Bottom-Up Computation Using Trees of Sublists:
Proofs

Shin-Cheng Mu

Institute of Information Science, Academia Sinica

Abstract

Proofs accompanying the paper Bottom-up computation using trees of sublists, Journal of
Functional Programming Special Issue on Program Calculation, 2025.

1 DEFINITIONS

Non-dependently typed version of the binomial tree:
dataBa=Ta|N(Ba) (Ba) ,
equipped with its map and zip:

B 2(a—b)—-Ba—Bb,
zipBW:(a —-b—c) -Ba—Bb—Bc .

And we have unT (T x) = x.

In fact, we do not generate all trees. The shapes of trees we generate correspond to the
function ¢/, a tree version of the function that chooses a given number of elements from a list:
The shape

ch::N —-La—B(La)

ch0 _ =T][]

chk xs | k==lengthxs =T xs

ch (1+k) (x:xs) =N (B (x:) (chkxs)) (ch (1+k) xs) .

We may also constraint the shape of the trees by dependent type:

data B (a:Set) :IN — IN — Set where
To:a—BalOn
Tp:a — Ba (sucn) (sucn)
N :Bakn— Ba (suck) n — Ba (suck) (sucn) .

For this note we will stay in the non-dependently typed world.

2 UPGRADE

The paper derived the following function up:

up::Ba— B (La)

up (N(Tp) (Tq) =T [p,q]

up (Nt (Tq)) =T (unT (up t) + [q])

up (N(Tp)u) =N (B (Ag— [pq])u) (upu)

up (Nt u) =N (zipBW snoc (up t) u) (up u) .

2 UPGRADE

With dependent type, up could be typed
up:V{akn} - (0<k) — (k<n) - Bakn— B (Veca (1+k)) (1+k)n ,

but again, we stay in the non-dependent realm in this note.
The derivation of up was driven by trying to prove the following theorem:

Theorem 1.
(Vxs, k:2 <14k < length xs :

up (ch k xs) = Bsubs (ch (1+k) xs)) . @)

And here is the constructed proof.

Proof. The proof is is an induction on xs. The case analysis follows the shape of ¢/ (1 + k) xs (on
the RHS of (1)). Therefore, there is a base case, a case when xs is non-empty and 1+ k = length xs,
and a case when 1 + k < length xs. However, since the constraints demand that xs has at least
two elements, the base case will be lists of length 2, and in the inductive cases the length of the
list will be at least 3.

CASE 1. xs5:=|y,z|.
The constraints force k to be 1. We reason:

B subs (ch 2 [y,z])

= { def. of ch }
B subs (T [y,z])

= { def. of B and subs }
T [[yl, [z]]

= { definition of up }
up (N (T [y]) (T [z]))

= {def. of ch }
up (ch1ly,z]) .

case 2. xs:=x:xs, k:=1+k, where length xs > 2, and 1+ (1 + k) = length (x: xs).

up (ch (14+k) (x:xs))
= { def. of ch, since 1+ k < length (x:xs) }
up (N (B (x:) (chkxs)) (ch (1+k) xs))
= { def. of ch, since 1 + k = length xs }
up (N (B (x:) (chkxs)) (T xs))
= {def ofup}
T (unT (up (B (x:) (ch k xs))) + [xs])
= { up natural }
T (unT (B (L (x:)) (up (chk xs))) + [xs])
= { induction }
T (unT (B (L (x:)) (B subs (ch (1+k) xs))) ++ [xs])
= { def. of ch, since 1 + k = length xs }
T (unT (B (L (x:)) (B subs (T xs))) + [xs])
= {def of Band L }
T (L (x:) (subs xs) H [xs])
= { def. of subs }
T (subs (x:xs))
= {def of B}
B subs (T (x:xs))
= { def. of ch, since 2 + k = length (x:xs) }
B subs (ch (2+k) (x:xs)) .

2 UPGRADE

case 3. xs:=x:xs, k:=1+k, where length xs > 2,and 1+ (1 + k) < length (x: xs).

The constraints become 2 < 2 + k < length (x : xs). The property to prove is:
up (ch (1+k) (x:xs)) = Bsubs (ch (2+k) (x:xs)) .

We split this into two sub-cases:

case 3.1 k:=0.

up (ch1 (x:xs))
= { def. of ch, since 1 < length (x:xs) }
N (B (x:) (ch0xs)) (ch1xs))
def. of ch }
N (T [x]) (ch 1xs))
def. of up }
(B (Aq — [[x],4]) (ch 1 xs)) (up (ch 1 xs))
(*) see below }
(B (subs o (x:)) (ch1xs)) (up (ch 1 xs))
= { induction }
N (B (subs o (x:)) (ch 1 xs)) (B subs (ch 2 xs))
= {def. of B}
B subs (N (B (x:) (ch 1xs)) (ch2xs))
= { def. of ch, since 2 < length (x:xs) }
B subs (ch2 (x:xs)) .

I
N —

N
N

o3 g

The step (*) holds because every tip in ¢/ 1 xs is a singleton list, and for a singleton list [z], we

have subs (x:[z]) = [[x], [z]].

case 3.2 0<k(and k < length xs — 1). For this case we need the following auxiliary properties.

Recall that
e by definition, sub (x:xs) = L (x:) (sub xs) -+ [xs].
* Given a tree 1 and functions f, g, and /, by naturality of zipBWW we have:

B(Az—f(gz) (hz))u=zipBWf (Bgu) (Bhu) .

e Therefore, letting ¢ = L (x:) o subs, h = id, and f = snoc in (2), where snoc ys z = ys + [z],

we have:

B (subs o (x:)) u = zipBW snoc (B (L (x:) o subs) u) u .

We reason:

up (ch (14+k) (x:xs))
= { def. of ch, since 1 + k < length (x:xs) }
up (N (B (x:) (chkxs)) (ch (1+k) xs)) .
= { def. of up, since k # 0 and 1 + k < length xs }
N (zipBW snoc (up o B (x:) o chk $ xs) (ch (1 +k) xs))
(up (ch (1+k) xs))

Let us focus on the first argument to N:

zipBW snoc (up o B (x:) o ch 'k $ xs) (ch (1+k) xs)
= { up natural }

3

3 TOP-DOWN AND BOTTOM-UP ALGORITHMS

zipBW snoc (B (L (x:)) o up o chk $ xs) (ch (1 +k) xs)
= { induction }

zipBW snoc (B (L (x:) o subs) (ch (1+k) xs)) (ch (1+k) xs)
= {by(3}

B (subs o (x:)) (ch (1+k) xs) .

We continue:

N (zipBW snoc (up o B (x:) o ch k' $ xs) (ch (1 +k) xs))
(up (ch (1+k) xs))
= { calculation above }
N (B (subs o (x:)) (ch (1 +k) xs)) (up (ch (1 +k) xs))
= { induction }
N (B (subs o (x:)) (ch (1+k) xs)) (B subs (ch (2+k) xs))
= {def. of B}
B subs (N (B (x:) (ch (14 k) xs)) (ch (2+k) xs))
= {def. of ch }
B subs (ch (2+k) (x:xs)) .

3 TOP-DOWN AND BOTTOM-UP ALGORITHMS

The generic top-down algorithm is defined by:

td:IN —-LX—=>Y
td 0 =foex
td (14+n) =g oL (tdn) o subs .

The intention is that td # is a function defined for inputs of length exactly 1 + n.
It helps to define a variation:

td :IN—>LY =Y
td’' 0 =ex
td' (14+n) =g oL (td' n) o subs .

The difference is that td’ calls only ex in the base case. It is a routine induction showing that
tdn=td noLf . (4)

All the calls to f are thus factored to the beginning of the algorithm. We may then focus on
transforming td’.
Note that for ¢/ n xs where n = length xs always results in T xs. That is, we have

unT (ch n xs) = xs , where n = length xs. (5)

Our main theorem is that

Theorem 2. For all n:: IN we have td n = bu n, where
bun=unT o (Bgoup)" oBexochloLf .
That is, the top-down algorithm td n is equivalent to a bottom-up algorithm bu 1, where the

input is preprocessed by B ex o ch 1 o L f, followed by 7 steps of B ¢ - up. By then we will get a
singleton tree, whose content can be extracted by unT.

3 TOP-DOWN AND BOTTOM-UP ALGORITHMS

Proof. Let length xs = 1 4 n. We reason:

td n xs
= {by()}
(td"noLf)xs
= {by(s)}
(td" nounT o ch (1+n) o Lf) xs
= { naturality of unT }
(unT o B (td' n) o ch (14+mn) o Lf) xs
= {Lemma1}
(unT o (Bgoup)" o BexochloLf)xs
= { definition of bu }
bunxs .

O

Lemma 1, showing that B (td' 1) o ch (1 + 1) can be performed by 7 steps of B g - up, after
some preprocessing, is where the main proof is done. This is the key lemma that relates (1) to
the main algorithm.

Lemma 1. B (td' n) o ch (1+n) = (Bgoup)" o« Bexochl.
Proof. For n:=0 both sides simplify to B ex o ch 1. For n:=1+n:

B (td' (14+mn)) och (2+n)
= {def. of td' }
B (g oL (td' n) o subs) o ch (2+n)
= {by(®}
B(goL (td' n))oupech(l+n)
= { up natural }
BgoupoB (td n)och(1+n)
= {induction }
Bgoupo (Bgoup)" oBexochl
= { (o) associative, def. of /" }
(Bgoup)'™ oBexochl .

	Definitions
	Upgrade
	Top-Down and Bottom-Up Algorithms

