Online Appendix for

Measuring Closeness in Proportional Representation Systems Simon Luechinger, Mark Schelker, Lukas Schmid

## Contents

| Α | Extension |
|---|-----------|
|   |           |

1

 $\mathbf{4}$ 

**B** Additional tables and figures

## A Extension

Here, we illustrate how to adapt the construction of the party margin to account for party alliances (see Subsection 2.4 of the main text). As in the main text, we consider a district with J parties and n seats. The parties form L disjoint alliances  $A_l$  indexed by  $l \in \mathcal{A} \equiv \{1, 2, ..., L\}$ . An alliance is formed by one or more parties. Therefore, an alliance  $A_l$  is a subset of the set of parties. The index  $k \in \{1, 2, ..., n\}$ denotes the potential seats of an alliance  $A_l$ . Similarly,  $\tilde{k}$  captures the potential seats of each of the other alliances indexed by  $-l \in \mathcal{A} \setminus \{l\}$ . We denote the vote total of a party  $P_j$  of an alliance  $A_l$  by  $votes_{j,l}$ .

In the first round, seats are allocated to alliances based on their total number of votes,  $votes_l = \sum_{P_j \in A_l} votes_{j,l}$ . The construction of the first round margin is equivalent to the construction of the party margin in Subsection 2.1.1 of the main text with alliances replacing parties:

first round 
$$margin_{k,l} = votes_l - k\left(\frac{votes_{-l}}{\tilde{k}}\right)_{(n(L-1)-(n-k))}$$

In the second round, all seats won by alliance  $A_l$  are allocated to the parties  $P_j \in A_l$ . This means that we have to calculate the second round margin for all potential seats i and all potential first round results k as long as  $i \leq k$ . Again, we construct the second round margin analogously to the party margin in Subsection 2.1.1 of the main text but replace a district's number of seats, n, by the number of seats won by the alliance, k, and the overall number of parties, J, by the alliance  $A_l$ 's number of parties,  $card(A_l)$ . For seat i of party  $P_j$  of alliance  $A_l$  that received k seats in the first round, the second round margin is

second round 
$$margin_{i,j,k,l} = votes_{j,l} - i\left(\frac{votes_{-j,l}}{\tilde{i}}\right)_{(n(card(A_l)-1)-(k-i))}$$

We aggregate the first round margin and the second round margin to get the party margin in a setting with alliances. The party margin<sub>ij</sub> for a seat *i* of party  $P_j$  in alliance  $A_l$  is defined as:

$$party \ margin_{i,j} = \max_{i \in \{1, \dots, n\}} \{ \min\{first \ round \ margin_{k,l}, second \ round \ margin_{i,j,k,l} \} \}.$$

Let us introduce alliances in our example and assume that party  $P_1$  forms the singleton alliance  $A_1$  and parties  $P_2$  and  $P_3$  form another alliance  $A_2$ . In the first round, the three D'Hondt ratios for  $A_1$  are 45, 22.5, and 15.0 and for  $A_2$  55, 27.5, and 18.3. Thus, alliance  $A_1$ , and therefore party  $P_1$ , gains one seat, and alliance  $A_2$ receives two seats. In the second round, the two seats of alliance  $A_2$  are distributed to parties according to their party-specific D'Hondt ratios of 35, 17.5, and 11.7 for party  $P_2$  and 20, 10, and 6.7 for party  $P_3$ . Thus, parties  $P_2$  and  $P_3$  each obtain one seat.

As before, we construct the party margin for party  $P_2$ . We begin with the first round margin and the first seat, k = 1, of alliance  $A_2$ . If alliance  $A_2$  lost 40 votes, its highest D'Hondt ratio would be equal to the third highest of alliance  $A_1$  and it would still win exactly one seat. Thus, the first round margin for k = 1 of alliance  $A_2$  is 40. Equivalently, the first round margin of alliance  $A_2$  is 10 for k = 2 and -80for k = 3.

For the second round margin, we have to consider six  $(4 \times 3/2)$  different cases for party  $P_2$  with  $i \leq k$ . If the alliance won only one seat, the party could lose 15 votes to secure this seat against party  $P_3$ . Thus, the second round margin is 15 for i = 1 and k = 1. If the alliance won two seats, the party would have a chance to get one seat if it lost 25 votes and its highest D'Hondt ratio was equal to the second highest D'Hondt ratio of its ally. This implies a second round vote margin of 25 for i = 1 and k = 2. The remaining four cases are -5 for i = 2 and k = 2, 28.3 for i = 1 and k = 3, 15 for i = 2 and k = 3, and -25 for i = 3 and k = 3. The following table summarizes the vote margins from the two rounds.

|   |   | Margins      |              |  |  |  |
|---|---|--------------|--------------|--|--|--|
| i | k | First round  | Second round |  |  |  |
| 1 | 1 | 40.0         | 15.0         |  |  |  |
| 1 | 2 | <u>10.0</u>  | 25.0         |  |  |  |
| 1 | 3 | <u>-80.0</u> | 28.3         |  |  |  |
| 2 | 2 | 10.0         | -5.0         |  |  |  |
| 2 | 3 | <u>-80.0</u> | 15.0         |  |  |  |
| 3 | 3 | -80.0        | -25.0        |  |  |  |

Table A.1: Party vote margins for party  $P_2$ 

We aggregate these margins to get the party margin in a setting with alliances. We start with the aggregation for the first seat, i = 1, of party  $P_2$ . The first three rows in Table A.1 depict cases for which party  $P_2$  receives one seat. In the first step, we determine whether the first or the second round margin is binding by taking the minimum for each row. For example, the alliance  $A_2$  could lose 40 votes and would still get one seat (k = 1), but party  $P_2$  could only lose 15 votes to win this seat (i = 1). Thus, the binding margin is 15 votes. The binding margins for i = 1 and k = 2 is 10 and for i = 1 and k = 3 is -80. The maximum of these binding margins is the one for i = 1 and k = 1 of 15. This implies that party  $P_2$  could lose up to 15 votes and therefore, the party margin for the first seat, i = 1, of party  $P_2$  is 15. Similarly, the party margin is -5 for i = 2 and -80 for i = 3.

## **B** Additional tables and figures

Figure B.1: Distribution of the assignment variable for Switzerland



*Note:* This figure depicts the density (y-axis) in equally-sized bins of width 0.002 (0.2 percentage points) of the assignment variable (x-axis) for around three times the optimal bandwidth based on the standard settings with first-order polynomial and a triangular kernel.

|                            | (1)     | (2)     | (3)     | (4)     |
|----------------------------|---------|---------|---------|---------|
| Panel (A): Main results    |         |         |         |         |
| Elected in t+1             | 0.357   | 0.287   | 0.364   | 0.289   |
|                            | (0.029) | (0.040) | (0.027) | (0.038) |
| Panel (B): Covariate balar | ice     |         |         |         |
| Vote margin in t-1         | 0.000   | -0.005  | -0.002  | -0.002  |
|                            | (0.005) | (0.008) | (0.005) | (0.007) |
| Age                        | 1.310   | 1.505   | 1.143   | 1.650   |
|                            | (0.637) | (0.882) | (0.609) | (0.829) |
| Sex                        | -0.034  | -0.011  | -0.035  | -0.021  |
|                            | (0.021) | (0.030) | (0.021) | (0.028) |
| Year                       | 4.071   | -1.158  | 4.980   | -0.582  |
|                            | (1.722) | (2.367) | (1.663) | (2.215) |
| Number of seats in canton  | -0.483  | 0.692   | -0.124  | 0.873   |
|                            | (0.766) | (1.018) | (0.742) | (0.964) |
| Aargau                     | 0.015   | 0.006   | 0.008   | 0.016   |
|                            | (0.016) | (0.021) | (0.015) | (0.020) |
| Appenzell Innerrhoden      | 0.000   | 0.000   | 0.000   | 0.000   |
|                            | -       | -       | -       | -       |
| Appenzell Ausserrhoden     | 0.000   | 0.001   | 0.001   | -0.000  |
|                            | (0.003) | (0.005) | (0.003) | (0.005) |
| Bern                       | -0.040  | -0.005  | -0.056  | 0.002   |
|                            | (0.029) | (0.039) | (0.029) | (0.037) |
| Basel Landschaft           | 0.000   | 0.004   | 0.000   | -0.001  |
|                            | (0.008) | (0.011) | (0.007) | (0.010) |
| Basel Stadt                | 0.007   | -0.000  | 0.002   | 0.006   |
|                            | (0.011) | (0.016) | (0.010) | (0.015) |

Table B.1: Results and balance tests for Switzerland

| וי ת         | 0.000   | 0.000   | 0.001   | 0.000   |
|--------------|---------|---------|---------|---------|
| Fribourg     | 0.000   | -0.008  | -0.001  | -0.009  |
|              | (0.008) | (0.010) | (0.008) | (0.010) |
| Geneva       | -0.002  | -0.001  | -0.004  | 0.005   |
|              | (0.019) | (0.026) | (0.018) | (0.024) |
| Glarus       | 0.000   | 0.000   | -0.000  | 0.000   |
|              | (0.000) | -       | (0.001) | (0.000) |
| Graubünden   | 0.001   | -0.002  | 0.005   | -0.005  |
|              | (0.004) | (0.004) | (0.005) | (0.005) |
| Jura         | 0.001   | -0.000  | 0.002   | -0.000  |
|              | (0.004) | (0.007) | (0.004) | (0.006) |
| Lucerne      | -0.001  | 0.004   | -0.002  | 0.004   |
|              | (0.011) | (0.013) | (0.011) | (0.013) |
| Neuchâtel    | -0.001  | -0.002  | 0.002   | -0.002  |
|              | (0.006) | (0.006) | (0.006) | (0.007) |
| Nidwalden    | 0.000   | 0.000   | -0.000  | 0.000   |
|              | -       | -       | (0.000) | -       |
| Obwalden     | 0.001   | 0.000   | 0.001   | 0.000   |
|              | (0.002) | (0.002) | (0.002) | (0.002) |
| St. Gallen   | 0.001   | -0.009  | -0.002  | -0.015  |
|              | (0.015) | (0.021) | (0.014) | (0.020) |
| Schaffhausen | 0.002   | 0.002   | 0.002   | 0.001   |
|              | (0.003) | (0.003) | (0.003) | (0.003) |
| Solothurn    | 0.001   | -0.007  | 0.001   | -0.006  |
|              | (0.011) | (0.016) | (0.011) | (0.014) |
| Schwyz       | 0.001   | 0.002   | 0.001   | 0.000   |
|              | (0.005) | (0.008) | (0.005) | (0.007) |
| Thurgau      | 0.002   | 0.000   | 0.004   | -0.001  |
|              | (0.006) | (0.010) | (0.007) | (0.009) |
| Ticino       | 0.016   | 0.016   | 0.010   | 0.021   |
|              | (0.012) | (0.017) | (0.011) | (0.015) |

| Uri                          | -0.000     | 0.000     | -0.000     | 0.000     |
|------------------------------|------------|-----------|------------|-----------|
|                              | (0.000)    | -         | (0.001)    | (0.001)   |
| Vaud                         | -0.033     | -0.043    | -0.036     | -0.064    |
|                              | (0.029)    | (0.038)   | (0.028)    | (0.036)   |
| Valais                       | 0.008      | 0.001     | 0.005      | 0.004     |
|                              | (0.010)    | (0.015)   | (0.010)    | (0.014)   |
| Zug                          | 0.002      | -0.000    | 0.002      | 0.000     |
|                              | (0.004)    | (0.006)   | (0.004)    | (0.005)   |
| Zurich                       | 0.019      | 0.044     | 0.056      | 0.045     |
|                              | (0.030)    | (0.040)   | (0.029)    | (0.038)   |
| Social democrats (SP)        | -0.011     | -0.001    | -0.023     | 0.001     |
|                              | (0.039)    | (0.054)   | (0.038)    | (0.050)   |
| Christian democrats (CVP)    | 0.035      | 0.052     | 0.014      | 0.049     |
|                              | (0.035)    | (0.050)   | (0.033)    | (0.046)   |
| Liberals (FDP)               | 0.018      | 0.012     | 0.041      | -0.014    |
|                              | (0.039)    | (0.053)   | (0.037)    | (0.049)   |
| National convervatives (SVP) | -0.010     | 0.003     | -0.036     | -0.012    |
|                              | (0.040)    | (0.051)   | (0.038)    | (0.049)   |
| Panel (C): Covariate reject  | ion rates  |           |            |           |
| 5% level                     | 5.7%       | 0%        | 5.7%       | 2.9%      |
| 10% level                    | 5.7%       | 2.9%      | 14.3%      | 5.7%      |
| Bandwidth                    | 0.036      | 0.018     | 0.073      | 0.036     |
| Left obs                     | $12,\!947$ | 5,717     | $19,\!158$ | 12,970    |
| Right obs                    | $2,\!649$  | $1,\!651$ | 3,436      | $2,\!651$ |

Note: The table reports estimates for the election probability in t + 1, the assignment variable in t - 1, and for several candidate characteristics in t, whereby t indexes elections. The estimates for the parties relate to the four parties represented in the Federal Council; we combine the national conservatives (SVP) with its recent splinter party (BDP). We present bias-corrected and robust point estimates and standard errors (Calonico, Cattaneo, and Titiunik 2014a; b). Standard errors account for candidate-level clustering (Calonico et al. 2017). For some small cantons and the narrow bandwidths, it is not feasible to calculate standard errors; we denote these cases with "-". We use separate linear models on each side of the threshold in columns (1) and (2) and quadratic models in columns (3) and (4). For the regressions, we use a triangular kernel. In each column, we use the same bandwidth for all variables. In columns (1) and (3), we employ the optimal bandwidth for the election probability in t + 1 (Calonico et al. 2017) in columns (2) and (4), we use half this bandwidth. We use identical bandwidths for the point estimate and the bias correction. The two bottom rows refer to the observations within the bandwidth; these numbers are lower for the lagged assignment variable and the four party variables. The lagged assignment variable is missing for a candidate's first year in the data and we lack harmonized party information before 1971.



Figure B.2: Distribution of the assignment variable for Honduras

*Note:* This figures depicts the density (y-axis) in equally-sized bins of width 0.002 (0.2 percentage points) of the assignment variable (x-axis) for around three times the optimal bandwidth based on the standard settings with first-order polynomial and a triangular kernel.

|                               | (1)     | (2)     | (3)     | (4)     |  |  |
|-------------------------------|---------|---------|---------|---------|--|--|
| Panel (A): Main results       |         |         |         |         |  |  |
| Elected in t+1                | -0.018  | 0.008   | -0.020  | 0.023   |  |  |
|                               | (0.079) | (0.110) | (0.082) | (0.111) |  |  |
| Panel (B): Covariate balance  | е       |         |         |         |  |  |
| Vote margin in t-1            | 0.008   | 0.015   | 0.008   | 0.016   |  |  |
|                               | (0.013) | (0.015) | (0.014) | (0.015) |  |  |
| Sex                           | -0.093  | -0.182  | -0.124  | -0.176  |  |  |
|                               | (0.115) | (0.155) | (0.118) | (0.157) |  |  |
| Year                          | -0.109  | 0.080   | -0.056  | 0.086   |  |  |
|                               | (0.505) | (0.671) | (0.519) | (0.675) |  |  |
| Number of seats in department | 0.960   | 1.172   | 0.637   | 1.315   |  |  |
|                               | (1.919) | (2.658) | (1.963) | (2.669) |  |  |
| Atlántida                     | 0.038   | -0.018  | 0.066   | -0.043  |  |  |
|                               | (0.062) | (0.048) | (0.064) | (0.051) |  |  |
| Choluteca                     | -0.036  | 0.008   | -0.047  | 0.015   |  |  |
|                               | (0.017) | (0.014) | (0.020) | (0.021) |  |  |
| Colón                         | 0.002   | -0.014  | 0.001   | -0.008  |  |  |
|                               | (0.034) | (0.034) | (0.035) | (0.037) |  |  |
| Comayagua                     | 0.020   | -0.032  | 0.022   | -0.030  |  |  |
|                               | (0.032) | (0.019) | (0.033) | (0.024) |  |  |
| Copán                         | -0.009  | -0.007  | -0.014  | -0.010  |  |  |
|                               | (0.026) | (0.015) | (0.027) | (0.018) |  |  |
| Cortés                        | 0.015   | -0.032  | 0.003   | -0.008  |  |  |
|                               | (0.113) | (0.160) | (0.115) | (0.159) |  |  |
| El Paraíso                    | 0.017   | -0.005  | 0.041   | 0.005   |  |  |
|                               | (0.050) | (0.083) | (0.051) | (0.082) |  |  |

Table B.2: Results and balance tests for Honduras

| Francisco Morazán           | 0.068   | 0.093   | 0.065   | 0.084   |
|-----------------------------|---------|---------|---------|---------|
|                             | (0.108) | (0.153) | (0.111) | (0.153) |
| Gracias a Dios              | 0.000   | 0.000   | 0.001   | 0.000   |
|                             | -       | -       | (0.005) | -       |
| Intibucá                    | 0.002   | -0.008  | 0.004   | -0.011  |
|                             | (0.028) | (0.021) | (0.029) | (0.022) |
| Islas de la Bahía           | 0.000   | 0.000   | 0.000   | 0.000   |
|                             | -       | -       | -       | _       |
| La Paz                      | -0.002  | 0.003   | -0.003  | 0.005   |
|                             | (0.057) | (0.080) | (0.058) | (0.079) |
| Lempira                     | 0.006   | -0.006  | 0.022   | -0.015  |
|                             | (0.024) | (0.012) | (0.025) | (0.017) |
| Ocotepeque                  | 0.008   | 0.004   | 0.007   | 0.006   |
|                             | (0.048) | (0.079) | (0.049) | (0.078) |
| Olancho                     | -0.015  | -0.018  | -0.012  | -0.014  |
|                             | (0.015) | (0.021) | (0.019) | (0.027) |
| Santa Bárbara               | -0.036  | -0.002  | -0.044  | 0.004   |
|                             | (0.056) | (0.060) | (0.058) | (0.062) |
| Valle                       | -0.004  | 0.002   | -0.007  | 0.002   |
|                             | (0.009) | (0.004) | (0.011) | (0.006) |
| Yoro                        | -0.077  | 0.032   | -0.105  | 0.018   |
|                             | (0.101) | (0.139) | (0.104) | (0.139) |
| National conservatives (PN) | 0.008   | -0.051  | 0.011   | -0.015  |
|                             | (0.110) | (0.158) | (0.113) | (0.158) |
| Social liberals (PL)        | 0.046   | -0.087  | 0.054   | -0.100  |
|                             | (0.109) | (0.145) | (0.112) | (0.146) |
| Social democrats (Libre)    | -0.008  | 0.039   | -0.001  | 0.019   |
|                             | (0.111) | (0.140) | (0.113) | (0.141) |

| Panel (C): Covariate rejection rates |       |       |       |       |  |  |
|--------------------------------------|-------|-------|-------|-------|--|--|
| 5%                                   | 4%    | 0%    | 4%    | 0%    |  |  |
| 10%                                  | 4%    | 4%    | 4%    | 0%    |  |  |
| Bandwidth                            | 0.020 | 0.010 | 0.035 | 0.017 |  |  |
| Left obs                             | 454   | 181   | 614   | 379   |  |  |
| Right obs                            | 160   | 104   | 209   | 148   |  |  |

Note: The table reports estimates for the election probability in t + 1, the assignment variable in t - 1, and for several candidate characteristics in t, whereby t indexes elections. In contrast to the Swiss case, we do not have information on the candidates' age. The estimates for parties focus on the three largest parties. We present bias-corrected and robust point estimates and standard errors (Calonico, Cattaneo, and Titiunik 2014a; b). Standard errors account for candidate-level clustering (Calonico et al. 2017). For some small departments, it is not feasible to calculate standard errors; we denote these cases with "-". We use separate linear models on each side of the threshold in columns (1) and (2) and quadratic models in columns (3) and (4). For the regressions, we use a triangular kernel. In each column, we use the same bandwidth for all variables. In columns (1) and (3), we employ the optimal bandwidth for the election probability in t + 1 (Calonico et al. 2017) in columns (2) and (4), we use half this bandwidth. We use identical bandwidths for the point estimate and the bias correction. The two bottom rows refer to the observations within the bandwidth; these numbers are lower for the lagged assignment variable.



Figure B.3: Distribution of the assignment variable for Norway

*Note:* This figure depicts the density (y-axis) in equally-sized bins of width 0.005 (0.5 percentage point) of the assignment variable (x-axis) for around three times the optimal bandwidth based on the standard settings with first-order polynomial and a triangular kernel. The dark-shaded part represents the marginal candidates, the light-shaded part non-marginal candidates.

## References

- Calonico, Sebastian, Matias D. Cattaneo, Max H. Farrell, and Rocío Titiunik. 2017. "rdrobust: Software for Regression-Discontinuity Designs." Stata Journal 17 (2): 372–404.
- Calonico, Sebastian, Matias D. Cattaneo, and Rocío Titiunik. 2014a. "Robust Data-Driven Inference in the Regression-Discontinuity Design." Stata Journal 14 (4): 909–946.
- Calonico, Sebastian, Matias D. Cattaneo, and Rocio Titiunik. 2014b. "Robust Nonparametric Confidence Intervals for Regression-Discontinuity Designs." *Econometrica* 82 (6): 2295–2326.