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1 Representations and Subset Selection Methods

Here we define each of the representations and subset selection methods we test.

1.1 Low-dimensional Representation

(i) Multinomial Topic Factor-based weight vectors (from the baseline): A K-topic model

represents each document (given as vector of token counts) in the dataset as a sample from multi-

nomial distribution

xi ∼ MN(wi1θ1 + . . .+ wiKθK ,mi),

where θj ∈ Rp is the j-th topic vector (same for all the documents), p is the number of tokens in

the vocabulary, wij ∈ R is the weight of j-th topic in i-th document, mi is the length of xi

Parameters θj and wij are estimated using MAP with Dirichlet priors:

wij ∼ Dir(1/K)

θj ∼ Dir(1/(Kp))

Vector of topic weights wi = (wi1, . . . , wiK) is used as low-dimensional representation of the

document xi (Taddy 2012).

(ii) Sentence-level RoBERTa: RoBERTa-base model was used to encode the documents into

dense vectors of size 768 each. The model is trained on NLI and STSb datasets, uses mean pooling

over words and encodes 830 sentences per second on V100 GPU (Reimers and Gurevych 2019).

(iii) Sentence-level DistilBERT: DistilBERT-base model was used to encode the documents

into dense vectors of size 768 each. The model is trained on NLI and STSb datasets, uses mean

pooling over words and encodes 4000 sentences per second on V100 GPU (Reimers and Gurevych

2019).

(iv) Sentence-level GloVe6B: GloVe6B model was used to encode the documents into dense

vectors of size 300 each. It is trained on Wikipedia 2014 and Gigaword 5 (6 billion tokens, 400k

vocabulary), uses mean pooling over words and encodes 34000 sentences per second on V100 GPU

(Reimers and Gurevych 2019).

(v) Universal Sentence Encoder: It encodes sentences into embedding vectors that specifi-

cally target transfer learning to other NLP tasks, thus, the embeddings generated can be used for

multiple-tasks. There are two encoder models - transformer with self-attention and deep averaging

network that computes unigram and bigram embeddings first and then averages them to get a

single embeddings. The encoded vectors have 512 dimensions (Cer et al. 2018).

(vi) t-SNE dimension reduction on BoW: t-Distributed Stochastic Neighbor Embedding

(t-SNE) is a dimensionality reduction algorithm. First it constructs a distribution over pairs of

objects in the initial high-dimensional space in such a way that a pair of close objects has higher

probability than a pair of less similar objects. Then, it constructs a similar distribution in the low-

dimensional space and minimizes the KL divergence between these two distributions. The objects

1



that were close in the initial space remain close in the lower-dimensional space (Maaten and Hinton

2008).

(vii) PCA dimension reduction on BoW: PCA or principal component analysis identifies

patterns in data based on the correlation between features. PCA aims to find the directions of

maximum variance in high-dimensional data (along orthogonal axes called principal components)

and projects it onto a new subspace with equal or fewer dimensions than the original one. This

new subspace includes the top-k principal components if the dimensions after reduction are chosen

to be k.

(viii) UMAP dimension reduction on BoW: Uniform Manifold Approximation and Pro-

jection (UMAP) is a dimensionality reduction technique that can be used for general non-linear

dimension reduction. The manifold is modeled with a fuzzy topological structure. The reduced

embedding is found by searching for a low dimensional projection of the data that has the closest

possible equivalent fuzzy topological structure.

(ix) NMF dimension reduction on BoW: The logic for dimensionality reduction with Non-

negative matrix factorization (NMF) is to take the m × n data and to decompose it into two

matrices of dimensions m × features and features × n respectively. The features will be the

reduced dimensions.

Note: all of our Bag-of-Words representations considers unigrams, bigrams, and trigrams, and

as pre-processing, removes stopwords and punctuation, and removes words occurring in fewer than

10 of 10,000 documents.

1.2 Representative Subset Selection

(i) D-Optimal Design Subset Selection (from baseline): D-Optimal design is an iterative

greedy algorithm that on each step selects one more observation that maximizes the increase of

information determinant Dt = |XT
t Xt|, where Xt = (xi1, . . . , xit)

T is the matrix of selected obser-

vations (Taddy 2013).

Information determinant on the step t+ 1 can be written as

Dt+1 = |XT
t Xt + xTt+1xt+1| = Dt

(
1 + xt+1T

(
XT

t Xt

)−1
xt+1

)
The observation on step t+ 1 is selected as

xt+1 = argmax
x/∈Xt

xT
(
XT

t Xt

)−1
x

(ii) Random Pick: As the name suggests, in this method the required number of documents

are selected at random (Pan et al. 2005).

(iii) K-means Clustering-based selection: Given a set of documents encoded into vectors

(x1, x2, . . . , xn) where each document is a d-dimensional vector, the k-means clustering algorithm

aims to partition the n documents into k clusters C1, C2, . . . , Ck by minimizing the intra-cluster
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distances (Daszykowski, Walczak, and Massart 2002). The algorithm starts at t = 1 with k centroids

(means) (m
(t)
1 ,m

(t)
2 , . . . ,m

(t)
k ) and proceeds by alternating between two steps:

Assignment step: Each document is assigned to the cluster with the nearest centroid (with

Euclidean distance as the distance measure).

C
(t)
i = {xp : ||xp −m

(t)
i ||2 ≤ ||xp −m

(t)
j ||2 ∀j, 1 ≤ j ≤ k}

Update step: The centroids are recalculated based on the documents in the cluster.

m
(t+1)
i =

1∣∣∣C(t)
i

∣∣∣
∑

xj∈C
(t)
i

xj

The algorithm converges when the assignments no longer change. Next, from each cluster, one

document is selected in order to get a set of k distant documents.

(iv) Greedy Farthest Point Sampling using Kullback-Liebler Divergence or KL Di-

vergence: KL Divergence or relative entropy is a measure of how one probability distribution is

different from another. The idea is to identify the documents for which the probability distribu-

tions across features are maximally different from each other. This method is inspired from the

relative entropy-based subset selection method (Pan et al. 2005). In our case, the vectors are dense,

continuous, and real-valued. Hence, the algorithm from the paper is not applicable as is and has

very long execution time. Our algorithm proceeds as follows:

• Fit a known distribution to each observation. In our case, since most of the representations

have normal distribution, we fit the same to each observation using scipy module’s norm.fit

method and obtain corresponding mean and standard deviation.

• Calculate KL Divergence between each pair of observations using:

KL(p, q) = log
σ2
σ1

+
σ2
1 + (µ1 − µ2)

2

2σ2
2

− 1

2

KL divergence is asymmetric, but from observation, KL(p, q) is close to KL(q, p). In order to

use KL-divergence as a distance measure (and for creating distance matrix), we sum KL(p, q)

and KL(q, p).

• Use greedy farthest point sampling, as described in Algorithm 1, using the distance matrix

obtained in the previous step as the input.
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Input: Distance matrix ’D[0...n-1, 0...n-1]’ of size nxn, number of observations k;

Result: Array ’indices[0...k-1]’ of size k

Initialization: indices[0...k-1] = 0;

//select two points at maximum distance;

indices[0], indices[1] = argmaxi,j D[i, j];

while i¡k do

// select the point which maximizes the minimum distance from already selected points;

indices[i] = argmaxj /∈indices(minidx∈indices(D[idx, j]));

i = i + 1
end

Algorithm 1: Greedy Farthest Point Sampling

(v) Greedy Farthest Point Sampling using two-sample Kolmogorov-Smirnov statis-

tic: The two-sample Kolmogorov–Smirnov statistic (KS-statistic) quantifies a distance between the

empirical distribution functions of two samples. The null distribution of this statistic is calculated

under the null hypothesis that the samples are drawn from the same distribution (in the two-sample

case). The two input embeddings are sorted and converted to two cumulative diftribution functions

F1(x) and F2(x) and the KS-statistic is calculated as:

KS(F1, F2) = sup
x

|F1(x)− F (x)|

Using above, a pairwise distance matrix is obtained. Then, greedy farthest point sampling, as

described in Algorithm 1 can be used to obtain the most distant points that are representative of

the subset.

(vi) Greedy Farthest Point Sampling using cosine distance: Cosine similarity is a mea-

sure of similarity between two non-zero vectors of an inner product space. It is defined to equal the

cosine of the angle between them, which is also the same as the inner product of the same vectors

normalized to both have length 1. Cosine distance is calculated by subtracting cosine similarity

from 1. The cosine distance between two vectors or embeddings A and B is given by

Dcos(A,B) = 1− A⃗ · B⃗
||A⃗|| × ||B⃗||

Using above, a pairwise distance matrix is obtained. Then, greedy farthest point sampling, as

described in Algorithm 1 can be used to obtain the most distant points that are representative of

the subset.

(vii) Reconstruction Loss Minimization with Sparsity Regularization: This is based on

a similar intuition as using an auto-encoder for feature selection (Han et al. 2018). Here, we attempt

to reconstruct the entire dataset using a weight matrix while applying sparsity regularization on

the weights in order to limit the amount of data that can be used for reconstruction of the original

dataset (effectively disallowing learning of identity function). This allows us to identify the most

relevant observations that can reconstruct the entire dataset. The steps are given below.
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• Set X = transpose of complete dataset. It has d features and N observations The shape of Y

is d×N .

• Minimize reconstruction objective with sparsity regularization (Panda, Das, and Roy-Chowdhury

2016) (regularization term is the sum of L2 norms of rows of weight matrix W (size: N ×N)

multiplied by λ- the regularization coefficient):

ϕ(W ) =
1

2
||Y − YW ||2F + λ||C||2,1

• Select rows/observations with higher L2 norm (||Ci||2).

2 Simulation Design

As discussed in the main text, our simulation design consists of four steps: representation, train/test

splitting, document selection, and modeling. We discuss each step in detail below.

We define our problem of training set construction as consisting of two parts: representing

documents in a low-dimensional space, and then selecting documents that optimally cover that low-

dimensional space. As such, we consider all combinations of a number of possible representations

and a number of possible space-filling metrics. Then, a given method involves projecting a corpus

of documents into that low-dimensional space, then algorithmically selecting the documents that

span it.

In our first application (Executive Orders), our task is identifying whether an Executive Order

is ceremonial (y=0) or policy-relevant (y=1). In the second (StockTwits), our task is identifying

whether a social media post is optimistic/bullish (y=1) or pessimistic/bearish (y=0).

2.1 Representation

To produce representations, we take the full data sets of 10,726 observations for the unilateral

actions corpus and the 6,264 observations for the StockTwits corpus and project them into each

of our representations. In our replication materials, we perform this step in “Data Preprocess-

ing.ipynb” for the bag-of-words representations and in “Embeddings.ipynb” for the BERT-based

representations.

2.2 Train/Test Splitting

To obtain uncertainty estimates around each method’s accuracy we randomly produce 10 different

train/test splits, where 80% of the documents are in the training set: for the first data set, 2,044

documents are held out in each split; for the second data set, 1,253 are held out in each split. In our

replication materials, we perform this step in the first half of “Indices.ipynb” and “Reconstruction

Loss.ipynb”.
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2.3 Document Selection

Next, for each data set, each train/test split, each method, and each of the ten values of k indicating

the number of training samples, we produce a set of indices for which documents each method has

identified as being optimal to label. All together there are more than 12,000 sets of indices. In our

replication materials, we perform this step in “Indices.ipynb” and “Reconstruction Loss.ipynb”.

2.4 Modeling

For each of the more than 12,000 sets of indices, we train a Multinomial Naive Bayes classifier,

a model that works best with with discrete features (in our case, count vectors, i.e., the Bag-of-

Words model). Multinomial Naive Bayes has one hyperparameter to tune: the Laplace smoothing

parameter. We tuned it using 5-fold cross-validation; the optimal parameter value we used to

compute evaluation metrics on the test set. The list of values we tested for tuning the smoothing

parameter is [1e-7, 1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 1, 2, 4, 6, 8, 10, 12, 14, 16, 18]. In our

replication materials, we perform this step in “MultinomialNB.ipynb”.

2.5 Accuracy Scoring

We evaluate accuracy using AUROC, the area under the receiver-operator characteristic. Despite

our application entailing class imbalance, we prefer AUROC to metrics like F1 for two reasons. First,

AUC is calculated using predicted probabilities and therefore does not require setting a probability

threshold, while F1 is calculated using predicted classes, and thus does require setting a probability

threshold. Since we conduct so many simulations, setting probability thresholds would introduce

new comparability problems across our simulations as the thresholds would likely be different for

different methods and across different iterations. Secondly, AUC is a more interpretable quantity

of interest than F1, since it indicates the probability that a random observation in the positive

class (y=1) will have a higher predicted probability than a random observation in the negative

class (y=0).

3 Additional Results: Comparing the Different Methods

How different are these competing methods? We answer these methods in three ways. First, we

compare their accuracy (as measured by AUC) as the number of training samples increases. Second,

to interrogate these differences, we look for overlap in which observations each method selects for

the training set when k = 1000, shown in a heatmap below in Figure 3. Finally, we compare how

long each method takes to produce a training set.

Figure 2 in the main text shows AUC for the simple random sample approach, the Taddy

(2013) approach, and the two strongest word embedding-based methods, DistilBERT minimizing

Reconstruction loss and RoBERTa maximizing KL Divergence. Below we present the full table of
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Method 50 100 250 500 750 1000 1500 2000 2500 3000

1 BERT, Cosine 0.535 (0.011) 0.554 (0.013) 0.591 (0.011) 0.613 (0.011) 0.645 (0.009) 0.65 (0.009) 0.669 (0.006) 0.671 (0.007) 0.672 (0.008) 0.68 (0.008)
2 BERT, d-Optimality 0.534 (0.012) 0.54 (0.006) 0.573 (0.015) 0.599 (0.011) 0.62 (0.014) 0.629 (0.009) 0.639 (0.011) 0.657 (0.009) 0.656 (0.009) 0.668 (0.009)
3 BERT, K-L Divergence 0.536 (0.008) 0.557 (0.009) 0.586 (0.015) 0.617 (0.013) 0.637 (0.01) 0.645 (0.009) 0.659 (0.006) 0.67 (0.006) 0.685 (0.004) 0.688 (0.004)
4 BERT, k-Means 0.531 (0.013) 0.549 (0.011) 0.584 (0.015) 0.625 (0.006) 0.637 (0.008) 0.645 (0.007) 0.671 (0.004) 0.668 (0.006) 0.678 (0.008) 0.673 (0.008)
5 BERT, K-S Distance 0.547 (0.013) 0.554 (0.014) 0.593 (0.013) 0.614 (0.011) 0.625 (0.011) 0.642 (0.011) 0.659 (0.011) 0.669 (0.011) 0.679 (0.009) 0.691 (0.005)
6 BERT, Reconstruction Loss 0.537 (0.011) 0.554 (0.012) 0.605 (0.008) 0.624 (0.01) 0.639 (0.011) 0.651 (0.011) 0.662 (0.008) 0.672 (0.007) 0.677 (0.006) 0.682 (0.005)
7 BoW + NMF, Cosine 0.522 (0.008) 0.545 (0.007) 0.578 (0.01) 0.609 (0.008) 0.595 (0.008) 0.606 (0.01) 0.615 (0.009) 0.61 (0.01) 0.611 (0.007) 0.631 (0.008)
8 BoW + NMF, d-Optimality 0.531 (0.01) 0.555 (0.01) 0.588 (0.01) 0.631 (0.008) 0.646 (0.004) 0.648 (0.005) 0.666 (0.004) 0.675 (0.004) 0.681 (0.004) 0.689 (0.004)
9 BoW + NMF, K-L Divergence 0.543 (0.008) 0.57 (0.011) 0.585 (0.012) 0.601 (0.011) 0.61 (0.009) 0.618 (0.011) 0.64 (0.008) 0.646 (0.008) 0.661 (0.009) 0.668 (0.007)
10 BoW + NMF, k-Means 0.539 (0.012) 0.565 (0.011) 0.58 (0.011) 0.624 (0.006) 0.623 (0.006) 0.655 (0.006) 0.651 (0.009) 0.678 (0.005) 0.671 (0.007) 0.671 (0.006)
11 BoW + NMF, K-S Distance 0.543 (0.011) 0.557 (0.012) 0.574 (0.015) 0.573 (0.013) 0.562 (0.013) 0.554 (0.01) 0.571 (0.011) 0.649 (0.006) 0.648 (0.008) 0.62 (0.007)
12 BoW + NMF, Reconstruction Loss 0.524 (0.007) 0.566 (0.012) 0.593 (0.013) 0.614 (0.011) 0.628 (0.011) 0.643 (0.009) 0.66 (0.007) 0.678 (0.004) 0.684 (0.004) 0.685 (0.005)
13 BoW + PCA, Cosine 0.52 (0.01) 0.527 (0.011) 0.561 (0.008) 0.591 (0.013) 0.593 (0.011) 0.616 (0.012) 0.635 (0.01) 0.643 (0.01) 0.656 (0.008) 0.656 (0.008)
14 BoW + PCA, d-Optimality 0.529 (0.01) 0.551 (0.012) 0.592 (0.011) 0.621 (0.007) 0.644 (0.008) 0.646 (0.004) 0.666 (0.005) 0.677 (0.005) 0.682 (0.003) 0.692 (0.003)
15 BoW + PCA, K-L Divergence 0.541 (0.016) 0.547 (0.011) 0.583 (0.014) 0.61 (0.013) 0.627 (0.01) 0.637 (0.007) 0.651 (0.008) 0.663 (0.006) 0.672 (0.007) 0.676 (0.005)
16 BoW + PCA, k-Means 0.548 (0.012) 0.555 (0.011) 0.586 (0.009) 0.606 (0.01) 0.641 (0.004) 0.639 (0.008) 0.654 (0.008) 0.669 (0.008) 0.672 (0.007) 0.679 (0.006)
17 BoW + PCA, K-S Distance 0.534 (0.011) 0.556 (0.015) 0.598 (0.011) 0.6 (0.012) 0.578 (0.01) 0.562 (0.007) 0.563 (0.009) 0.555 (0.01) 0.549 (0.008) 0.538 (0.007)
18 BoW + PCA, Reconstruction Loss 0.539 (0.011) 0.552 (0.01) 0.587 (0.013) 0.614 (0.009) 0.642 (0.006) 0.656 (0.007) 0.67 (0.008) 0.676 (0.007) 0.684 (0.006) 0.689 (0.006)
19 BoW + tSNE, Cosine 0.535 (0.014) 0.526 (0.01) 0.561 (0.007) 0.613 (0.008) 0.625 (0.009) 0.633 (0.008) 0.646 (0.01) 0.66 (0.01) 0.674 (0.007) 0.68 (0.006)
20 BoW + tSNE, d-Optimality 0.512 (0.008) 0.542 (0.009) 0.577 (0.01) 0.604 (0.006) 0.623 (0.005) 0.634 (0.006) 0.657 (0.005) 0.672 (0.005) 0.678 (0.005) 0.69 (0.005)
21 BoW + tSNE, K-L Divergence 0.539 (0.013) 0.555 (0.011) 0.58 (0.009) 0.606 (0.011) 0.611 (0.01) 0.618 (0.008) 0.644 (0.01) 0.663 (0.007) 0.671 (0.005) 0.677 (0.006)
22 BoW + tSNE, k-Means 0.543 (0.01) 0.554 (0.013) 0.576 (0.01) 0.61 (0.01) 0.638 (0.007) 0.632 (0.012) 0.644 (0.007) 0.671 (0.009) 0.673 (0.007) 0.669 (0.008)
23 BoW + tSNE, K-S Distance 0.559 (0.01) 0.569 (0.007) 0.561 (0.006) 0.574 (0.014) 0.597 (0.005) 0.593 (0.016) 0.573 (0.015) 0.527 (0.013) 0.517 (0.007) 0.519 (0.005)
24 BoW + tSNE, Reconstruction Loss 0.526 (0.009) 0.53 (0.008) 0.569 (0.005) 0.608 (0.008) 0.623 (0.005) 0.646 (0.006) 0.663 (0.005) 0.67 (0.005) 0.681 (0.005) 0.693 (0.005)
25 BoW + UMAP, Cosine 0.532 (0.012) 0.544 (0.009) 0.571 (0.01) 0.615 (0.008) 0.64 (0.006) 0.643 (0.008) 0.657 (0.007) 0.666 (0.007) 0.671 (0.008) 0.67 (0.007)
26 BoW + UMAP, d-Optimality 0.52 (0.01) 0.541 (0.008) 0.565 (0.008) 0.605 (0.009) 0.621 (0.008) 0.643 (0.005) 0.658 (0.005) 0.672 (0.005) 0.681 (0.005) 0.684 (0.006)
27 BoW + UMAP, K-L Divergence 0.537 (0.008) 0.564 (0.013) 0.574 (0.013) 0.602 (0.006) 0.625 (0.009) 0.646 (0.008) 0.654 (0.007) 0.662 (0.008) 0.667 (0.008) 0.672 (0.008)
28 BoW + UMAP, k-Means 0.561 (0.012) 0.555 (0.014) 0.575 (0.01) 0.609 (0.012) 0.61 (0.013) 0.646 (0.007) 0.654 (0.005) 0.663 (0.008) 0.664 (0.006) 0.677 (0.007)
29 BoW + UMAP, K-S Distance 0.537 (0.012) 0.54 (0.007) 0.54 (0.009) 0.578 (0.009) 0.599 (0.009) 0.6 (0.011) 0.581 (0.008) 0.57 (0.006) 0.561 (0.009) 0.557 (0.007)
30 BoW + UMAP, Reconstruction Loss 0.53 (0.008) 0.545 (0.007) 0.567 (0.011) 0.623 (0.011) 0.634 (0.01) 0.639 (0.01) 0.655 (0.009) 0.674 (0.008) 0.684 (0.006) 0.684 (0.006)
31 DistilBERT, Cosine 0.518 (0.012) 0.527 (0.01) 0.554 (0.01) 0.588 (0.013) 0.609 (0.012) 0.619 (0.01) 0.634 (0.01) 0.649 (0.009) 0.658 (0.009) 0.667 (0.009)
32 DistilBERT, d-Optimality 0.514 (0.011) 0.547 (0.009) 0.582 (0.014) 0.606 (0.012) 0.625 (0.008) 0.624 (0.012) 0.647 (0.009) 0.655 (0.01) 0.662 (0.007) 0.667 (0.007)
33 DistilBERT, K-L Divergence 0.533 (0.017) 0.556 (0.014) 0.563 (0.013) 0.606 (0.011) 0.63 (0.009) 0.637 (0.01) 0.658 (0.005) 0.669 (0.005) 0.681 (0.003) 0.688 (0.004)
34 DistilBERT, k-Means 0.543 (0.01) 0.548 (0.011) 0.581 (0.009) 0.613 (0.004) 0.621 (0.01) 0.637 (0.008) 0.652 (0.007) 0.666 (0.006) 0.667 (0.006) 0.682 (0.009)
35 DistilBERT, K-S Distance 0.524 (0.011) 0.543 (0.011) 0.581 (0.011) 0.606 (0.007) 0.64 (0.007) 0.645 (0.008) 0.662 (0.005) 0.67 (0.005) 0.678 (0.006) 0.68 (0.006)
36 GLoVE, Cosine 0.534 (0.013) 0.552 (0.012) 0.571 (0.012) 0.594 (0.014) 0.621 (0.012) 0.631 (0.011) 0.642 (0.01) 0.649 (0.009) 0.65 (0.01) 0.658 (0.009)
37 GLoVE, d-Optimality 0.526 (0.01) 0.558 (0.008) 0.602 (0.01) 0.606 (0.011) 0.624 (0.011) 0.636 (0.011) 0.655 (0.006) 0.667 (0.008) 0.672 (0.006) 0.675 (0.006)
38 GLoVE, K-L Divergence 0.537 (0.007) 0.552 (0.009) 0.579 (0.01) 0.619 (0.01) 0.635 (0.011) 0.646 (0.008) 0.662 (0.009) 0.666 (0.007) 0.678 (0.008) 0.685 (0.007)
39 GLoVE, k-Means 0.528 (0.01) 0.553 (0.013) 0.593 (0.009) 0.605 (0.011) 0.636 (0.008) 0.643 (0.009) 0.646 (0.006) 0.671 (0.007) 0.672 (0.005) 0.68 (0.004)
40 GLoVE, K-S Distance 0.545 (0.01) 0.565 (0.012) 0.597 (0.011) 0.616 (0.013) 0.637 (0.004) 0.647 (0.005) 0.665 (0.006) 0.668 (0.008) 0.671 (0.009) 0.675 (0.008)
41 LDA, Cosine 0.527 (0.008) 0.556 (0.007) 0.584 (0.011) 0.622 (0.006) 0.643 (0.005) 0.65 (0.008) 0.661 (0.008) 0.67 (0.007) 0.68 (0.006) 0.689 (0.004)
42 LDA, d-Optimality 0.556 (0.01) 0.545 (0.009) 0.567 (0.011) 0.6 (0.005) 0.623 (0.006) 0.639 (0.009) 0.649 (0.011) 0.671 (0.006) 0.674 (0.004) 0.679 (0.005)
43 LDA, K-L Divergence 0.547 (0.012) 0.556 (0.01) 0.585 (0.008) 0.612 (0.009) 0.631 (0.009) 0.638 (0.007) 0.647 (0.01) 0.662 (0.009) 0.673 (0.007) 0.681 (0.007)
44 LDA, k-Means 0.534 (0.013) 0.564 (0.014) 0.572 (0.008) 0.587 (0.012) 0.643 (0.005) 0.644 (0.01) 0.665 (0.007) 0.667 (0.006) 0.678 (0.007) 0.69 (0.006)
45 LDA, K-S Distance 0.531 (0.01) 0.567 (0.008) 0.597 (0.011) 0.625 (0.008) 0.637 (0.007) 0.655 (0.004) 0.655 (0.007) 0.669 (0.004) 0.679 (0.004) 0.683 (0.004)
46 Random, Random 0.546 (0.01) 0.554 (0.011) 0.603 (0.01) 0.621 (0.007) 0.642 (0.008) 0.645 (0.004) 0.656 (0.006) 0.664 (0.005) 0.663 (0.006) 0.667 (0.005)
47 RoBERTa, Cosine 0.523 (0.008) 0.553 (0.007) 0.59 (0.013) 0.612 (0.012) 0.621 (0.01) 0.63 (0.01) 0.637 (0.013) 0.653 (0.013) 0.667 (0.009) 0.673 (0.01)
48 RoBERTa, d-Optimality 0.527 (0.014) 0.561 (0.011) 0.575 (0.01) 0.607 (0.008) 0.621 (0.012) 0.641 (0.01) 0.645 (0.009) 0.669 (0.008) 0.667 (0.011) 0.676 (0.008)
49 RoBERTa, K-L Divergence 0.55 (0.013) 0.555 (0.014) 0.581 (0.011) 0.621 (0.008) 0.64 (0.008) 0.644 (0.007) 0.661 (0.007) 0.674 (0.004) 0.68 (0.005) 0.687 (0.004)
50 RoBERTa, k-Means 0.53 (0.01) 0.565 (0.01) 0.579 (0.009) 0.615 (0.009) 0.637 (0.007) 0.642 (0.008) 0.668 (0.008) 0.659 (0.011) 0.678 (0.004) 0.684 (0.005)
51 RoBERTa, K-S Distance 0.536 (0.011) 0.566 (0.008) 0.58 (0.009) 0.609 (0.011) 0.622 (0.011) 0.629 (0.011) 0.652 (0.009) 0.663 (0.009) 0.667 (0.012) 0.68 (0.008)
52 RoBERTa, Reconstruction Loss 0.533 (0.014) 0.555 (0.012) 0.601 (0.009) 0.612 (0.01) 0.64 (0.006) 0.643 (0.007) 0.65 (0.01) 0.668 (0.01) 0.672 (0.01) 0.678 (0.01)
53 Universal Encoder, Cosine 0.554 (0.012) 0.57 (0.011) 0.589 (0.011) 0.608 (0.011) 0.615 (0.01) 0.636 (0.006) 0.649 (0.006) 0.642 (0.01) 0.655 (0.009) 0.67 (0.008)
54 Universal Encoder, d-Optimality 0.542 (0.006) 0.534 (0.009) 0.557 (0.011) 0.61 (0.01) 0.633 (0.009) 0.647 (0.01) 0.644 (0.008) 0.661 (0.008) 0.665 (0.007) 0.679 (0.007)
55 Universal Encoder, K-L Divergence 0.526 (0.008) 0.556 (0.009) 0.585 (0.008) 0.598 (0.011) 0.607 (0.012) 0.64 (0.006) 0.657 (0.009) 0.679 (0.005) 0.685 (0.006) 0.688 (0.005)
56 Universal Encoder, k-Means 0.546 (0.012) 0.567 (0.009) 0.584 (0.008) 0.619 (0.009) 0.627 (0.01) 0.647 (0.007) 0.656 (0.007) 0.662 (0.007) 0.678 (0.004) 0.675 (0.007)
57 Universal Encoder, K-S Distance 0.522 (0.009) 0.559 (0.011) 0.595 (0.012) 0.612 (0.009) 0.62 (0.007) 0.638 (0.01) 0.647 (0.007) 0.66 (0.008) 0.668 (0.005) 0.674 (0.007)

Table 1: Full AUC results for all methods in the Executive Orders case.

all methods and their AUCs for each k and for both applications; we also summarize the tables,

showing which representations and which distance metrics perform best in general.

As well, we can calculate whether the methods that perform well in one application also tend to

perform well in the other. To this effect, we calculate Spearman’s rank order correlation between

each method’s AUC across applications, and find that it is 0.88. This gives us confidence that

which methods perform best may be robust to application choice.

In most cases, we observe that the random sampling method, the one used by nearly every

applied researcher, systematically underperforms. The selection methods that generally perform

the best are k-means clustering, maximizing KL divergence, or minimizing reconstruction error.

A related analysis in Table 3 examines the relationship between AUC and each distance metric

and representation method via regression analysis. Each unit is a single simulation: since we repeat

each combination of k, distance metric, and representation 10 times to generate confidence intervals,

we have 10 observations per combination in this regression. The representation base category is
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Method 50 100 250 500 750 1000 1500 2000 2500 3000

1 BERT, Cosine 0.562 (0.017) 0.59 (0.014) 0.661 (0.012) 0.685 (0.013) 0.719 (0.01) 0.724 (0.01) 0.737 (0.008) 0.742 (0.007) 0.747 (0.007) 0.749 (0.008)
2 BERT, d-Optimality 0.541 (0.011) 0.591 (0.019) 0.623 (0.017) 0.692 (0.01) 0.699 (0.008) 0.73 (0.01) 0.738 (0.009) 0.743 (0.007) 0.748 (0.006) 0.751 (0.007)
3 BERT, K-L Divergence 0.548 (0.013) 0.581 (0.019) 0.664 (0.008) 0.696 (0.008) 0.706 (0.009) 0.721 (0.009) 0.728 (0.008) 0.741 (0.008) 0.749 (0.008) 0.749 (0.009)
4 BERT, k-Means 0.551 (0.017) 0.576 (0.015) 0.655 (0.01) 0.68 (0.008) 0.705 (0.012) 0.719 (0.007) 0.727 (0.007) 0.737 (0.009) 0.743 (0.008) 0.743 (0.008)
5 BERT, K-S Distance 0.544 (0.016) 0.572 (0.015) 0.623 (0.014) 0.675 (0.011) 0.709 (0.012) 0.719 (0.01) 0.737 (0.009) 0.745 (0.007) 0.747 (0.007) 0.748 (0.007)
6 BERT, Reconstruction Loss 0.557 (0.013) 0.589 (0.022) 0.616 (0.017) 0.667 (0.017) 0.694 (0.008) 0.713 (0.011) 0.732 (0.007) 0.742 (0.007) 0.743 (0.006) 0.748 (0.007)
7 BoW + NMF, Cosine 0.541 (0.013) 0.59 (0.019) 0.665 (0.011) 0.689 (0.009) 0.706 (0.009) 0.721 (0.009) 0.74 (0.008) 0.746 (0.008) 0.747 (0.007) 0.749 (0.007)
8 BoW + NMF, d-Optimality 0.542 (0.011) 0.576 (0.019) 0.65 (0.013) 0.7 (0.006) 0.715 (0.006) 0.72 (0.01) 0.738 (0.008) 0.745 (0.009) 0.746 (0.007) 0.748 (0.007)
9 BoW + NMF, K-L Divergence 0.544 (0.005) 0.611 (0.005) 0.685 (0.008) 0.699 (0.006) 0.681 (0.007) 0.72 (0.007) 0.727 (0.007) 0.728 (0.006) 0.727 (0.006) 0.738 (0.007)
10 BoW + NMF, k-Means 0.556 (0.014) 0.598 (0.018) 0.626 (0.017) 0.694 (0.007) 0.707 (0.009) 0.714 (0.011) 0.728 (0.006) 0.738 (0.007) 0.742 (0.009) 0.746 (0.007)
11 BoW + NMF, K-S Distance 0.548 (0.011) 0.575 (0.012) 0.622 (0.012) 0.665 (0.011) 0.704 (0.01) 0.721 (0.007) 0.732 (0.008) 0.739 (0.009) 0.743 (0.009) 0.75 (0.008)
12 BoW + NMF, Reconstruction Loss 0.53 (0.013) 0.551 (0.008) 0.632 (0.011) 0.675 (0.012) 0.696 (0.009) 0.711 (0.009) 0.728 (0.006) 0.737 (0.005) 0.744 (0.007) 0.746 (0.007)
13 BoW + PCA, Cosine 0.563 (0.01) 0.582 (0.012) 0.645 (0.013) 0.683 (0.008) 0.715 (0.008) 0.731 (0.009) 0.739 (0.008) 0.741 (0.007) 0.744 (0.006) 0.749 (0.007)
14 BoW + PCA, d-Optimality 0.554 (0.013) 0.573 (0.01) 0.641 (0.012) 0.691 (0.005) 0.703 (0.011) 0.719 (0.01) 0.734 (0.009) 0.742 (0.008) 0.745 (0.008) 0.746 (0.007)
15 BoW + PCA, K-L Divergence 0.549 (0.015) 0.572 (0.016) 0.606 (0.022) 0.672 (0.012) 0.7 (0.012) 0.719 (0.01) 0.737 (0.01) 0.742 (0.01) 0.744 (0.008) 0.749 (0.007)
16 BoW + PCA, k-Means 0.562 (0.019) 0.589 (0.009) 0.637 (0.019) 0.701 (0.008) 0.71 (0.008) 0.723 (0.009) 0.734 (0.006) 0.736 (0.007) 0.745 (0.007) 0.747 (0.008)
17 BoW + PCA, K-S Distance 0.552 (0.013) 0.597 (0.013) 0.654 (0.008) 0.681 (0.01) 0.706 (0.009) 0.715 (0.007) 0.726 (0.007) 0.739 (0.009) 0.747 (0.008) 0.749 (0.007)
18 BoW + PCA, Reconstruction Loss 0.586 (0.016) 0.592 (0.009) 0.651 (0.009) 0.685 (0.01) 0.711 (0.009) 0.727 (0.007) 0.734 (0.007) 0.746 (0.007) 0.749 (0.007) 0.75 (0.007)
19 BoW + tSNE, Cosine 0.531 (0.01) 0.573 (0.017) 0.633 (0.017) 0.695 (0.007) 0.705 (0.006) 0.715 (0.009) 0.727 (0.009) 0.738 (0.009) 0.742 (0.009) 0.746 (0.008)
20 BoW + tSNE, d-Optimality 0.575 (0.011) 0.61 (0.01) 0.656 (0.011) 0.693 (0.012) 0.712 (0.009) 0.719 (0.007) 0.732 (0.008) 0.737 (0.008) 0.741 (0.009) 0.743 (0.008)
21 BoW + tSNE, K-L Divergence 0.572 (0.009) 0.614 (0.007) 0.646 (0.011) 0.683 (0.009) 0.698 (0.011) 0.71 (0.01) 0.732 (0.009) 0.738 (0.008) 0.743 (0.008) 0.745 (0.008)
22 BoW + tSNE, k-Means 0.585 (0.015) 0.606 (0.014) 0.627 (0.018) 0.679 (0.008) 0.706 (0.01) 0.715 (0.008) 0.729 (0.01) 0.738 (0.008) 0.743 (0.007) 0.751 (0.008)
23 BoW + tSNE, K-S Distance 0.529 (0.012) 0.534 (0.013) 0.607 (0.014) 0.636 (0.014) 0.677 (0.009) 0.71 (0.004) 0.72 (0.006) 0.738 (0.007) 0.74 (0.007) 0.74 (0.006)
24 BoW + tSNE, Reconstruction Loss 0.572 (0.015) 0.617 (0.012) 0.663 (0.01) 0.692 (0.005) 0.715 (0.006) 0.721 (0.007) 0.734 (0.007) 0.742 (0.009) 0.744 (0.009) 0.747 (0.009)
25 BoW + UMAP, Cosine 0.548 (0.011) 0.578 (0.01) 0.651 (0.015) 0.686 (0.008) 0.716 (0.009) 0.729 (0.007) 0.74 (0.007) 0.74 (0.007) 0.744 (0.008) 0.747 (0.008)
26 BoW + UMAP, d-Optimality 0.573 (0.014) 0.61 (0.019) 0.676 (0.01) 0.697 (0.006) 0.715 (0.007) 0.723 (0.008) 0.734 (0.007) 0.738 (0.008) 0.74 (0.008) 0.745 (0.007)
27 BoW + UMAP, K-L Divergence 0.554 (0.011) 0.589 (0.016) 0.639 (0.021) 0.686 (0.011) 0.705 (0.006) 0.719 (0.007) 0.725 (0.007) 0.735 (0.007) 0.741 (0.007) 0.744 (0.007)
28 BoW + UMAP, k-Means 0.557 (0.015) 0.591 (0.019) 0.649 (0.016) 0.701 (0.01) 0.697 (0.012) 0.73 (0.008) 0.725 (0.007) 0.74 (0.006) 0.743 (0.007) 0.742 (0.008)
29 BoW + UMAP, K-S Distance 0.558 (0.01) 0.576 (0.012) 0.644 (0.01) 0.655 (0.011) 0.707 (0.008) 0.719 (0.008) 0.721 (0.008) 0.738 (0.007) 0.741 (0.007) 0.737 (0.007)
30 BoW + UMAP, Reconstruction Loss 0.544 (0.009) 0.579 (0.014) 0.64 (0.013) 0.66 (0.012) 0.685 (0.009) 0.712 (0.007) 0.729 (0.007) 0.737 (0.007) 0.742 (0.007) 0.746 (0.006)
31 DistilBERT, Cosine 0.547 (0.011) 0.593 (0.016) 0.653 (0.02) 0.696 (0.014) 0.71 (0.008) 0.727 (0.008) 0.739 (0.006) 0.743 (0.006) 0.748 (0.006) 0.751 (0.006)
32 DistilBERT, d-Optimality 0.549 (0.015) 0.581 (0.015) 0.659 (0.011) 0.684 (0.01) 0.712 (0.006) 0.719 (0.01) 0.738 (0.006) 0.739 (0.008) 0.745 (0.007) 0.749 (0.008)
33 DistilBERT, K-L Divergence 0.573 (0.02) 0.575 (0.022) 0.648 (0.01) 0.695 (0.008) 0.709 (0.006) 0.721 (0.004) 0.734 (0.004) 0.741 (0.005) 0.746 (0.005) 0.749 (0.006)
34 DistilBERT, k-Means 0.567 (0.012) 0.585 (0.017) 0.63 (0.012) 0.683 (0.007) 0.706 (0.012) 0.714 (0.005) 0.731 (0.008) 0.743 (0.007) 0.744 (0.007) 0.746 (0.007)
35 DistilBERT, K-S Distance 0.573 (0.014) 0.605 (0.015) 0.643 (0.013) 0.673 (0.011) 0.713 (0.008) 0.717 (0.007) 0.732 (0.006) 0.737 (0.008) 0.745 (0.009) 0.743 (0.008)
36 GLoVE, Cosine 0.569 (0.012) 0.61 (0.014) 0.657 (0.014) 0.691 (0.009) 0.704 (0.01) 0.72 (0.005) 0.735 (0.006) 0.742 (0.007) 0.745 (0.007) 0.749 (0.007)
37 GLoVE, d-Optimality 0.553 (0.018) 0.593 (0.011) 0.662 (0.016) 0.7 (0.011) 0.706 (0.008) 0.718 (0.008) 0.731 (0.007) 0.737 (0.007) 0.742 (0.007) 0.745 (0.007)
38 GLoVE, K-L Divergence 0.544 (0.005) 0.611 (0.005) 0.685 (0.008) 0.699 (0.006) 0.681 (0.007) 0.72 (0.007) 0.727 (0.007) 0.728 (0.006) 0.727 (0.006) 0.738 (0.007)
39 GLoVE, k-Means 0.505 (0.058) 0.578 (0.017) 0.649 (0.011) 0.686 (0.009) 0.707 (0.008) 0.718 (0.006) 0.739 (0.009) 0.738 (0.008) 0.746 (0.007) 0.75 (0.008)
40 GLoVE, K-S Distance 0.554 (0.014) 0.581 (0.009) 0.644 (0.012) 0.665 (0.013) 0.713 (0.005) 0.723 (0.006) 0.733 (0.007) 0.738 (0.007) 0.741 (0.008) 0.747 (0.008)
41 LDA, Cosine 0.557 (0.014) 0.596 (0.015) 0.665 (0.009) 0.694 (0.009) 0.704 (0.008) 0.721 (0.008) 0.731 (0.007) 0.74 (0.008) 0.746 (0.008) 0.748 (0.007)
42 LDA, d-Optimality 0.566 (0.016) 0.589 (0.015) 0.638 (0.015) 0.672 (0.012) 0.693 (0.01) 0.704 (0.011) 0.726 (0.009) 0.738 (0.008) 0.743 (0.008) 0.748 (0.008)
43 LDA, K-L Divergence 0.554 (0.01) 0.579 (0.013) 0.624 (0.012) 0.679 (0.015) 0.708 (0.008) 0.724 (0.01) 0.732 (0.01) 0.738 (0.009) 0.745 (0.007) 0.747 (0.007)
44 LDA, k-Means 0.562 (0.015) 0.605 (0.012) 0.64 (0.014) 0.678 (0.016) 0.712 (0.01) 0.723 (0.007) 0.739 (0.005) 0.74 (0.007) 0.742 (0.011) 0.746 (0.007)
45 LDA, K-S Distance 0.556 (0.008) 0.604 (0.009) 0.655 (0.015) 0.69 (0.013) 0.709 (0.01) 0.718 (0.01) 0.727 (0.008) 0.734 (0.008) 0.739 (0.007) 0.744 (0.007)
46 Random, Random 0.563 (0.015) 0.573 (0.022) 0.635 (0.02) 0.675 (0.011) 0.699 (0.009) 0.703 (0.008) 0.724 (0.007) 0.724 (0.007) 0.732 (0.007) 0.735 (0.008)
47 RoBERTa, Cosine 0.559 (0.015) 0.606 (0.013) 0.64 (0.02) 0.682 (0.013) 0.708 (0.008) 0.722 (0.006) 0.734 (0.005) 0.74 (0.005) 0.741 (0.005) 0.747 (0.006)
48 RoBERTa, d-Optimality 0.583 (0.014) 0.568 (0.018) 0.649 (0.018) 0.685 (0.014) 0.701 (0.013) 0.721 (0.007) 0.729 (0.008) 0.74 (0.007) 0.745 (0.007) 0.752 (0.007)
49 RoBERTa, K-L Divergence 0.55 (0.014) 0.613 (0.009) 0.652 (0.016) 0.691 (0.01) 0.716 (0.008) 0.717 (0.01) 0.732 (0.008) 0.737 (0.008) 0.739 (0.007) 0.744 (0.008)
50 RoBERTa, k-Means 0.561 (0.015) 0.574 (0.016) 0.639 (0.017) 0.69 (0.009) 0.701 (0.005) 0.717 (0.006) 0.735 (0.006) 0.741 (0.007) 0.745 (0.008) 0.749 (0.006)
51 RoBERTa, K-S Distance 0.547 (0.015) 0.579 (0.02) 0.621 (0.013) 0.674 (0.01) 0.69 (0.01) 0.712 (0.008) 0.731 (0.005) 0.737 (0.007) 0.74 (0.006) 0.743 (0.006)
52 RoBERTa, Reconstruction Loss 0.543 (0.017) 0.567 (0.014) 0.627 (0.015) 0.691 (0.01) 0.709 (0.009) 0.722 (0.007) 0.735 (0.008) 0.742 (0.006) 0.744 (0.007) 0.746 (0.008)
53 Universal Encoder, Cosine 0.553 (0.01) 0.571 (0.014) 0.649 (0.012) 0.699 (0.007) 0.725 (0.006) 0.732 (0.007) 0.74 (0.007) 0.742 (0.006) 0.744 (0.008) 0.748 (0.008)
54 Universal Encoder, d-Optimality 0.566 (0.015) 0.57 (0.015) 0.657 (0.013) 0.698 (0.006) 0.715 (0.009) 0.726 (0.008) 0.741 (0.006) 0.747 (0.008) 0.744 (0.007) 0.748 (0.007)
55 Universal Encoder, K-L Divergence 0.534 (0.013) 0.558 (0.015) 0.603 (0.02) 0.675 (0.013) 0.699 (0.009) 0.718 (0.009) 0.729 (0.009) 0.742 (0.01) 0.746 (0.008) 0.748 (0.008)
56 Universal Encoder, k-Means 0.555 (0.013) 0.577 (0.012) 0.618 (0.015) 0.693 (0.011) 0.705 (0.011) 0.716 (0.01) 0.732 (0.007) 0.743 (0.006) 0.745 (0.008) 0.75 (0.008)
57 Universal Encoder, K-S Distance 0.56 (0.007) 0.575 (0.009) 0.64 (0.01) 0.673 (0.011) 0.703 (0.006) 0.713 (0.006) 0.726 (0.004) 0.735 (0.005) 0.742 (0.007) 0.743 (0.007)

Table 2: Full AUC results for all methods in the StockTwits case.
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Figure 1: Average AUCs, for each value of k, for each representation and distance metric, in the
StockTwits application.
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Figure 2: Average AUCs, for each value of k, for each representation and distance metric, in the
Executive Orders application.
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Figure 3: After selecting 1000 training observations in the Executive Orders application, the average
number of in-common observations between any two methods is 140 and the median is 126.

BERT, and the distance metric base category is cosine distance. Generally, we find that BERT

outperforms the bag-of-words methods and performs comparably to the other embedding methods;

the best-performing distance metric is Reconstruction loss.

This gives us confidence that, even though there is significant variation in accuracy across

methods, BERT appears to be a high performer in the Executive Orders application (though not

the StockTwits application).

3.1 Training Set Overlap

Examining the Executive Orders application, we observe that very few of the methods produce

any significant overlap with any other, indicating that they are all producing meaningfully different

training sets.
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Dependent variable:

AUC

(1) Executive Orders (2) StockTwits

Representation: BoW + NMF −0.012 −0.001
(0.003) (0.004)

Representation: BoW + PCA −0.014 0.002
(0.003) (0.004)

Representation: BoW + tSNE −0.017 −0.001
(0.003) (0.004)

Representation: BoW + UMAP −0.013 −0.00001
(0.003) (0.004)

Representation: DistilBERT −0.007 0.003
(0.003) (0.004)

Representation: GLoVE −0.001 0.001
(0.003) (0.004)

Representation: LDA 0.002 0.001
(0.003) (0.004)

Representation: Random 0.006 −0.012
(0.006) (0.008)

Representation: RoBERTa −0.003 −0.0003
(0.003) (0.004)

Representation: Universal Encoder −0.002 −0.001
(0.003) (0.004)

Distance: d-Optimality 0.007 −0.001
(0.003) (0.003)

Distance: KL Divergence 0.009 −0.004
(0.003) (0.003)

Distance: k-Means 0.011 −0.003
(0.003) (0.003)

Distance: K-S −0.011 −0.008
(0.003) (0.003)

Distance: Reconstruction Loss 0.016 −0.005
(0.003) (0.004)

Observations 5,700 5,700

Table 3
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Figure 4: For training sets of 100, 500, 2000, and 4000 observations, the 56 methods (other than
random sampling) vary widely in how long they require to select observations. Taddy (2013)
performs near the median.

3.2 Computation Time

To the final question, we perform a time benchmarking analysis of our Executive Orders application

and show that there is quite large variation in how long a given method takes to produce a training

set. Taddy (2013) method performs close to the median. It is around the 53rd percentile for 100

samples and around the 47th percentile for 4000 samples. The method combining DistilBERT and

minimizing reconstruction error is about 33% slower than Taddy (2013), though it performs much

better. On the other hand, the method combining RoBERTa and minimizing KL Divergence, which

similarly outperforms Taddy, requires only 55% as much time.

3.3 Small Absolute Gains in Accuracy are Meaningful

We acknowledge that an increase in accuracy from 0.73 to 0.75, as in our StockTwits application,

seems small. But in a data set of 10,000 documents, that is an additional 200 documents correctly

classified. Many state-of-the-art models in computer science produce accuracy gains of a handful of
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thousandths, and the fact that we can produce these gains at no additional cost to the researcher

we believe is significant.

That increase in 0.02 may also represent a bigger increase than the number suggest. Many

tasks in the social sciences may have low upper-bounds of potential accuracy – no model will ever

be extremely accurate at identifying something as complex as partisanship. If the range of possible

AUC is 0.5 to 0.1, an increase in 0.02 is 4% of the total range; if political science tasks are more

challenging such that the range of possible AUC is 0.5 to 0.8, then an increase of 0.02 is 6.7% of

the total range, which is even more significant.

3.4 Beyond Accuracy: Evaluating Model Outputs

In our simulations and results we focus on model accuracy, specifically the Area Under the Receiver-

Operator Characteristic (AUC), as our evaluative target. AUC is one of the standard measures of

accuracy in the machine learning community, but in political science we often want more out of

our machine learning outputs. Since we typically use these predictions as variables in a regression

model, often aimed at obtaining causal inference, we may also care about targets like calibration

and homoskedasticity. For an extended discussion of these complementary targets in a substantive

applied example, see (Kaufman and Rogowski, Forthcoming).
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