taking the expectation with respect to {(xM,m, yM,m, εM,m)}m∈MN
implies:

E
[
xM,myM,m

]
= E

[
xM,mx

′
M,m

]
β + E

[
xM,mεM,m

]
.

The second term on the right hand side is equal to 0, due to Assumption B.1 (d). Next,

Assumption B.1 (c) ensures existence of the inverse of the expectation term in the first term

of the right hand side, ensuring identification.

B.2 Consistency of β̂

As usual, the Central Limit Theorem for a normalized sum requires us to have stronger

conditions than what is required for consistency. Those stronger conditions were introduced

in the main text as Assumptions 3.2 and 3.3. However, they are only required for Theorem

3.2. For the consistency proof (Theorem 3.1),we can replace those two assumptions by the

following weaker conditions.

Assumption B.2. There exists η > 0 such that supN≥1 maxm∈MN
E
[
|εM,m|1+η | CM

]
<∞.

Assumption B.2 allows for the same interpretation as Assumption 3.2, i.e., the random

error term εm cannot be too large, conditional on a common component. This assumption,

however, is less stringent than the previous one because it now requires the finiteness of a

lower moment of εm.

Assumption B.3. 1
M

∑
s≥1 δ

∂
M(s; 1)θM,s

a.s.→ 0 as M →∞.

Similar to Assumption 3.3, this assumption binds the covariance of the random variables,

the dependence reflected in the dependence coefficients, and the underlying network. That is,

given σM growing at least at the same rate of M , the composite of the density of the network

and the magnitude of the correlations of the random variables must decay fast enough.

Proof of Theorem 3.1: From (8), (12) and (13), we can write

β̂ − β =
( ∑
j∈MN

xM,jx
′
M,j

)−1 ∑
m∈MN

xM,mεM,m

=
( 1

M

∑
j∈MN

xM,jx
′
M,j

)−1 1

M

∑
m∈MN

YM,m

=
1

M

∑
m∈MN

( 1

M

∑
j∈MN

xM,jx
′
M,j

)−1

YM,m.
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Define ỸM,m :=
(

1
M

∑
j∈MN

xM,jx
′
M,j

)−1

YM,m and let Ỹ u
M,m be the u-th entry of ỸM,m. That

is,

Ỹ u
M,m = DuYM,m

= DuxM,mεM,m,

where Du stands for the u-th row of the matrix
(

1
M

∑
j∈MN

xM,jx
′
M,j

)−1
. Moreover, let β̂u

and βu, respectively, denote the u-th entry of β̂ and β, so that we can write

β̂u − βu =
1

M

∑
m∈MN

Ỹ u
M,m,

In light of Assumption B.1 (d), it holds that for any N > 0 and for each m ∈MN

E
[
Ỹ u
M,m | CM

]
= DuxM,mE

[
εM,m | CM

]︸ ︷︷ ︸
0

= 0.

By Theorem 3.1 of Kojevnikov et al. (2021),
∥∥∥ 1
M

∑
m∈MN

(
Ỹ u
M,m−E

[
Ỹ u
M,m | CM

]︸ ︷︷ ︸
0

)∥∥∥
CM ,1

a.s.→ 0.

Hence, ∥∥∥ 1

M

∑
m∈MN

Ỹ u
M,m

∥∥∥
CM ,1

a.s.→ 0 M →∞,

so that

E
[∣∣β̂u − βu∣∣] = E

[
E
[
|β̂u − βu| | CM

]]
= E

[
‖β̂u − βu‖CM ,1

]
= E

[∥∥∥ 1

M

∑
m∈MN

Ỹ u
M,m

∥∥∥
CM ,1

]
→ 0 M →∞,

where the last implication is a consequence of the Dominated Convergence Theorem. In view

of Assumption 3.1, this is true also with respect to N going to infinity.
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Since it holds by the Markov inequality that for any c > 0

Pr
(
|β̂u − βu| > c

)
≤
E
[
|β̂u − βu|

]
c

,

it then follows that

Pr
(
|β̂u − βu| > c

)
→ 0,

as N →∞. Hence we have

|β̂u − βu| p→ 0 as N →∞.

Finally, we can invoke the Cramér-Wold device to obtain

‖β̂ − β‖2
p→ 0 as N →∞,

as desired. �

B.3 Lemma

Here we establish a lemma that is used repeatedly throughout the subsequent proofs in this

paper.

Lemma B.1. Define A := limN→∞
1
M

∑
k∈ME

[
xM,kx

′
M,k

]
and assume that Assumptions 3.1

and 3.5 hold.

(i) A−1 := limN→∞

(
1
M

∑
k∈ME

[
xM,kx

′
M,k

])−1

exists with finite elements and positive def-

inite.

(ii) Suppose, moreover, that Assumption 3.7 holds. Then,
∥∥∥( 1

M

∑
k∈MN

xM,kx
′
M,k

)−1

−(
1
M

∑
k∈MN

E
[
xM,kx

′
M,k

])−1∥∥∥
F

p→ 0.

Proof. (i) The fact that it is positive definite follows from Assumption 3.5. The fact that

the elements are finite is proved by considering element-by-element convergence. Let xk,i

denote the i-th element of xM,k. Then the (i, j) entry of 1
M

∑
k∈ME

[
xM,kx

′
M,k

]
is given by:

1
M

∑
k∈ME

[
xk,ixk,j

]
.

We write the (i, j) entry of A as Ai,j.

From Assumption 3.5, there exists a nonnegative finite constant C0,1 such that

C0,1 = sup
N≥1

max
m∈MN

E
[
xm,ixm,j

]
,
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so that

Ai,j = lim
N→∞

1

M

∑
k∈MN

E
[
xk,ixk,j

]︸ ︷︷ ︸
≤C0,1

≤ lim
N→∞

1

M

∑
k∈MN

C0,1

= C0,1 lim
N→∞

1

M

∑
k∈MN

1

︸ ︷︷ ︸
M

= C0,1.

Hence Ai,j exists with being finite. By repeating the same argument for all i, j = 1, . . . , K,

it holds that A exists with finite elements.

(ii) To begin with, observe that∥∥∥( 1

M

∑
k∈MN

xM,kx
′
M,k

)−1

−
( 1

M

∑
k∈MN

E
[
xM,kx

′
M,k

])−1∥∥∥
F

=
∥∥∥( 1

M

∑
k∈MN

xM,kx
′
M,k

)−1

− A−1 + A−1 −
( 1

M

∑
k∈MN

E
[
xM,kx

′
M,k

])−1∥∥∥
F

≤
∥∥∥( 1

M

∑
k∈MN

xM,kx
′
M,k

)−1

− A−1
∥∥∥
F

+
∥∥∥A−1 −

( 1

M

∑
k∈MN

E
[
xM,kx

′
M,k

])−1∥∥∥
F
.

Note that convergence of the second term follows from (i). Hence, we wish to prove that:∥∥∥ 1

M

∑
k∈MN

xM,kx
′
M,k − A

∥∥∥
F

p→ 0

To do so, we follow a strategy employed in Aronow et al. (2015) and Tabord-Meehan

(2019). In light of (i), it remains to show

V ar
( 1

M

∑
k∈MN

xM,kx
′
M,k

)
→ 0.

As in (i), we consider the element-by-element convergence, using the same notation. The

variance can be expressed as a sum of covariances:
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V ar
( 1

M

∑
k∈MN

xk,ixk,j

)
=

1

M2

∑
m∈MN

∑
m′∈MN

Cov
(
xm,ixm,j, xm′,ixm′,j

)
=

1

M2

∑
s≥0

∑
m∈MN

∑
m′∈M∂

N (m;s)

Cov
(
xm,ixm,j, xm′,ixm′,j

)
.

Again from Assumption 3.5, there exists a nonnegative finite constant C0,2 such that

C0,2 = sup
N≥1

max
m,m′∈MN

Cov (xm,ixm,j, xm′,ixm′,j) .

Hence,

V ar
( 1

M

∑
k∈MN

xk,ixk,j

)
≤ 1

M2

∑
s≥0

∑
m∈MN

∑
m′∈M∂

N (m;s)

C0,2

=
C0,2

M2

∑
s≥0

∑
m∈MN

∑
m′∈M∂

N (m;s)

1

=
C0,2

M2

∑
s≥0

Mδ∂M(s; 1)

= C0,2
1

M

∑
s≥0

δ∂M(s; 1)︸ ︷︷ ︸
→0

→ 0,

where the last implication is due to Assumption 3.7. By repeating the same argument for

all i, j = 1, . . . , K, we obtain

V ar
( 1

M

∑
k∈MN

xM,kx
′
M,k

)
→ 0.

Now, by the Chebyshev’s inequality, we arrive at∥∥∥ 1

M

∑
k∈MN

xM,kx
′
M,k − A

∥∥∥
F

p→ 0.
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Furthermore, applying the Continuous Mapping Theorem yields∥∥∥( 1

M

∑
k∈MN

xM,kx
′
M,k

)−1

− A−1
∥∥∥
F

p→ 0,

obtaining the result. Therefore,∥∥∥( 1

M

∑
k∈MN

xM,kx
′
M,k

)−1

−
( 1

M

∑
k∈MN

E
[
xM,kx

′
M,k

])−1∥∥∥
F

p→ 0,

as desired.

B.4 Asymptotic Normality of β̂

In this subsection, we prove Theorem 3.2 under a slightly milder condition than Assumption

3.4.

Assumption B.4 (Growth Rates of Variances). There exists a sequence of (possibly random)

positive numbers, {πN,M}N>0, such that

σ2
M

πN,Mτ 2
M

a.s.→ 1 as N →∞.

When πN,M = 1, this assumption simplifies to Assumption 3.4, which is used for the

results in the main text.

For our proof of the asymptotic distribution of β̂, we require that its asymptotic variance

is well-defined. The first assumption, Assumption 3.5(a)-(b), is necessary for one of the

matrices in the expression to be well-defined.24 Part (c) assures that the middle part of the

asymptotic variance is non-trivial.

When Assumption 3.4 is replaced by Assumption B.4, Assumption 3.5 must also be

modified accordingly.

Assumption B.5. limN→∞
NπN,M
M2

∑
m∈MN

∑
m′∈MN

E
[
εM,mεM,m′xM,mx

′
M,m′

]
exists with fi-

nite elements.

An important comparison of Assumption B.5 can be made to the variety of assumptions

used in the literature.

24As pointed out in Tabord-Meehan (2019), the bounded support assumption can be relaxed by imposing
an alternative condition on higher-order moments (boundedness of the 16th order moment of xM,m, in our
case).
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Remark B.1. The requirement on the behavior of AV ar(β̂) mirrors Assumptions 2.4, 2.5

and 2.6 of Tabord-Meehan (2019): Assumption B.5 boils down to his Assumption 2.4, if it

is well-defined with πN,M = M
N

; it reduces to his Assumption 2.5, if it is compatible with

πN,M = M
N2 ; and it coincides with Assumption 2.6, if it is maintained with πN,M = M

Nr+1 for

r ∈ [0, 1]. Moreover, if AV ar(β̂) is well-defined for πN,M = 1, the expression (15) simplifies

to the assumption that appears in Lemma 1 of Aronow et al. (2015).

Proof of Theorem 3.2: From (13),

√
N(β̂ − β) =

( 1

M

∑
j∈MN

xM,jx
′
M,j

)−1
√
N

M

∑
m∈MN

YM,m

=
( 1

M

∑
j∈MN

xM,jx
′
M,j

)−1
√
N

M
SM .

Since
(

1
M

∑
j∈MN

xM,jx
′
M,j

)−1
converges to a well-defined limit (Lemma B.1), the asymptotic

distribution of
√
N(β̂ − β) is dictated by that of

√
N
M
SM .

First of all, we prove

SuM
σM

d→ N (0, 1),

as N →∞. Consider the scenario that N →∞, in which Assumption 3.1 implies M →∞.

Denote S̃uM :=
SuM
σM

. Let X be the M × K matrix that records the observed dyad-specific

characteristics as defined in Section 2.1.1, but here the subscript M is omitted for notational

simplicity. The value that X takes is denoted by x.

Under Assumptions 3.2 and 3.3, it holds by Theorem 3.2 of Kojevnikov et al. (2021) that

for any ε > 0, there exists M0 > 0 such that for each M > M0 and for each x ∈ RM×K ,

sup
t∈R

∣∣Pr(S̃uM ≤ t | X = x)− Φ(t)
∣∣ < ε, (20)

where Φ(·) is the CDF of a standard Normal distribution. Then, by the law of total proba-

bility, we have

∣∣Pr(S̃uM ≤ t)− Φ(t)
∣∣ =

∣∣∣ ∫ Pr(S̃uM ≤ t | X = x)dFX(x)− Φ(t)
∣∣∣

=
∣∣∣ ∫ Pr(S̃uM ≤ t | X = x)− Φ(t)dFX(x)

∣∣∣
≤
∫ ∣∣Pr(S̃uM ≤ t | X = x)− Φ(t)

∣∣dFX(x)
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≤
∫

sup
t∈R

∣∣Pr(S̃uM ≤ t | X = x)− Φ(t)
∣∣dFX(x), (21)

where FX(·) denotes the probability distribution function of X. Now pick arbitrarily ε > 0.

Then there exists M0 > 0 such that for each M > M0∣∣Pr(S̃uM ≤ t)− Φ(t)
∣∣ ≤ ∫ sup

t∈R

∣∣Pr(S̃uM ≤ t | X = x)− Φ(t)
∣∣︸ ︷︷ ︸

<ε

dFX(x)

≤
∫
εdFX(x)

≤ ε, (22)

where the first and second inequalities come from (21) and (20), respectively. Since the right

hand side of (22) does not depend on t, we then have that for each M > M0,

sup
t∈R

∣∣Pr(S̃uM ≤ t)− Φ(t)
∣∣ ≤ ε,

which implies

sup
t∈R

∣∣Pr(S̃uM ≤ t)− Φ(t)
∣∣→ 0 as M →∞,

We have then shown that

sup
t∈R

∣∣Pr(S̃uM ≤ t)− Φ(t)
∣∣→ 0 as N →∞,

from which we obtain

SuM
σM

d→ N (0, 1) as N →∞.

Next this can be combined with Assumption B.4 by using the Slutsky’s Theorem, yielding

that

SuM
τM
√
πN,M

d→ N (0, 1) as N →∞.

Moreover, applying the Cramér-Wold device gives

τ−1
M√
πN,M

SM
d→ N (0, IK) as N →∞,
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where IK is the K × K identity matrix and τM is understood as the variance-covariance

matrix.25

Now notice that we have

√
N(β̂ − β) =

( 1

M

∑
j∈MN

xM,jx
′
M,j

)−1
√
N

M
τM
√
πN,M

τ−1
M√
πN,M

SM,m︸ ︷︷ ︸
d→N (0,IK)

.

Hence we obtain

√
N
(
β̂ − β

) d→ N (0, AV ar(β̂)) as N →∞,

where

AV ar(β̂) := lim
N→∞

NπN,M

( ∑
k∈MN

E
[
xM,kx

′
M,k

])−1( ∑
m∈MN

∑
m′∈MN

E
[
εM,mεM,m′xM,mx

′
M,m′

])( ∑
k∈MN

E
[
xM,kx

′
M,k

])−1
,

which is well-defined due to Lemma B.1 (i) along with Assumption B.5. When πN,M = 1,

this is the result in the main text. �

B.5 Lemma

In the proof of Theorem 3.3, we make use of the following lemma from Kojevnikov et al.

(2021), p.903:

Lemma B.2. Define

HM(s, r) := {(m, j, k, l) ∈M4
N : j ∈MN(m; r), l ∈MN(k; r), ρM({m, j}, {k, l}) = s}.

Then

|HM(s, r)| ≤ 4McM(s, r; 2).

25To save notation, we use the same τM to denote the case of one-dimensional parameter and the case of
multiple-dimensional parameters.
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B.6 Consistency of V̂ ar(β̂)

Proof of Theorem 3.3: Denote the variance of SM√
M

as VN,M := V ar
(
SM√
M

)
. It can readily

be shown that VN,M takes the form of VN,M =
∑

s≥0 ΩN,M(s), where

ΩN,M(s) :=
1

M

∑
m∈MN

∑
j∈M∂

N (m;s)

E
[
YM,mY

′
M,j

]
.

Following Kojevnikov et al. (2021), we define the kernel heteroskedasticity and autocor-

relation consistent (HAC) estimator of VN,M as V̂N,M :=
∑

s≥0 ωM(s)Ω̂N,M(s),

where ωM(s) := ω
(
s
bM

)
and

Ω̂N,M(s) :=
1

M

∑
m∈MN

∑
j∈M∂

N (m;s)

ŶM,mŶ
′
M,j.

Moreover, we define an empirical analogue of VN,M , though infeasible, by ṼN,M :=∑
s≥0 ωM(s)Ω̃N,M(s), where

Ω̃N,M(s) :=
1

M

∑
m∈MN

∑
j∈M∂

N (m;s)

YM,mY
′

M,j.

Additionally, we denote a conditional version of VN,M by V c
N,M := V ar

(
SM√
M
| CM

)
, i.e.,

V c
N,M =

∑
s≥0 Ωc

N,M(s), where

Ωc
N,M(s) :=

1

M

∑
m∈MN

∑
j∈M∂

N (m;s)

E
[
YM,mY

′

M,j | CM
]
.

Notice that since E
[
YM,m | CM

]
= 0 a.s., it follows from the law of total variance that

VN,M = E
[
V c
N,M

]
.

Notice furthermore that it holds that

V ar(β̂) =
N

M

( 1

M

∑
k∈MN

E
[
xM,kx

′
M,k

])−1

VN,M

( 1

M

∑
k∈MN

E
[
xM,kx

′
M,k

])−1

,

and

V̂ ar(β̂) =
1

M

( 1

M

∑
k∈MN

xM,kx
′
M,k

)−1

V̂N,M

( 1

M

∑
k∈MN

xM,kx
′
M,k

)−1

.

Since
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‖NV̂ ar(β̂)− V ar(β̂)‖F =
N

M

∥∥∥∥∥( 1

M

∑
k∈MN

xM,kx
′
M,k

)−1

V̂N,M

( 1

M

∑
k∈MN

xM,kx
′
M,k

)−1

−
( 1

M

∑
k∈MN

E
[
xM,kx

′
M,k

])−1

VN,M

( 1

M

∑
k∈MN

E
[
xM,kx

′
M,k

])−1

∥∥∥∥∥
F

,

and N
M

is bounded due to Assumption 3.1, it thus suffices to show that

(i)
∥∥∥( 1

M

∑
k∈MN

xM,kx
′
M,k

)−1 −
(

1
M

∑
k∈MN

E
[
xM,kx

′
M,k

])−1
∥∥∥
F

p→ 0;

(ii) ‖V̂N,M − VN,M‖F
p→ 0.

Part (i) is already shown in Lemma B.1 (ii). Hence, it remains to prove Part (ii).

To begin with, observe that by the technique of add and subtract as well as the triangular

inequality,

‖V̂N,M − VN,M‖F = ‖V̂N,M − ṼN,M + ṼN,M − V c
N,M + V c

N,M − VN,M‖F
≤ ‖V̂N,M − ṼN,M‖F + ‖ṼN,M − V c

N,M‖F + ‖V c
N,M − VN,M‖F .

We thus aim to prove

(1) ‖V c
N,M − VN,M‖F

p→ 0;

(2) ‖ṼN,M − V c
N,M‖F

p→ 0;

(3) ‖V̂N,M − ṼN,M‖F
p→ 0.

We start with:

(1) ‖V c
N,M − VN,M‖F

p→ 0:

The proof proceeds in multiple steps:

(a) E
[∥∥V c

N,M − VN,M
∥∥2

F

]
→ 0;

(b)
∥∥V c

N,M − VN,M
∥∥
F

p→ 0.

We begin with:

(a) E
[∥∥V c

N,M − VN,M
∥∥2

F

]
→ 0:

We prove this by showing the element-wise convergence. With a slight abuse of
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notation, we denote the (a, b) entry of V c
N,M and VN,M as V c

a,b and Va,b, respectively.

Then it is enough to verify that

E
[
(V c

a,b − Va,b)2
]
→ 0.

Notice that V c
a,b and Va,b are given by

V c
a,b =

∑
s≥0

1

M

∑
m∈MN

∑
j∈M∂

N (m;s)

E
[
Ym,aYj,b | CM

]
and

Va,b =
∑
s≥0

1

M

∑
m∈MN

∑
j∈M∂

N (m;s)

E
[
Ym,aYj,b

]
,

where Ym,a and Ym,b stand for the a-th and b-th element of YM,m, respectively.

Note moreover that E[V c
a,b] = Va,b. Hence, we can write

E
[
(V c

a,b − Va,b)2
]

= V ar(V c
a,b)

= E
[
(V c

a,b)
2
]
−
(
Va,b
)2

≤ E
[
(V c

a,b)
2
]
.

Observe that

E
[
(V c

a,b)
2
]

= E
[(∑

s≥0

1

M

∑
m∈MN

∑
j∈M∂

N (m;s)

E
[
Ym,aYj,b | CM

])2]
= E

[ 1

M2

∑
s≥0

∑
m∈MN

∑
j∈M∂

N (m;s)

∑
t≥0

∑
k∈MN

∑
l∈M∂

N (k;t)

E
[
Ym,aYj,b | CM

]
E
[
Yk,aYl,b | CM

]]
=

1

M2

∑
s≥0

∑
m∈MN

∑
j∈M∂

N (m;s)

∑
t≥0

∑
k∈MN

∑
l∈M∂

N (k;t)

E
[
E
[
Ym,aYj,b | CM

]
E
[
Yk,aYl,b | CM

]]
.

By the Cauchy-Schwartz inequality,

E
[
εmεj | CM

]
≤
(
E
[
ε2
m | CM

]) 1
2
(
E
[
ε2
m | CM

]) 1
2 ,

it then follows from from Assumption 3.6 (a) that there exists an a.s.-bounded

function C̄1 such that E
[
εmεj | CM

]
≤ C̄1 a.s. Similarly, we have an a.s.-bounded
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function C̄2 such that E
[
εkεl | CM

]
≤ C̄2 a.s. Then,

E
[
Ym,aYj,b | CM

]
= E

[
εmεjxm,axj,b | CM

]
= xm,axj,bE

[
εmεj | CM

]︸ ︷︷ ︸
≤C̄1

≤ xm,axj,bC̄1 a.s.,

where xm,a represents the a-th element of xM,m and xj,b the b-th element of xM,j.

Analogously, one obtains E
[
Yk,aYl,b | CM

]
≤ xk,axl,bC̄2 a.s. Once again, through

the multiple application of the Cauchy-Schwartz inequality, it follows that

E
[
E
[
Ym,aYj,b | CM

]
E
[
Yk,aYl,b | CM

]]
≤ E

[
C̄1C̄2xm,axj,bxk,axl,b

]
≤
(
E
[
(C̄1C̄2)2

]) 1
2
(
E
[
(xm,axj,bxk,axl,b)

2
]) 1

2

≤
(
E
[
(C̄1)4

]) 1
4
(
E
[
(C̄2)4

]) 1
4

×
(
E
[
x8
m,a

]) 1
8
(
E
[
x8
j,b

]) 1
8
(
E
[
x8
l,a

]) 1
8
(
E
[
x8
l,b

]) 1
8 .

We note here that Assumption 3.5 ensures that there exists a nonnegative finite

constant Cm,a such that E
[
x8
l,a

]
< Cm,a, with the same argument holding true for

xj,b, xk,a and xl,b as well. Hence,

E
[
E
[
Ym,aYj,b | CM

]
E
[
Yk,aYl,b | CM

]]
≤ C̄,

where C̄ is a nonnegative finite constant that is appropriately defined.

Substituting this into the inequality above,

E
[
(V c

a,b)
2
]
≤ 1

M2

∑
s≥0

∑
m∈MN

∑
j∈M∂

N (m;s)

∑
t≥0

∑
k∈MN

∑
l∈M∂

N (k;t)

C̄

=
C̄

M2

∑
s≥0

∑
m∈MN

∑
j∈M∂

N (m;s)

∑
t≥0

∑
k∈MN

∑
l∈M∂

N (k;t)

1

=
C̄

M2

∑
s≥0

∑
(m,j,k,l)∈HM (s;bM )

1

=
C̄

M2

∑
s≥0

|HM(s; bM)|︸ ︷︷ ︸
≤4McM (s,bM ;2)

≤ C̄

M2

∑
s≥0

4McM(s, bM ; 2)
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= 4C̄
1

M

∑
s≥0

cM(s, bM ; 2)︸ ︷︷ ︸
→0

→ 0,

where the second inequality comes from Lemma B.2, and the last implication is

due to Assumption 3.7. Therefore we have shown that

E
[
(V c

a,b − Va,b)2
]
→ 0.

By repeating the same argument for each a, b = 1, . . . , K, it follows that

E
[
‖V c

N,M − VM,M‖2
F

]
→ 0.

(b)
∥∥V c

N,M − VN,M
∥∥
F

p→ 0:

By the Chebyshev’s inequality and the result of part (a), we complete part (1) as

it follows that for any η > 0,

Pr(
∥∥V c

N,M − VN,M
∥∥
F
> η) <

1

η2
E
[∥∥V c

N,M − VN,M
∥∥2

F

]
︸ ︷︷ ︸

→0

→ 0.

(2) ‖ṼN,M − V c
N,M‖F

p→ 0:

This immediately follows from applying Proposition 4.1 of Kojevnikov et al. (2021)26

and the Dominated Convergence Theorem in the Markov inequality: i.e.,

Pr
(
‖ṼN,M − V c

N,M‖F ≥ η
)
≤ 1

η
E
[
‖ṼN,M − V c

N,M‖F
]

=
1

η
E
[
E
[
‖ṼN,M − V c

N,M‖F | CM
]︸ ︷︷ ︸

a.s.→ 0

]
→ 0,

for any η > 0.

(3) ‖V̂N,M − ṼN,M‖F
p→ 0:

26Notice that the definitions of VN,M , V̂N,M , ṼN,M and V c
N,M are slightly different from those used in

Proposition 4.1 of Kojevnikov et al. (2021).
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First, we have27

∥∥V̂N,M − ṼN,M

∥∥
F

=

∥∥∥∥∥∑
s≥0

ωM (s)
1

M

∑
m∈MN

∑
j∈M∂

N (m;s)

ε̂mε̂jxmx
′
j −

∑
s≥0

ωM (s)
1

M

∑
m∈MN

∑
j∈M∂

N (m;s)

εmεjxmx
′
j

∥∥∥∥∥
F

=

∥∥∥∥∥∑
s≥0

ωM (s)
1

M

∑
m∈MN

∑
j∈M∂

N (m;s)

(
ε̂mε̂j − εmεj

)
xmx

′
j

∥∥∥∥∥
F

≤

∥∥∥∥∥∑
s≥0

|ωM (s)|︸ ︷︷ ︸
≤1

1

M

∑
m∈MN

∑
j∈M∂

N (m;s)

(
ε̂mε̂j − εmεj

)
xmx

′
j

∥∥∥∥∥
F

≤

∥∥∥∥∥∑
s≥0

1

M

∑
m∈MN

∑
j∈M∂

N (m;s)

(
ε̂mε̂j − εmεj

)
xmx

′
j

∥∥∥∥∥
F

≤
∑
s≥0

1

M

∑
m∈MN

∑
j∈M∂

N (m;s)

∣∣ε̂mε̂j − εmεj∣∣∥∥xmx′j∥∥F .
Observe that, by definition, ε̂m can be written as ε̂m = εm − x′m(β̂ − β). Hence

ε̂mε̂j − εmεj = −εm(β̂ − β)′xj − x′m(β̂ − β)εj + x′m(β̂ − β)(β̂ − β)′xj,

so that by the triangular inequality,

∣∣ε̂mε̂j − εmεj∣∣ ≤ ∥∥β̂ − β∥∥2

∥∥xj∥∥2

∣∣εm∣∣+
∥∥β̂ − β∥∥

2

∥∥xm∥∥2

∣∣εj∣∣+
∥∥β̂ − β∥∥2

2

∥∥xm∥∥2

∥∥xj∥∥2
,

for each m, j ∈MN . Hence ‖V̂N,M − ṼN,M‖F can be bounded as

∥∥V̂N,M − ṼN,M

∥∥
F

≤
∥∥β̂ − β∥∥

2

1

M

∑
s≥0

∑
m∈MN

∑
j∈M∂

N (m;s)

‖xm‖2‖xj‖22|εm|+
∥∥β̂ − β∥∥

2

1

M

∑
s≥0

∑
m∈MN

∑
j∈M∂

N (m;s)

‖xm‖22‖xj‖2|εj |

+
∥∥β̂ − β∥∥2

2

1

M

∑
s≥0

∑
m∈MN

∑
j∈M∂

N (m;s)

‖xm‖22‖xj‖22.

Denote

RN,1 :=
1

M

∑
s≥0

∑
m∈MN

∑
j∈M∂

N (m;s)

‖xm‖2‖xj‖2
2|εm|;

RN,2 :=
1

M

∑
s≥0

∑
m∈MN

∑
j∈M∂

N (m;s)

‖xm‖2
2‖xj‖2|εj|;

27To lighten the notational burden, we drop the M subscript from {xM,m}m∈MN
and {εM,m}m∈MN

in
the rest of the proof.
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RN,3 :=
1

M

∑
s≥0

∑
m∈MN

∑
j∈M∂

N (m;s)

‖xm‖2
2‖xj‖2

2.

Now, since by Theorem 3.1, ‖β̂ − β‖2

p→ 0, and the application of the Continuous

Mapping Theorem yields ‖β̂ − β‖2
2

p→ 0, it thus suffices to prove that each of RN,1,

RN,2 and RN,3 converges in probability to a finite number. In proving this, we follow a

strategy employed in Aronow et al. (2015) and Tabord-Meehan (2019).

First let us study the expectation of RN,1. By applying the Cauchy-Schwartz in-

equality repeatedly, we have that

E
[
RN,1

]
≤ 1

M

∑
s≥0

∑
m∈MN

∑
j∈M∂

N (m;s)

((
E
[
‖xm‖2

2

]) 1
2
(
E
[
‖xj‖8

2

]) 1
2
) 1

2
(
E
[
E
[
|εm|2 | CM

]]) 1
2 .

Here, in light of Assumption 3.6, there exists an a.s.-bounded function C1 such that

C1 = supN≥1 maxm∈MN
E
[
|εm|2 | CM

]
, and moreover by Assumption 3.5, there exists

a nonnegative finite number C2 > 0 such that C2 = supN≥1 maxm∈MN
E
[
‖xm‖8

2

]
.

With a slight abuse of notation, we have for every N > 0

E [RN,1] ≤ 1

M

∑
s≥0

∑
m∈MN

∑
j∈M∂

N (m;s)

C1C2

=
C1C2

M

∑
s≥0

∑
m∈MN

∑
j∈M∂

N (m;s)

1

= C1C2

∑
s≥0

1

M

∑
m∈MN

|M∂
N(m; s)|︸ ︷︷ ︸

δ∂M (s;1)

= C1C2

∑
s≥0

δ∂M(s; 1)︸ ︷︷ ︸
<∞

< C,

for some constant C ∈ (0,∞), where the last inequality is because of Assumption 3.7.

Next let us study the variance of RN,1. It suffices to show that E
[
R2
N,1

]
→ 0, By the

Cauchy-Schwartz inequality, it holds that

E
[
R2

N,1

]
= E

[ 1

M2

∑
s≥0

∑
m∈MN

∑
j∈M∂

N (m;s)

∑
t≥0

∑
k∈MN

∑
l∈M∂

N (k;t)

‖xm‖2‖xj‖22‖xk‖2‖xl‖22|εm||εk|
]
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≤ 1

M2

∑
s≥0

∑
m∈MN

∑
j∈M∂

N (m;s)

∑
t≥0

∑
k∈MN

∑
l∈M∂

N (k;t)

(
E
[
‖xm‖22‖xj‖42‖xk‖22‖xl‖42

]) 1
2
(
E
[
|εm|2|εk|2

]) 1
2 .

Here, by Assumption 3.5 and the Cauchy-Schwartz inequality, there exists a nonnega-

tive finite constant C3 > 0 such that C3 = supN≤1 maxm,j,k,l∈MN
E
[
‖xm‖2

2‖xj‖4
2‖xk‖2

2‖xl‖4
2

]
.

Then, with a slight abuse of notation in writing C
1
2
3 as C3, we have

E
[
R2
N,1

]
=

C3

M2

∑
s≥0

∑
m∈MN

∑
j∈M∂

N (m;s)

∑
t≥0

∑
k∈MN

∑
l∈M∂

N (k;t)

(
E
[
|εm|2|εk|2

]) 1
2

=
C3

M2

∑
s≥0

∑
(m,j,k,l)∈HM (s;bM )

(
E
[
E
[
|εm|2|εk|2 | CM

]]) 1
2 .

Corollary A.2 of Kojevnikov et al. (2021) shows that there exists a nonnegative finite

constant C4 such that E
[
|εm|2|εk|2 | CM

]
≤ C4θ̄θ

1− 4
p

M,s , where θ̄ := supM≥1 maxs≥1 θM,s.

Upon applying Lemma B.2 from the Appendix, we obtain

E
[
R2
N,1

]
≤ C3C

′
4

M2

∑
s≥0

(
E
[
θ

1− 4
p

M,s

]) 1
2 4McM(s, bM ; 2) =

4C3C
′′
4

M

∑
s≥0

cM(s, bM ; 2)→ 0,

where we apply Assumption 3.7 for the last implication, and C ′4 and C ′′4 are nonnegative

finite constants defined appropriately. Hence we have shown that RN,1 converges to a

finite constant.

The proof of RN,2 is analogous.

It remains to show that RN,3 converges in probability to a finite constant. Let us

first study the expectation of RN,3. Observe that

E
[
RN,3

]
=

1

M

∑
s≥0

∑
m∈MN

∑
j∈M∂

N (m;s)

E
[
‖xm‖2

2‖xj‖2
2

]
.

By Assumption 3.5, there exists a nonnegative finite number C5 > 0 such that C5 =

supN≥1 maxm∈MN
E
[
‖xm‖2

2‖xj‖2
2

]
. Hence for every N > 0,

E
[
RN,3

]
=

1

M

∑
s≥0

∑
m∈MN

∑
j∈M∂

N (m;s)

E
[
‖xm‖2

2‖xj‖2
2

]
︸ ︷︷ ︸

≤C5

≤ 1

M

∑
s≥0

∑
m∈MN

∑
j∈M∂

N (m;s)

C5

=
C5

M

∑
s≥0

∑
m∈MN

∑
j∈M∂

N (m;s)

1
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= C5

∑
s≥0

1

M

∑
m∈MN

|M∂
N(m; s)|︸ ︷︷ ︸

δ∂M (s;1)

= C5

∑
s≥0

δ∂M(s; 1)︸ ︷︷ ︸
<∞

< C,

where we apply Assumption 3.7 in the last implication and a constant C ∈ (0,∞) is

appropriately defined.

Next let us consider the variance of RM,3:

E
[
R2
N,3

]
=

1

M2

∑
s≥0

∑
m∈MN

∑
j∈M∂

N (m;s)

∑
t≥0

∑
k∈MN

∑
l∈M∂

N (k;t)

E
[
‖xm‖2

2‖xj‖2
2‖xk‖2

2‖xl‖2
2

]
.

Once again, Assumption 3.5 and the Cauchy-Schwartz inequality imply that there

exists a nonnegative finite number C6 > 0 such that C6 = supN≥1 maxm,j,k,l∈MN

E
[
‖xm‖2

2‖xj‖2
2‖xk‖2

2‖xl‖2
2

]
. Then by Lemma B.2,

E
[
R2
N,3

]
≤ 1

M2

∑
s≥0

∑
m∈MN

∑
j∈M∂

N (m;s)

∑
t≥0

∑
k∈MN

∑
l∈M∂

N (k;t)

C6 =
4C6

M

∑
s≥0

cM(s, bM ; 2)→ 0,

where the last implication is a consequence of Assumption 3.7 (ii).

Therefore we have shown that

∥∥V̂N,M − ṼN,M

∥∥
F

≤
∥∥β̂ − β∥∥

2

1

M

∑
s≥0

∑
m∈MN

∑
j∈M∂

N (m;s)

‖xm‖2‖xj‖22|εm|︸ ︷︷ ︸
RM,1

+
∥∥β̂ − β∥∥

2

1

M

∑
s≥0

∑
m∈MN

∑
j∈M∂

N (m;s)

‖xm‖22‖xj‖2|εj |︸ ︷︷ ︸
RM,2

+
∥∥β̂ − β∥∥2

2

1

M

∑
s≥0

∑
m∈MN

∑
j∈M∂

N (m;s)

‖xm‖22‖xj‖22︸ ︷︷ ︸
RM,3

=
∥∥β̂ − β∥∥

2︸ ︷︷ ︸
p→0

RM,1︸ ︷︷ ︸
<∞

+
∥∥β̂ − β∥∥

2︸ ︷︷ ︸
p→0

RM,2︸ ︷︷ ︸
<∞

+
∥∥β̂ − β∥∥2

2︸ ︷︷ ︸
p→0

RM,3︸ ︷︷ ︸
<∞

p→ 0,

which proves ‖V̂N,M − ṼN,M‖F
p→ 0.
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To sum up, combining parts (1), (2) and (3), we have

‖V̂N,M − VN,M‖F ≤ ‖V̂N,M − ṼN,M‖F︸ ︷︷ ︸
p→0

+ ‖ṼN,M − V c
N,M‖F︸ ︷︷ ︸

p→0

+ ‖V c
N,M − VN,M‖F︸ ︷︷ ︸

p→0

p→ 0,

which completes the proof. �

B.7 Corollary 3.1

Proof of Corollary 3.1: For simplicity we denote

V̂ Dyad
N,M :=

( ∑
m∈MN

xmx
′
m

)−1( ∑
m∈MN

∑
m′∈MN

1m,m′ ε̂mε̂m′xmx
′
m′

)( ∑
m∈MN

xmx
′
m

)−1

,

and

V̂ Network
N,M :=

( ∑
m∈MN

xmx
′
m

)−1( ∑
m∈MN

∑
m′∈MN

hm,m′ ε̂mε̂m′xmx
′
m′

)( ∑
m∈MN

xmx
′
m

)−1

, 28

where we choose the kernel function and the lag truncation parameter so that the weights

become equal one for all active dyads: namely, we use the mean-shifted rectangular kernel

with the lag truncation being the length of the longest path in the network. Define moreover

Ṽ ar(β̂) to be the same variance as in the main text —

N
(

1
M

∑
k∈MN

E
[
xM,kx

′
M,k

])−1(
1
M2

∑
s≥0

∑
m∈MN

∑
m′∈M∂

N (m;s) E
[
YM,mY

′
M,m′

])(
1
M

∑
k∈MN

E
[
xM,kx

′
M,k

])−1

,

but now applied to the network-regression model (1) and (2). By the triangular inequality,

∥∥NV̂ Network
N,M −NV̂ Dyad

N,M

∥∥
F

=
∥∥NV̂ Network

N,M − Ṽ ar(β̂) + Ṽ ar(β̂)−NV̂ Dyad
N,M

∥∥
F

≤
∥∥NV̂ Network

N,M − Ṽ ar(β̂)
∥∥
F

+
∥∥Ṽ ar(β̂)−NV̂ Dyad

N,M

∥∥
F
.

Since Theorem 3.3 implies
∥∥NV̂ Network

N,M − Ṽ ar(β̂)
∥∥
F

p→ 0, then in the limit we are left

with

∥∥NV̂ Network
N,M −NV̂ Dyad

N,M

∥∥
F
≤
∥∥Ṽ ar(β̂)−NV̂ Dyad

N,M

∥∥
F
. (23)

Now we prove the statement by way of contradiction. Assume for the sake of contradiction
that the dyadic-robust variance estimator V̂ Dyad

N,M is consistent, i.e.,
∥∥Ṽ ar(β̂)−NV̂ Dyad

N,M

∥∥
F

p→ 0.

This, combined with the inequality (23), implies
∥∥NV̂ Network

N,M −NV̂ Dyad
N,M

∥∥
F

p→ 0. Now, observe

28For the sake of brevity, we suppress the M from subscript throughout this proof.
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that

∥∥NV̂ Network
N,M −NV̂ Dyad

N,M

∥∥
F

=
∥∥∥N( ∑

m∈MN

xmx
′
m

)−1( ∑
m∈MN

∑
m′∈MN

hm,m′ ε̂mε̂m′xmx
′
m′

)( ∑
m∈MN

xmx
′
m

)−1
−N

( ∑
m∈MN

xmx
′
m

)−1( ∑
m∈MN

∑
m′∈MN

1m,m′ ε̂mε̂m′xmx
′
m′

)( ∑
m∈MN

xmx
′
m

)−1∥∥∥
F

=
∥∥∥N( ∑

m∈MN

xmx
′
m

)−1(∑
s≥0

∑
m∈MN

∑
m′∈M∂

N (m;s)

hm,m′ ε̂mε̂m′xmx
′
m′

)( ∑
m∈MN

xmx
′
m

)−1
−N

( ∑
m∈MN

xmx
′
m

)−1(∑
s≥0

∑
m∈MN

∑
m′∈M∂

N (m;s)

1m,m′ ε̂mε̂m′xmx
′
m′

)( ∑
m∈MN

xmx
′
m

)−1∥∥∥
F

=
∥∥∥N( ∑

m∈MN

xmx
′
m

)−1( ∑
s={0,1}

∑
m∈MN

∑
m′∈M∂

N (m;s)

(
hm,m′ − 1m,m′

)
︸ ︷︷ ︸

0

ε̂mε̂m′xmx
′
m′

)( ∑
m∈MN

xmx
′
m

)−1
+N

( ∑
m∈MN

xmx
′
m

)−1(∑
s≥2

∑
m∈MN

∑
m′∈M∂

N (m;s)

(
hm,m′︸ ︷︷ ︸

1

−1m,m′︸ ︷︷ ︸
0

)
ε̂mε̂m′xmx

′
m′

)( ∑
m∈MN

xmx
′
m

)−1∥∥∥
F

=
∥∥∥N( ∑

m∈MN

xmx
′
m

)−1(∑
s≥2

∑
m∈MN

∑
m′∈M∂

N (m;s)

ε̂mε̂m′xmx
′
m′

)( ∑
m∈MN

xmx
′
m

)−1∥∥∥
F

=
N

M

∥∥∥( 1

M

∑
m∈MN

xmx
′
m

)−1( 1

M

∑
s≥2

∑
m∈MN

∑
m′∈M∂

N (m;s)

ε̂mε̂m′xmx
′
m′

)( 1

M

∑
m∈MN

xmx
′
m

)−1∥∥∥
F
.

We prove that the inside the Frobenius norm does not converge in probability to zero.

First it can immediately be shown, by Lemma B.1 (ii), that the “bread” part
(

1
M

∑
m∈MN

xmx
′
m

)−1

converges to
(

1
M

∑
m∈MN

E
[
xmx

′
m

])−1
.

Next plugging the definition of ε̂ into the middle part, we have

1

M

∑
s≥2

∑
m∈MN

∑
m′∈M∂

N (m;s)

ε̂mε̂m′xmx
′
m′

=
1

M

∑
s≥2

∑
m∈MN

∑
m′∈M∂

N (m;s)

{
εm + x′m(β − β̂)

}{
εm′ + x′m′(β − β̂)

}
xmx

′
m′

=
1

M

∑
s≥2

∑
m∈MN

∑
m′∈M∂

N (m;s)

εmεm′xmx
′
m′ + εm(β − β̂)xm′xmx

′
m′ + x′m(β − β̂)εm′xmx

′
m′ + x′m(β − β̂)(β − β̂)′xm′xmx

′
m′

=
1

M

∑
s≥2

∑
m∈MN

∑
m′∈M∂

N (m;s)

εmεm′xmx
′
m′ +

1

M

∑
s≥2

∑
m∈MN

∑
m′∈M∂

N (m;s)

εm(β − β̂)xm′xmx
′
m′

+
1

M

∑
s≥2

∑
m∈MN

∑
m′∈M∂

N (m;s)

x′m(β − β̂)εm′xmx
′
m′ +

1

M

∑
s≥2

∑
m∈MN

∑
m′∈M∂

N (m;s)

x′m(β − β̂)(β − β̂)′xm′xmx
′
m′ .

Denote

QM,1 :=
1

M

∑
s≥2

∑
m∈MN

∑
m′∈M∂

N (m;s)

εmεm′xmx
′
m′
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QM,2 :=
1

M

∑
s≥2

∑
m∈MN

∑
m′∈M∂

N (m;s)

εm(β − β̂)xm′xmx
′
m′

QM,3 :=
1

M

∑
s≥2

∑
m∈MN

∑
m′∈M∂

N (m;s)

x′m(β − β̂)εm′xmx
′
m′

QM,4 :=
1

M

∑
s≥2

∑
m∈MN

∑
m′∈M∂

N (m;s)

x′m(β − β̂)(β − β̂)′xm′xmx
′
m′ .

From Theorem 3.1, it can be seen that QM,2, QM,3 and QM,4 either converge to zero or

diverge as N goes to infinity. When it comes to QM,1, observe that

E
[
QM,1

]
= E

[ 1

M

∑
s≥2

∑
m∈MN

∑
m′∈M∂

N (m;s)

εmεm′xmx
′
m′

]
=

1

M

∑
s≥2

∑
m∈MN

∑
m′∈M∂

N (m;s)

E
[
εmεm′xmx

′
m′

]
,

which never equals to zero due to the hypothesis (17) of this corollary. In either case, the mid-

dle part does not converge in probability to zero, meaning that
∥∥NV̂ Network

N,M −NV̂ Dyad
N,M

∥∥
F

p→ 0

is not true. This, however, contradicts the implication of the assumption that the dyadic-

robust variance estimator is consistent. Hence, by means of contradiction, we conclude that

the dyadic-robust variance estimator is not consistent, which completes the proof. �

B.8 Example 3.1

Proof of Example 3.1

By the inequality of arithmetic and geometric means, the left-hand side of (17) can be

bounded by

1

M

∑
s≥2

∑
m∈MN

∑
m′∈M∂

N (m;s)

E
[
εM,mεM,m′xM,mxM,m′

]
=
∑
s≥2

γsδ∂M(s)

≥ (S − 1)

(∏
s≥2

γs
)1/(S−1)(∏

s≥2

δ∂M(s)

)1/(S−1)

,

where S ≥ 2 denotes the length of the longest path in the network. As the first and third

terms in both estimators are the same, then using the proposed network-robust estimator

will be desirable if the middle term (i.e., the left-hand side above) is larger than the tolerated
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threshold, B:

(S − 1)

(∏
s≥2

γs
)1/(S−1)(∏

s≥2

δ∂M(s)

)1/(S−1)

> B.

Passing logs on both sides yields the results. The lower bound is attained if γsδ∂M(s) =

γs
′
δ∂M(s′) for all s, s′ = 2, . . . , S. Note that S and the network densities {δ∂M(s)}s≥2 can be

estimated following the definition (14), as a (sample) network is observable.

C Additional Monte Carlo Simulation Results

C.1 Summary Statistics

Table 3 shows summary statistics (i.e., the average and maximum degrees) of the networks

across nodes that are used in our simulation study.

The maximum degree and the average degree increase monotonically as we increase the

parameters in both specifications. The number of active edges (i.e., dyads) also increases

with the sample size regardless of the specification. This reflects that each node tends to have

more direct links as the network becomes denser. In our exercises, the number of indirectly

linked dyads also increases with network denseness. However, this is due to our simulated

networks being relatively sparse. In other settings, the number of indirect connections may

decrease with network density.

51



Table 3: Summary Statistics of Networks among Nodes in the Simulations

Specification 1 Specification 2

N ν = 1 ν = 2 ν = 3 λ = 1 λ = 2 λ = 3

500 dmax 23 40 41 5 7 8

dave 0.8020 1.5780 2.3540 0.4760 0.9680 1.4800

1000 dmax 26 36 47 4 7 8

dave 0.8590 1.7000 2.5410 0.4980 0.9810 1.5010

5000 dmax 53 125 130 6 9 10

dave 0.9326 1.8618 2.7910 0.4952 1.0016 1.5114

Notes: Observation units in this table are nodes (individuals) as usual in

the literature. The maximum degree, dmax, means the maximum number of

nodes that are adjacent to a node, and the average degree, dave, is the aver-

age number of nodes adjacent to each node of the network.

Table 4 reports the degree characteristics of the networks when viewed as networks over

the active edges. The table provides the average degree, the maximum degree, and the

number of active edges (i.e., dyads).
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Table 4: Summary Statistics of Networks among Dyads in the Simulations

Specification 1 Specification 2

N ν = 1 ν = 2 ν = 3 λ = 1 λ = 2 λ = 3

500 dact 401 788 1175 238 484 740

dmax 32 45 70 4 9 14

dave 3.6858 6.0063 9.1881 0.9580 2.0248 3.0027

1000 dact 859 1699 2540 498 981 1501

dmax 35 55 76 5 8 10

dave 3.9581 6.7810 9.2047 1.0341 1.9888 2.9594

5000 dact 4663 9305 13952 2476 5008 7557

dmax 74 161 210 7 12 15

dave 5.2989 9.5159 12.8521 1.0137 2.0228 3.0341

Note: Observation units in this table are active edges (dyads), which departs

from the convention. Active edges are edges that are at work in the original

network over the nodes. The number of active edges is denoted by dact. The

maximum degree, dmax, expresses the maximum number of edges that are ad-

jacent to an edge, and the average degree, dave, is the average number of edges

adjacent to each edge of the network.

C.2 Additional Details on the Design

We draw εm :=
∑

m′ γm,m′ηm,m′ , where γm,m′ equals γs if the distance between m and m′ is

s, and 0 otherwise, for γ ∈ [0, 1]29 and s ∈ {1, . . . , S} with S being the maximum geodesic

distance that the spillover propagates to. Each ηm,m′ is drawn i.i.d. from N (0, 1). Hence, γ

controls the strength of spillover effects, representing their decay rate.

C.3 S = 2 and γ = 0.8

In this section, we further discuss the results of the Monte Carlo simulations presented in

the main text. The asymptotic behaviors of the three variance estimators are illustrated in

Figure 2, where the horizontal axes represent the sample size and the vertical axes indicate the

standard error of the regression coefficient. The boxplots show the 25th and 75th percentiles

across simulations, as well as the median, with the whiskers indicating the bounds that are not

29In this simulation, we focus on cases of positive spillovers, as negative spillovers can be analyzed analo-
gously.
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considered as outliers. The whisker length is set to cover ±2.7 times the standard deviation

of the standard-error estimates. The light-, medium- and dark-gray boxplots describe the

distribution of the Eicker-Huber-White, the dyadic-robust and our proposed network-robust

variance estimates across simulations, respectively. The diamonds indicate the empirical

standard errors of the estimates of the regression coefficients, what Aronow et al. (2015)

call the true standard error. It is unsurprising that the empirical standard errors are the

same across different variance estimators, as we use the same β̂. The boxplots show that

as the sample size increases, the variation of the network-robust variance estimator shrinks,

reaching the empirical standard error (the diamonds). This is as expected since this estimator

is consistent for the true variance (Theorem 3.3). The estimates appear to vary little for

moderate sample sizes (e.g., N = 1000). However, the other variance estimators (the light-

and medium-gray boxplots) converge to lower values than the empirical standard errors

(the diamonds), verifying their inconsistency in this environment with network spillovers, as

shown by Corollary 3.1. As we make such spillovers very small (e.g., γ = 0.2 in Appendix

C.5), all estimators have similar performance. This highlights the role of condition (17):

namely, the dyadic-robust variance estimator might perform satisfactorily well as long as

higher-order correlations beyond immediate neighbors are negligible.

Table 5 describes the standard deviations of the estimated regression coefficients (what

Aronow et al. (2015) calls the true standard errors) and the means of the estimated standard

errors for each variance estimator. The round brackets indicate the biases of each estimate

relative to the true standard error in percentage (%). For instance, the Eicker-Huber-White

variance estimator and the dyadic-robust variance estimator, when applied to Specification

1 with ν = 3, underestimate the true standard error by 21.45% and 14.14%, respectively.

C.4 S = 2 and γ = 0.8 with Higher Density Parameters

This subsection examines how an increase in the number of connected dyads affects the

performance of the dyadic-robust variance estimator. Table 6 reports the results for the case

of S = 2 with γ = 0.8, i.e., the same combination as the main text (Table 1), but for denser

networks which set ν = 4, 5 for Specification 1 and λ = 4, 5 for Specification 2. We find

that, while our estimator performs well (with coverage close to the nominal level), the bias

in the Eicker-Huber-White and dyadic-robust estimators variance estimators are present and

increase as the network becomes denser.
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Figure 2: Boxplots of Standard Errors for Specifications 1 and 2 (S = 2, γ = 0.8)

Note: This figure shows boxplots describing the estimated standard errors and the empirical standard errors

for various combinations of parameters under Specification 1 (Barabási-Albert networks) and Specification 2

(Erdös-Renyi networks). The horizontal axis shows the number of nodes and the vertical axis represents the

the standard error of the coefficient. The shaded boxes represent the 25th, 50th and 75th percentiles of esti-

mated standard errors with the whiskers indicating the most extreme values that are not considered as outliers.

The light-gray box illustrates the Eicker-Huber-White standard error, the medium-gray one the dyadic-robust

standard error and the dark-gray one the network-robust standard error. The diamonds stand for the empirical

standard error, defined as the standard deviation of the estimates of the regression coefficient. The estimator

is considered as not covering the true standard error when the diamond is outside of the shaded area.
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Table 5: Means and Biases of the Standard Errors: N = 5000, S = 2, γ = 0.8.

Specification 1 Specification 2

ν = 1 ν = 2 ν = 3 λ = 1 λ = 2 λ = 3

True 0.0430 0.0518 0.0570 0.0285 0.0283 0.0302

Eicker-Huber-White 0.0337 0.0404 0.0448 0.0234 0.0229 0.0239
(Bias %) (-21.61) (-21.92) (-21.45) (-17.91) (-19.14) (-20.68)

Dyadic-robust 0.0403 0.0453 0.0490 0.0270 0.0266 0.0275
(Bias %) (-6.19) (-12.54) (-14.14) (-5.01) (-6.12) (-8.93)

Network-robust 0.0425 0.0509 0.0565 0.0280 0.0285 0.0302
(Bias %) (-1.09) (-1.78) (-0.92) (-1.70) (0.58) (0.09)

Note: This table shows the standard deviations of the estimated regression coefficients
(the true standard error) and the means of the estimated standard errors for each vari-
ance estimator with the round brackets indicating the biases relative to the true stan-
dard error in percentage (%). To facilitate the comparison, the biases are rounded off
to the second decimal places.

C.5 S = 2 and γ = 0.2

Table 7 presents the empirical coverage probability and average length of confidence intervals

for β at 5% nominal size when S = 2 and γ = 0.2. The associated boxplots are given in Figure

3. Since the magnitude of spillovers is now much smaller than the case of γ = 0.8, there

are only minor differences in performance between the network-robust variance estimator

and the other two existing methods (namely, the Eicker-Huber-White and dyadic-robust

variance estimators). In terms of convergence, the comparable performance of the dyadic-

robust-variance estimator is evident in Figure 3.

Comparing Table 7 to Table 1 highlights the impact of spillovers on the variance estima-

tors. When the spillovers are substantially weak (e.g., γ = 0.2), the dyadic-robust variance

estimator can serve as a good substitute for the network-robust one. In the case of relatively

high spillovers (e.g., γ = 0.8), on the other hand, there are evident biases (around 4 percent-

age points for Specification 1 and 3 percentage points for Specification 2 when N = 5000).

Based on this comparison, we suggest that the network-robust variance estimator be used

when the correlations are expected to be relatively strong.
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Table 6: The empirical coverage probability and average length of confidence intervals for β
at 95% nominal level: S = 2, γ = 0.8, higher denseness parameters.

Specification 1 Specification 2

N ν = 4 ν = 5 λ = 4 λ = 5

Coverage Probability
Eicker-Huber-White 500 0.8758 0.8688 0.8744 0.8706

1000 0.8752 0.8688 0.8694 0.8784
5000 0.8658 0.8808 0.8694 0.8750

Dyadic-robust 500 0.8912 0.8808 0.9142 0.9058
1000 0.8936 0.8852 0.9124 0.9160
5000 0.8940 0.9020 0.9152 0.9176

Network-robust 500 0.9084 0.8928 0.9394 0.9368
1000 0.9246 0.9190 0.9424 0.9494
5000 0.9404 0.9436 0.9450 0.9512

Average Length of the C.I.
Eicker-Huber-White 500 0.5282 0.5577 0.3088 0.3230

1000 0.3964 0.4155 0.2183 0.2323
5000 0.1944 0.2132 0.0992 0.1045

Dyadic-robust 500 0.5580 0.5841 0.3471 0.3601
1000 0.4211 0.4380 0.2465 0.2595
5000 0.2085 0.2254 0.1124 0.1172

Network-robust 500 0.6099 0.6428 0.3825 0.4022
1000 0.4751 0.4966 0.2743 0.2927
5000 0.2449 0.2660 0.1259 0.1331

Note: The upper-half of the table displays the empirical coverage probability

of the asymptotic confidence interval for β, and the lower-half showcases the

average length of the estimated confidence intervals. As the sample size (N) in-

creases, the empirical coverage probability approaches 0.95, the nominal level.

This convergence is accompanied by the shrinking average length of confidence

intervals.
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Table 7: The empirical coverage probability and average length of confidence intervals for β
at 95% nominal level: S = 2, γ = 0.2.

Specification 1 Specification 2

N ν = 1 ν = 2 ν = 3 λ = 1 λ = 2 λ = 3

Coverage Probability
Eicker-Huber-White 500 0.9286 0.9186 0.9108 0.9434 0.9292 0.9308

1000 0.9320 0.9158 0.9148 0.9338 0.9322 0.9322
5000 0.9200 0.9110 0.9124 0.9434 0.9382 0.9308

Dyadic-robust 500 0.9342 0.9350 0.9336 0.9454 0.9368 0.9422
1000 0.9454 0.9376 0.9458 0.9398 0.9422 0.9486
5000 0.9446 0.9448 0.9432 0.9486 0.9490 0.9472

Network-robust 500 0.9284 0.9246 0.9162 0.9428 0.9360 0.9384
1000 0.9414 0.9294 0.9370 0.9392 0.9410 0.9456
5000 0.9454 0.9476 0.9418 0.9494 0.9492 0.9470

Average Length of the Confidence Intervals
Eicker-Huber-White 500 0.1578 0.1214 0.1092 0.1860 0.1360 0.1141

1000 0.1088 0.0846 0.0743 0.1290 0.0955 0.0799
5000 0.0486 0.0388 0.0346 0.0579 0.0423 0.0357

Dyadic-robust 500 0.1648 0.1316 0.1213 0.1890 0.1410 0.1205
1000 0.1158 0.0931 0.0833 0.1319 0.0994 0.0848
5000 0.0532 0.0439 0.0398 0.0594 0.0443 0.0381

Network-robust 500 0.1637 0.1291 0.1174 0.1885 0.1404 0.1196
1000 0.1154 0.0922 0.0825 0.1318 0.0993 0.0848
5000 0.0533 0.0440 0.0401 0.0594 0.0444 0.0382

Note: The upper-half of the table displays the empirical coverage probability of the asymptotic

confidence interval for β, and the lower-half showcases the average length of the estimated confi-

dence intervals. One computational issue that plagues the Monte Carlo simulation is the potential

lack of positive-semi-definiteness of the estimated variance-covariance matrix. In general, this prob-

lem prevails only when the sample size (N) is small. In our case, when N = 500, four variance

estimates out of five thousands take negative values. We deal with this issue by first applying the

eigenvalue decomposition to the estimated variance-covariance matrix and then augmenting the di-

agonal matrix of eigenvalues by a small constant, followed by pre- and post-multiplications by the

matrix of eigenvectors to obtain the updated estimate for the variance-covariance matrix. As the

sample size (N) increases, the empirical coverage probability approaches 0.95, the nominal level.

This convergence is accompanied by the shrinking average length of confidence intervals.

58



Figure 3: Boxplots of Standard Errors for Specifications 1 and 2 (S = 2, γ = 0.2)

Note: This figure shows boxplots describing the estimated standard errors and the empirical standard errors

for various combinations of parameters under Specification 1 (Barabási-Albert networks) and Specification 2

(Erdös-Renyi networks). The horizontal axis shows the number of nodes and the vertical axis represents the

the standard error of the coefficient. The shaded boxes represent the 25th, 50th and 75th percentiles of esti-

mated standard errors with the whiskers indicating the most extreme values that are not considered as outliers.

The light-gray box illustrates the Eicker-Huber-White standard error, the medium-gray one the dyadic-robust

standard error and the dark-gray one the network-robust standard error. The diamonds stand for the empiri-

cal standard error, defined as the standard deviation of the estimates of the regression coefficient. This figure

showcases the boxplots for the case when γ = 0.2.

59



C.6 S = 1

For comparison purposes, this subsection explores the results for S = 1. If S = 1, there are

no higher-order correlations beyond direct (adjacent) neighbors. Then, the network-robust

variance estimator ought to coincide with the dyadic-robust variance estimator by definition,

for any γ, as pointed out in Example 2.1. This is verified below for the case of γ = 0.8. Table

8 shows the simulation results.

Table 8: The empirical coverage probability and average length of confidence intervals for β
at 95% nominal level: S = 1, γ = 0.8.

Specification 1 Specification 2

N ν = 1 ν = 2 ν = 3 λ = 1 λ = 2 λ = 3

Coverage Probability
Eicker-Huber-White 500 0.8804 0.8676 0.8734 0.8906 0.8768 0.8692

1000 0.8678 0.8810 0.8710 0.8984 0.8864 0.8856
5000 0.8752 0.8652 0.8742 0.8996 0.8910 0.8778

Dyadic-robust 500 0.9292 0.9304 0.9384 0.9366 0.9416 0.9368
1000 0.9364 0.9426 0.9432 0.9428 0.9454 0.9484
5000 0.9474 0.9414 0.9498 0.9452 0.9518 0.9506

Network-robust 500 0.9292 0.9304 0.9384 0.9366 0.9416 0.9368
1000 0.9364 0.9426 0.9432 0.9428 0.9454 0.9484
5000 0.9474 0.9414 0.9498 0.9452 0.9518 0.9506

Average Length of the Confidence Intervals
Eicker-Huber-White 500 0.3282 0.2901 0.2881 0.2664 0.2377 0.2235

1000 0.2321 0.2088 0.1964 0.1887 0.1665 0.1564
5000 0.1131 0.1042 0.0980 0.0844 0.0742 0.0704

Dyadic-robust 500 0.3934 0.3591 0.3603 0.3104 0.2888 0.2776
1000 0.2853 0.2625 0.2500 0.2227 0.2037 0.1950
5000 0.1428 0.1330 0.1259 0.0998 0.0913 0.0882

Network-robust 500 0.3934 0.3591 0.3603 0.3104 0.2888 0.2776
1000 0.2853 0.2625 0.2500 0.2227 0.2037 0.1950
5000 0.1428 0.1330 0.1259 0.0998 0.0913 0.0882

Note: The upper-half of the table displays the empirical coverage probability of the asymptotic

confidence interval for β, and the lower-half showcases the average length of the estimated confi-

dence intervals. As the sample size (N) increases, the empirical coverage probability approaches

0.95, the nominal level. This convergence is accompanied by the shrinking average length of confi-

dence intervals.
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C.7 S =∞ with the Parzen kernel

In this subsection, we investigate the consequences of adaptively choosing the value of the

lag-truncation parameter following the rule outlined in the main text. To this end, we set

S =∞ (i.e., spillovers may propagate to all neighbors), with the magnitude of the spillovers

controlled by γ = 0.8 (the same as in the main text). In this environment, the spillovers

are never truncated while decaying as they propagate farther. With regards to estimation,

we consider the Parzen kernel, letting the lag-truncation parameter be chosen on the basis

of Kojevnikov et al. (2021). The simulation results are given in Table 9, while the selected

lag-truncation parameters are shown in Table 10.

The empirical coverage probability based on the network-robust variance estimator ap-

proaches to 95%, as expected. On the other hand, both the Eicker-Huber-White and dyadic-

robust variance estimator understate the targeted nominal level, as claimed in the main text.

It should be noted that these biases can become larger when the decay rate is slower. We

focus on Specification 2, as it likely satisfies the assumptions above under S =∞. After all,

with S =∞ and a very dense network, Assumption 3.4 is violated.
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Table 9: The empirical coverage probability and average length of confidence intervals for β
at 95% nominal level, Specification 2: S =∞, γ = 0.8, the Parzen kernel.

N λ = 1 λ = 2 λ = 3

Coverage Probability
Eicker-Huber-White 500 0.8884 0.8768 0.8718

1000 0.8892 0.8832 0.8806
5000 0.8966 0.8820 0.8806

Dyadic-robust 500 0.9282 0.9150 0.8964
1000 0.9300 0.9214 0.9126
5000 0.9384 0.9272 0.9118

Network-robust 500 0.9366 0.9302 0.9180
1000 0.9382 0.9386 0.9362
5000 0.9480 0.9510 0.9462

Average Length of C.I.
Eicker-Huber-White 500 0.2890 0.3085 0.3658

1000 0.2103 0.2241 0.2570
5000 0.0933 0.0994 0.1188

Dyadic-robust 500 0.3293 0.3483 0.3966
1000 0.2405 0.2526 0.2809
5000 0.1075 0.1127 0.1300

Network-robust 500 0.3387 0.3705 0.4233
1000 0.2502 0.2729 0.3070
5000 0.1120 0.1233 0.1457

Note: The upper-half of the table displays the empirical cover-

age probability of the asymptotic confidence interval for β, and

the lower-half showcases the average length of the estimated con-

fidence intervals. As the sample size (N) increases, the empirical

coverage probability approaches 0.95, the nominal level. This con-

vergence is accompanied by the shrinking average length of confi-

dence intervals.

Table 10: The lag-truncation parameters for Table 9 based on the Kojevnikov et al.’s (2021)
rule.

N λ = 1 λ = 2 λ = 3

500 224.3186 17.5262 12.0174
1000 254.5841 20.0388 13.4822
5000 320.3268 24.1851 16.0915

Note: This table displays the lag-truncation parameters bM for the simulations in Table 9, selected
using the rule: bM = 2 log(M)/ log(max(average degree, 1.05)), with M denoting the number of active
dyads.
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D Additional Information for the Empirical Illustra-

tion

D.1 Seating Arrangement at the European Parliament

Figure 4 exhibits an example of the seating arrangement at the European Parliament, and

describes how we construct an adjacency relationship among MEPs within their EPG groups.

D.2 Summary Statistics of the Seating Arrangement

Table 11 lists the summary statistics of the seating arrangement (for Strasbourg at term 7)

when viewed as a network over pairs of MEPs. Its summary statistics are consistent with

those from the Erdös-Renyi random network with λ = 1 to λ = 3 (see Table 4). This suggests

that our empirical illustration should perform well with the Parzen kernel and bandwidth

choice proposed in Kojevnikov et al. (2021).

Table 11: Summary Statistics of The Seating Arrangement: Strasbourg, Term 7

dact dmax dave edirect eindirect

602 2 1.7076 514 3136

See Table 4 for the definition of the first three indicators. The last two represent the number of adjacent
and connected dyads, respectively.

D.3 Data Construction

Data construction for our empirical exercise in Section 5 proceeds in multiple steps:

Step 1: Our subsample consists of the location of interest (i.e., Strasbourg) for the period

of interest (i.e., Term 7). We select a further subset of the extracted data by seating

arrangement (i.e., we focus on Pattern 1 for the present analysis - see Table 12).

Step 2: Since our analysis is concerned with voting concordance, we follow the original

authors in dropping entries with missing data or “abstain” in the variable “vote.”30

Step 3: The resulting data still contains individuals belonging to “Identity, Tradition and

Sovereignty (ITS),” one of the European Political Groups that dissolved in November

7, during the sixth term. We drop such MEPs from our analysis.

30This amounts to assuming that those observations are missing completely at random (MCAR).
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Figure 4: Seating Plan at the European Parliament: Strasbourg, September 14, 2009

ALDE PPE

Row 10 · · · ...
...

...
...

...
... · · ·

Row 9 · · · Seat 36: Seat 37: Seat 38: Seat 39: Seat 40: Seat 41: · · ·
ALFANO ALVARO CAVADA COELHO COLLINO COMI

Row 8 · · · Seat 32: Seat 33: Seat 34: Seat 35: Seat 36: · · ·
OJULAND OVIIR BACH BALDASSARRE BALZ

Row 7 · · · ...
...

...
...

...
... · · ·

Note: The upper panel illustrates a zoomed-out view of a seating plan for the European parliament in Stras-

bourg on September 14, 2009. gray circles are individual MEPs, while black circles embody members of conseil

and commission. The associated party (EPG) is denoted at the top. The lower panel provides a zoomed-in view

elaborating on the part of the upper panel marked by the dotted trapezoid shaded in gray. Alafano and Alvaro

are treated as adjacent because they are sitting next to each other and belong to the same political party, i.e.,

ALE. Similarly, Ojuland and Oviir are considered to be adjacent. On the other hand, following the original

authors, Alvaro and Cavada are not regarded as adjacent though they are seated together because they belong

to different political parties, i.e., ALE and PPE, respectively. In terms of dyad-level adjacency, Cavada-Coelho

and Coelho-Collino are adjacent dyads as they share Coelho, whereas Cavada-Coelho and Collino-Comi are not

adjacent, but they are still connected as they have indirect paths to one another along the dyadic network.
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Step 4: The selected data is used to form the dyadic data registering the pair-of-MEPs-

specific information. When pairing two MEPs, we follow Harmon et al. (2019) in

focusing on those pairs of MEPs, both of whom are

(i) in the same EPG;

(ii) from an alphabetically-seated EPG; and

(iii) non-leaders at the time of voting.

Our dyadic data consists of two types of variables: binary variables and numerical

variables. The dyad-level binary (i.e., indicator) variables are defined to be one if the

individual-level binary variables are the same, and zero otherwise. The dyadic-specific

numerical variables in our analysis are the differences between the individual-level

numerical variables, such as age and tenure. When calculating the differences in ages

and tenures, we take the absolute values as we do not consider directional dyads, and

we then rescale them into ten-year units. See the note below Table 2 for details.

Table 12: Patterns of Seating Arrangements: Strasbourg, Term 7

Pattern Date Number of Proposals

1 7/14/2009 ∼ 7/16/2009 116
2 8/18/2009 ∼ 8/21/2009 72
3 9/23/2009 ∼ 9/25/2009 114
4 10/13/2009 ∼ 10/16/2009 40
5 11/19/2009 ∼ 12/11/2009 94
6 1/5/2010 ∼ 1/8/2010 79
7 3/17/2010 ∼ 3/19/2010 45
8 4/14/2010 ∼ 4/16/2010 120
9 5/5/2010 ∼ 5/7/2010 79
10 7/7/2010 ∼ 7/9/2010 34
11 7/21/2010 ∼ 7/22/2010 50
12 8/18/2010 ∼ 8/20/2010 118

Note: This table presents patterns of seating arrangements
with the corresponding dates and the number of total obser-
vations for each pattern. Since voting may be taken place for
multiple proposals within the same day, the total number pro-
posals tends to be higher than that of days in a single pattern.
For example, the first line indicates that 116 proposals were
discussed and votes were cast over the three days (from the
14th of July, 2009 to the 16th of July, 2009).
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D.4 Full Results

Table 13 reports the detailed result of the empirical illustration. As explained in Section 5.3,

Panel A reports the estimates of the parameter of interest, while Panel B lists the standard

errors based on the different variance estimators. In particular, we carry out the estimation

using both the network-robust variance estimator with the mean-shifted rectangular kernel,

and the one with the Parzen kernel, generating the same estimates. Panel C collects the

parameter estimates for other covariates accompanied by the standard errors obtained from

our proposed variance estimator from equation (10), and indicates the presence or absence

of day-level fixed effects.

Table 13: Spillovers in Legislative Voting – Main Analysis

Specification (I) Specification (II) Specification (III)

Panel A: Parameter estimates for Seat neighbors
Seat neighbors 0.0069 0.0060 0.0060

Panel B: Standard errors for Seat neighbors
Eicker-Huber-White 0.0031 0.0030 0.0030
Dyadic-robust 0.0075 0.0082 0.0087
Network-robust (with the rectangular kernel) 0.0095 0.0104 0.0112
Network-robust (with the Parzen kernel) 0.0095 0.0104 0.0112

Panel C: Parameter estimates for other covariates
Same country 0.0561 0.0562

(0.0008) (0.0008)
Same quality education 0.0030 0.0028

(0.0007) (0.0007)
Same freshman status -0.0070 -0.0070

(0.0008) (0.0008)
Same gender 0.0004 0.0004

(0.0007) (0.0006)
Age difference 0.0007 0.0004

(0.0004) (0.0004)
Tenure difference -0.0149 -0.0149

(0.0006) (0.0006)

Day-level FE No No Yes

Note: Panel A displays the parameter estimates for the three different specifications; Panel B

shows the standard errors for the regression coefficient of SeatNeighbors using different variance

estimators; and Panel C collects the parameter estimates for other covariates accompanied by the

standard errors obtained from our proposed variance estimator from equation (10), and indicates

the presence or absence of day-level fixed effects. Adjacency of MEPs is defined at the level of

a row-by-EP-by-EPG. (See the note below Figure 4.) Independent variables are as follows: Seat

neighbors is an indicator variable denoting whether both MEPs sit together; Same country repre-

sents an indicator for whether both MEPs are from the same country; Same quality education is

an indicator showing whether both MEPs have the same quality of education background, mea-

sured by if both have the degree from top 500 universities; Same freshman status encodes whether

both MEPs are freshman or not; Age difference is the difference in the MEPs’ ages; and Tenure

difference measures the difference in the MEPs’ tenures.
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