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A Liquid flow for a fixed pressure device

Darcy’s law is normally applied to systems where the porous medium is fully saturated
by the fluid, however, assuming that the infiltration in the pores is instantaneous allows
us to use Darcy’s Law without taking into account the change in hydraulic conductivity
to determining the flux during the wetting process. The flow problem is given by

q∗ = −κ
∗

µ∗
∂P ∗

∂z∗
and

∂q∗

∂z∗
= 0, (A1)

where P ∗ is the liquid overpressure, κ∗ is the permeability of the packed bed and µ∗ is the
liquid viscosity. The pressure at the inlet is specified by the pump. Due to the infiltrating
liquid being considerably more viscid than the air being displaced by it, we apply a zero
overpressure condition on the wetting interface at z∗ = s∗w(t

∗), giving

P ∗|z∗=0 = P ∗
app and P ∗|z∗=s∗w(t∗) = 0 for t∗ < t∗w, (A2)

The same condition for overpressure will be applied at the outlet z∗ = L∗ after the system
is fully wet,

P ∗|z∗=L∗ = 0 for t∗ > t∗w. (A3)

From here, it’s straightforward to solve (A1)-(A3) for the flux q∗ and the position of the
wetting front s∗w.
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B Coffee conservation at the wetting front

As the water front advances into the bed, a fraction of the coffee solubles is moved from the
liquid into the pore space inside boulders and will remain there until dissolution begins.
The total space within boulders per unit volume of bed that can be infiltrated by liquid
is given by

ϕbφlb = nb
4

3
πR∗

0
3φlb, (B1)

where nb is the number density of boulders. Consequently, we write the volume of space
in all boulders that is being swept by the moving front per unit time in a cross-sectional
area A of the bed located at the wetting interface,

A
ds∗w
dt∗

nb
4

3
πR∗

0
3φlb. (B2)

This space is filled with liquid carrying solubles at a concentration cl. To account for the
loss of these solubles that infiltrate the pore space within the boulders local to the front,
we define a sink term at the front:

G∗
bw = δ(z∗ − s∗w)

ds∗w
dt∗

c∗l ϕbφlb, (B3)

where δ(η) is the Dirac delta function localised at the front. We define η to be the distance
from the water front, given by

η = z∗ − s∗w. (B4)

We modify (9) local to the front using the sink term, giving

−ϕl
ds∗w
dt∗

∂c∗l
∂η

+ ϕl
∂c∗l
∂t

+
∂F∗

l

∂η
= b∗bG

∗
b + b∗fG

∗
f −G∗

bw. (B5)

Let ϵ ≪ 1 and the region [−ϵ,+ϵ] extends just barely around the interface at η = 0 in
each direction. Applying the variable change (B4) and integrating (B5) over this region
gives ∫ ϵ

−ϵ
−ϕl

ds∗w
dt∗

∂c∗l
∂η

+ ϕl
∂c∗l
∂t

+
∂F∗

l

∂η
dη =

∫ ϵ

−ϵ
b∗bG

∗
b + b∗fG

∗
f −G∗

bwdη. (B6)

Taking the limit of thickness ϵ→ 0 and evaluating the integrals gives

−ds
∗
w

dt∗
ϕlc

∗
l |ϵ−ϵ + F∗

l |ϵ−ϵ = −ds
∗
w

dt∗
ϕbφlbc

∗
l |η=0. (B7)

Since c∗l does not exist below the interface at η > 0 and as ϵ→ 0 we can approximate all
positions local to the front to be at η = −ϵ, allowing an infinitely small error of size ϵ, we
can write (B7) as

−ds
∗
w

dt∗
ϕlc

∗
l |z∗=sw(t) + F∗

l |z∗=s∗w(t∗) =
ds∗w
dt∗

ϕbφlbc
∗
l |z=s∗w(t∗). (B8)
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C Diffusion from boulders - Diffusion in a sphere with a
time-dependent boundary condition

In this section, we relate the concentration c
(i)
l,0 at the surface of the boulders and the flux

F (i)
b,0 across their surface. We solve the boulder equations given in the main paper (68)–(69)

for each position z = z0, 0 < z0 < 1 where z0 = s−d (t0). The initial condition is defined

at t0 where z0 = s−d (t0), by c
(i)
b,0(s

−
d (t0), rb, t0) and needs to be determined by matching

into region (ii). The surface concentration c
(i)
l,0(z0, t) is assumed known but needs to be

determined as a solution to (73) from the main paper. Thus the problem reduces to

∂c
(i)
b,0

∂t
=

1

r2b

∂

∂rb

r2bDsb

∂c
(i)
b,0

∂rb

 , (C1)

−Dsb

∂c
(i)
b,0

∂rb

∣∣∣
rb=0

= 0, c
(i)
b,0|rb=1 = c

(i)
l,0(z0, t). (C2)

c
(i)
b,0(s

−
d (t0), rb, t0) = ĉb(t0), (C3)

where ĉb(t0) denotes the radially uniform concentration in the boulders exiting region (ii).

The aim here is to solve for c
(i)
b,0(z0, rb, t, c

(i)
l,0(z0, t)), to evaluate the flux through the surface

F (i)
b,0(z0, 1, t, c

(i)
l,0(z0, t)) = −Dsb

∂c
(i)
b,0

∂rb

∣∣∣
rb=1

and hence find G
(i)
b,0 = F (i)

b,0

∣∣∣
rb=1

/Qb and substitute

into (67) in the main paper. To solve equations (C1)–(C3) the following substitution is
made

c
(i)
b,0 =

w

rb
, (C4)

which reduces the diffusion equation to

∂w

∂t
= Dsb

∂2w

∂r2b
, (C5)

with boundary conditions

w|rb=0 = rbc
(i)
b,0|rb=0 = 0, w|rb=1 = rbc

(i)
b,0|rb=1 = c

(i)
l,0(z0, t) = f(t). (C6)

and initial condition

w|t=t0 = rbĉb(t0). (C7)

Let

w(rb, t̃) = u(rb, t̃) + v(rb, t̃), and t = t0 + t̃ (C8)
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where

u(rb, t̃) = rbf̃(t̃), u|rb=0 = 0, u|rb=1 = f̃(t̃), (C9)

where f̃(t̃) = f(t̃+ t0). Then (C5) becomes the following BVP for v(rb, t̃):

∂v

∂t̃
= Dsb

∂2v

∂r2b
− ∂u

∂t̃
,

∂u

∂t̃
= rb

˙̃
f(t̃) (C10)

with boundary conditions

v|rb=0 = 0, v|rb=1 = 0, (C11)

and initial condition

v|t̃=0 = rbĉb(t0)− u|t̃=0. (C12)

Now v(rb, t̃) can be found using an eigenfunction expansion. The eigenvalues and eigen-
functions are

λn = nπ, for n = 1, 2, ... Sn(rb) = sin(λnrb). (C13)

Let

S(rb, t̃) = −∂u
∂t̃

= −rb ˙̃f(t̃) (C14)

=

∞∑
n=1

Ŝn(t̃) sin(λnrb), (C15)

and

v(rb, t̃) =
∞∑
n=1

v̂n(t̃) sin(λnrb), (C16)

where Ŝn(t̃) and v̂n(t̃) are the coefficients for the respective Fourier series. Then

∂v

∂t̃
=

∞∑
n=1

˙̂vn sin(λnrb), (C17)

∂2v

∂r2b
=

∞∑
n=1

v̂n(t̃)(−λ2n) sin(λnrb). (C18)

Substituting these expansions back in (C10),

∂v

∂t̃
−Dsb

∂2v

∂r2b
− S(rb, t̃) = 0, (C19)

and thus the following must be true for all values of n:

∞∑
n=1

(
˙̂vn +Dsbλ

2
nv̂n − Ŝn(t̃)

)
sin(λnrb) = 0, (C20)
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giving a system of ODEs for v̂n(rb, t̃):

dv̂n

dt̃
+Dsbλ

2
nv̂n = Ŝn(t̃), (C21)

which we solve with an integrating factor. After multiplying by eDsbλ
2
n t̃ we have

d

dt̃

(
eDsbλ

2
n t̃v̂n(t̃)

)
= eDsbλ

2
n t̃Ŝn(t̃). (C22)

Integrating this, we obtain

eDsbλ
2
n t̃v̂n(t̃) =

∫ t̃

0
eDsbλ

2
nτ Ŝn(τ)dτ +An, (C23)

which we can write as

v̂n(t̃) =

∫ t

0
e−Dsbλ

2
n(t̃−τ)Ŝn(τ)dτ + e−Dsbλ

2
n t̃An. (C24)

Thus,

v(rb, t̃) =
∞∑
n=1

(∫ t̃

0
e−Dsbλ

2
n(t̃−τ)Ŝn(τ)dτ + e−Dsbλ

2
n t̃An

)
sin(λnrb). (C25)

The coefficients An we obtain from the initial condition:

rbĉb(t0)− u(rb, 0) =

∞∑
n=1

An sin(λnrb). (C26)

This is a Fourier sine series in which

An(t̃) = 2

∫ 1

0
(rbĉb(t0)− u(rb, 0)) sin(λnrb)dr

= 2(ĉb(t0)− c
(i)
l,0(z0, t0))

(−1)n+1

nπ
. (C27)

The flux at the boulder surface is given by

F (i)
b,0

∣∣∣
rb=1

= −Dsb

∂c
(i)
b,0

∂rb

∣∣∣
rb=1

= Dsb

(
w

r2b
− 1

rb

∂w

∂rb

) ∣∣∣
rb=1

= Dsb

(
w − ∂w

∂rb

) ∣∣∣
rb=1

. (C28)

Evaluating at rb = 1 gives

F (i)
b,0

∣∣∣
rb=1

= Dsb

(
f̃(t̃) +

∞∑
n=1

v̂n(t̃) sinnπ

)
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−Dsb

(
f̃(t̃) +

∞∑
n=1

v̂n(t̃)nπ cosnπ

)

= −Dsb

∞∑
n=1

nπ(−1)nv̂n(t̃), (C29)

where sinnπ = 0 and cosnπ = −1n have been used. The expression for v̂n(t̃) is known in
terms of Sn(t̃), so it remains to calculate Sn(t̃). We get and

Ŝn(t̃) = 2

∫ 1

0
−rb ˙̃f(t̃) sin(λnrb)drb = −2ċ

(i)
l,0(t̃)

(−1)n+1

nπ
. (C30)

Then combining equations (C29), (C24), (C27) and (C30) gives

F (i)
b,0

∣∣∣
rb=1

= 2Dsb

∞∑
n=1

e−n2π2Dsb t̃

×

(
ĉb0(t0)− c

(i)
l,0(z0, t0)−

∫ t̃

0

˙̃
f(τ)en

2π2Dsbτdτ

)
. (C31)

Thus, we write down the solution

w(rb, t̃) = rbf̃(t̃)

+
∞∑
n=1

(∫ t̃

t0

e−Dsbλ
2
n(t̃−τ)Ŝn(τ)dτ + e−Dsbλ

2
n t̃An

)
sin(λnrb). (C32)

Finally, we reverse the substitution (C4):

c
(i)
b,0 = c

(i)
l,0(z0, t) +

2

rb

∞∑
n=1

(
(−1)n+1

nπ

)
e−Dsbn

2π2(t−t0)
(
ĉb(t0)− c

(i)
l,0(z0, t0)

−
∫ t

t0

eDsbn
2π2τ ċ

(i)
l,0(τ)dτ

)
sinnπrb. (C33)

In summary, the flux at the boulder surface required for equation (67) in the main paper
is given by

F (i)
b,0(z0, 1, t, c

(i)
l,0(z0, t)) = 2Dsb

∞∑
n=1

e−n2π2Dsb(t−t0)
(
c
(i)
b,0(s

−
d (t0), 1, t0)− c

(i)
l,0(z0, t0)

−
∫ t

t0

˙cl,0
(i)(z0, τ)e

n2π2Dsbτdτ

)
. (C34)

D Asymptotic analysis for unsaturation extraction

Here we present the modified structure of the asymptotically reduced model in the case
where a saturated region does not form, see §2.7 in the main paper. Here, we maintain
regions (i) and (ii), however, region (ii) is studied under the change of variables

ϵw = z − sw, (D1)
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which replaces (40) in the main paper, and w ∈ (−∞, 0). We emphasize that in the
case of no-saturation the saturation interface, sd, does not exist and instead there is a
slender layer, region (ii), adjacent to the wetting front sw in which the concentration in
the liquid changes markedly, but not so much as to fully saturate the liquid. The boundary
conditions of region (ii) are now as follows:

c
(ii)
f,0|w=0 = cf,0, c

(ii)
b,0 |w=0 = cb,0 + φlbcl,0|

(ii)
w=0,

∂c
(ii)
l,0

∂w

∣∣∣
w=0

= 0. (D2)

The location of region (ii) is given by the wetting front and matching conditions to region
(i) given by (47) and (D2) result in the modification of (52) given by(

− ˙sw
ϕl
ϕT

+ q

)(
c
(ii)
l,0 |w=0 − c

(i)
l,0|z=s−w(t)

)
=

∫ 0

−∞
G

(ii)
f,−1dw. (D3)

Performing the same order of operations as in (53) - (56), we integrate the concentration
of the fines over region (ii) to arrive at

−ṡw
∫ 0

−∞

∫ 1

0
r2f
∂c

(ii)
f,0

∂w
drfdw =

∫ 0

−∞
−QfG

(ii)
f,−1dw. (D4)

Evaluating the integral on the left-hand side and substituting (D3) to eliminate the integral
of the fine dissolution rate, we write down

ṡw
3Qf

(
cf,0 − c

(i)
l,0|z=s−w(t)

)
=

(
− ˙sw

ϕl
ϕT

+ q

)(
c
(ii)
l,0 |w=0 − c

(i)
l,0|z=s−w(t)

)
. (D5)

Following the solution to the diffusion problem in the boulders given in appendix C,

gives the mass transfer rate G
(i)
b,0, that is the relationship between c

(i)
l,0 and the soluble

concentration in the boulders immediately after wetting the ĉb, where ĉb = cb,0+φlbcl,0|
(ii)
w=0.

The result in (D5) allows us to write the problem in region (i) independently of the
concentrations in region (ii) by writing the initial boulder concentration as,

c
(i)
b,0|s−w(t) = cb,0+φlb

 ˙sw

(
cf,0 − c

(i)
l,0|z=s−w(t)

)
3Qf

(
− ˙sw

ϕl
ϕT

+ q
) + c

(i)
l,0|z=s−w(t)

. (D6)

Thus, we write the problem in region (i),(
ϕl
ϕT

+
1

3Qf

)
∂c

(i)
l,0

∂t
+ q

∂c
(i)
l,0

∂z
= Gb,0(c

(i)
l,0) with c

(i)
l,0|z=0 = 0, (D7)

and use (D5) to find the solution c
(ii)
l,0 at the front.
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E Numerical Methods

In this section, we discuss the numerical schemes and their implementation used to solve
the full (23)-(28) and reduced model (74) and (75). Section §E.1 presents the former and
§E.2 the latter.

E.1 Full model

Solution of the full model requires numerical treatment of the system (23)-(29) given in
the main paper. The equations in the liquid, i.e., those containing partial derivatives in
the macroscopic coordinate z, are discretised in space using a second order finite element
(FE) scheme. The equations in the grains, i.e., those containing partial derivatives in r,
are discretised in space using a second order control volume (CV) method.

After applying these spatial discretisations the system of coupled PDEs is converted
into a large system of coupled differential-algebraic equations (DAE) which can readily be
handed to any number of numerical integrators. In our case we chose to use MATLAB®’s
solver ode15s which uses adaptive time stepping. We choose this because during infiltra-
tion, the wet region is expanding with time causing a time-dependent domain defined by
the position of the boundary z = sw(t). The moving domain is mapped to a static domain
defined by the current position of the wetting interface and by definition in the dry region
we have cl = 0, cf = cf,init and cb = cb,init. In this sense, our approach is similar to the
so-called “method of lines”, albeit a multiscale domain.

E.1.1 Numerical discretisation in the liquid - FE

The transport problem in the liquid is given by (23). To reiterate, we have

ϕl
ϕT

∂cl
∂t

+
∂Fl

∂z
= Gf +Gb, Fl = −Deff

∂cl
∂z

+ qcl, (E1)

with cl|z=0 = 0 and


−ṡwcl + Fl

∣∣∣
z=sw(t)

= 0 for 0 < t < 1,

∂cl
∂z

∣∣∣
z=1

= 0 for t ≥ 1.
(E2)

During the wetting phase, the domain in which we seek a solution for the concentrations
of solubles cl, cf and cb expands with the front. Before the coffee bed is completely wet at
t = 1, cl is defined for z ∈ (0, sw). To avoid solving in a time-dependent spatial domain,
we introduce the following transformation:

t = τ, η =
z

sw(t)
, (E3)

such that η ∈ (0, 1) and

∂

∂z
=

1

sw

∂

∂η
, and

∂

∂t
= −η ˙sw

sw

∂

∂η
+

∂

∂τ
. (E4)
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From here, we will maintain using the variable t for the simplicity of the notation. Under
the transformation (E3), the problem in the liquid (23)-(29) becomes

ϕl
ϕT

∂cl
∂t

− ϕl
ϕT

η
˙sw
sw

∂cl
∂η

=
Deff

s2w

∂2cl
∂η2

− q

sw

∂cl
∂η

+Gb +Gf . (E5)

The boundary conditions supplementing (E5) are derived from (E2) transformed onto η
coordinate:

cl|η=0 = 0, and
∂cl
∂η

∣∣∣
η=1

= 0, (E6)

where, upon applying the transformatiom (E3), the two cases of the boundary condition
(E2b) both collapse to (E6b). The initial condition is given by

cl|t=0 = 0. (E7)

We begin by discretising the η-domain in η into N + 1 equally spaced grid points ηi for
i = 1, ..., N + 1. The width of the intervals between neighbouring points is denoted by ∆.
We also introduce N half-points denoted by ηi+1/2 = 1

2(ηi + ηi+1) for i = 1, ..., N . From
now on, we will drop the subscript l in order to simplify the notation and note that in
this subsection c will refer to concentration in the liquid. We denote the values of c by
ci for i = 1, ..., N + 1 at the grid points. The spatial derivatives in (E5) are discretised
using a finite element scheme. Following the frequently used technique, we approximate
the concentration in the liquid as a linear combination of piecewise linear basis functions,
also referred to as “hat” functions. For the dependent variable c(η, t) we write

c =
∑
i

ci(t)ψi(η) where ψi(η) =


η−ηi−1

ηi−ηi−1
for ηi−1 ≤ η ≤ ηi

ηi+1−η
ηi+1−ηi

for ηi ≤ η ≤ ηi+1

0 otherwise,

(E8)

in which the denominators in the definition of the basis functions ψi(η) in the right-hand
side of (E8) could be further simplified when choosing a uniform grid with ηi+1 − ηi =
∆, ∀i ∈ 1, ..., N + 1.

Our aim is to derive a system of spatially discretised equations from (E5). This is
done so by substituting the form (E8) into (E5), multiplying through by each of the test
functions ψj(η) for j = 1, ..., N + 1 and integrating over the domain η ∈ (0, 1). Upon
denoting the time derivatives ċi =

dci
dt , we arrive at

ϕl
ϕT

∑
i

ċi

∫ 1

0
ψiψjdη =

∑
i

(
ci
ϕl
ϕT

˙sw
sw

∫ 1

0
ηψ′

iψjdη −Deff
ci
s2

∫ 1

0
ψ′
iψ

′
jdη

− q
ci
sw

∫ 1

0
ψ′
iψjdη +

∫ 1

0
(Gb +Gf )ψjdη

)
.

(E9)

The integrals in (E9) that contain only the basis functions and/or their derivatives often
appear in FE schemes and they can be computed exactly.
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The final two terms in (E9) are a linear functions of ci due to our choice of a mass
transfer function. In the future, we hope to gain a more complete perspective of the dy-
namics of solubles and their transport through the surface of the grains and be able to
adjust the functional form of the mass transfer without significantly changing the numer-
ical scheme. To perform the integration independent of our choice of a mass transfer rate,
we approximate the dependent variable ci in the integrand as a piecewise constant over
each interval between grid points. The error introduced by this approximation is O(∆2)
and is comparable to the error incurred by the approximation in (E8) and consequen-
tially it will not decrease the accuracy of the scheme. The value of the concentration ci
over the interval (ηi, ηi+1) is approximated as the value it takes at the midpoint of the
corresponding interval, ηi+1/2. This gives

G = Gb,i+1/2 +Gf,i+1/2 =
Gf,i +Gf,i+1

2
+
Gf,i +Gf,i+1

2
, (E10)

where we introduce G to be the sum of the extraction terms for easier notation.
Upon evaluating the the integrals in (E9), we write the full discretised system of

equations to be solved in the liquid by substituting j = 1, ...N + 1 in (E9) and evaluating
the sum. The boundary conditions (E6) are imposed as follows:

c1 = 0,
cN+1 − cN

∆
= 0. (E11)

At j = 1:

c1 = 0. (E12)

At j = 2, ..., N :

ϕl
ϕT

(
˙ci−1

∆

6
+ ċi

2∆

3
+ ˙ci+1

∆

6

)
=

ϕl
2ϕT

˙sw
sw

(
ηj− 1

3
(ci − ci−1) + ηj+ 1

3
(ci+1 − ci)

)
+
Deff

s2w

(ci−1 − 2ci + ci+1

∆

)
− q

sw

(ci+1 − ci−1

2

)
+∆

Gi− 1
2
+Gi+ 1

2

2
.

(E13)

At j = N + 1:

ϕl
ϕT

(
˙cN+1

∆

3
+ ˙cN

∆

6

)
=

ϕl
6ϕT

˙sw
sw

(
− cN (2ηN+1 + ηN ) + cN (2ηN+1 + ηN )

)
− q

sw
cN+1 +

Deff

s2w

(cN − cN+1

∆

)
+

q

sw

(cN+1 + cN
2

)
+

∆

2
GN+ 1

2
.

(E14)

Imposing the boundary condition (E11) introduces an algebraic equation to a system of
ODEs. This DAE system is written in matrix form Mc = f(c) and implemented in
MATLAB®’s solver ode15s.
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E.1.2 Numerical discretisation in the grains - CV

The dimensionless equations for the coffee grains (25)-(26), repeated here, are

∂ck
∂t

+
1

r2k

∂

∂rk

(
r2kFk

)
= 0, Fk = −Dsk

∂ck
∂rk

, (E15)

with Fk

∣∣∣
rk=0

= 0 and Fk

∣∣∣
rk=1

= QkGk. (E16)

for k = b, f for boulders and fines respectively. The initial condition for the fines is

cf |t=0 = cf,init. (E17)

The surface fluxes (27) are given by

Gk =
bk
ϵ


0 if z > sw(t)

1− cl if ck|rk=1 ≥ 1

ck|rk=1 − cl if ck|rk=1 < 1

(E18)

The condition for the boulders at the front (28) is given by

cb|t=s−1
w (z) = cb,init + cl|t=s−1

w (z)φlb. (E19)

In order to impose the initial condition in the boulders as the front passes and fills them
with liquid at a concentration cl we would require a boundary condition that depends
on the solution at the last step. The built-in solver does not have these options but an
alternative would be to assume saturation and impose a condition on boulders being filled
up at saturation concentration immediately after wetting. To avoid the complication
or inaccuracy that this would pose to the implementation of these numerical schemes,
we apply φlb = 0. This may not be a realistic value for this parameter, however for the
purpose of comparing asymptotic solutions and solutions to the full model, it is not crucial
for parameter values to be completely physical. An alternative suggestion would be to
assume saturation and impose cb|z=sw(t) = cb,init + csatφlb.

We discretise the radial coordinate rk into M + 1 equally spaced points ri for i =
1, ...M + 1 and denote the distance between any two neighbouring points ∆r and the
concentration of solubles in the grain ci at the grid points, where i indicates the index of
the grid point, not to be confused with the earlier notation for grain species. The problem
in both grain types is solved in the same manner, therefore we write down the generalised
solution by omitting the species specific parameters. We thus write (E15) as

r2
∂c

∂t
=

∂

∂r

(
Dr2

∂c

∂r

)
. (E20)

Applying the procedure derived by Zeng et al. [2], we obtain the discretised equations in
the grains as follows.
At i = 1

3

4
V1ċ1 +

1

8
V2ċ2 = 0. (E21)
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At i = 2

1

4
V1ċ1 +

6

8
V2ċ2 +

1

8
V3ċ3

= 4πDr25/2
c3 − c2
∆r

− 4πDr23/2
c2 − c1
∆r

.
(E22)

At i = 2, ...,M

1

8
Vi−1 ˙ci−1 +

6

8
Viċi +

1

8
Vi+1 ˙ci+1

= 4πDr2i+1/2

ci+1 − ci
∆r

− 4πDr2i−1/2

ci − ci−1

∆r
.

(E23)

At i =M

1

8
VM−1 ˙cM−1 +

6

8
VM ˙cM +

1

4
VM+1 ˙cM+1

= 4πDr2M+1/2

cM+1 − cM
∆r

− 4πDr2M−1/2

cM − cM−1

∆r
.

(E24)

At i =M + 1

1

8
VM ˙cM +

3

4
VM+1 ˙cM+1

= −4πr2M+1QGM+1 − 4πDr2M+1/2

cM+1 − cM
∆r

.
(E25)

Similarly to the problem in the liquid, equations (E11)-(E14) are written in matrix form
and coupled to the problem in the liquid when implemented in MATLAB®.

E.1.3 Coupling the problems

The model could sensibly be described as 1+1D, meaning that the spatial dimensions
are almost entirely independent, coupled only by the extraction rates. We design a grid
in (z, r), such that at each point in z, denoted by zi, sits an orthogonal grid for one
representative fine and one boulder. At each grid point in zi we seek a solution for the
concentrations of solubles in the liquid at each point and the corresponding concentration
profiles across the radii of the fines and boulders. The diffusion problem in the grains is
easier to solve numerically as it is not stiff and the concentration gradients are strictly
non-negative and therefore it converges numerically for a much smaller number of grid
points than the problem in the liquid. Choosing the sparsity of the grids in z and r is
crucial because refining the grid spacing in r is computationally expensive.

We seek the solution of the concentration in the liquid cl(η, t) on the transformed grid
defined by (E3), and the solution in the grains cf (z, rf , t) cb(z, rb, t). We always discretise
η in the same number of points, however the grid spacing between points in η when
projected onto z would increase as the front advances. Advancing the front in time in this
manner guarantees that it will land at a grid point in η at each time step and during the
initial stages of infiltration, we expect to see rapid increase in the concentration in the
liquid in the newly wetted region which needs to be resolved on a large number of points.
The difference in the coordinate systems is handled by interpolating the source terms Gf

and Gb at each step by doing the following:
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1. Find the vector of surface concentrations of the grains at the current position of the
front and in the entire wet region given by (0, sw);

2. Interpolate the surface concentrations onto η = (0, 1) coordinates by “stretching
out” the vector on the same number of grid points N + 1 as is η;

3. Evaluate the extraction terms (in η) according to (27) and substitute in (E11)-(E14)
to couple to the concentration in the liquid and;

4. Interpolate the extraction terms back onto z coordinates to couple the system to the
grains (E21)-(E25) in the wet region while all grains in the dry region remain idle.

This procedure allows us to have high resolution of the solution in the wet region and save
computational time in stepping forward grains that are in the dry region. We use linear
interpolation and the error introduced by this step is consistent with the FE spatial dis-
cretisation and using a higher order interpolation method is redundant since the variables
have already been approximated as linear functions in the sub-intervals.

E.2 Reduced model

Here we present the first order discretisation of the reduced model in region (i) that leads
to a system of linear equations implemented and solved for in Python and the solver is
available online at GitHub [1]. As described in §4.5 of the main paper, the asymptotically
reduced model requires a coupled PDE and an ODE to be solved, namely (74) and (67)
given in the main paper. The former is an ODE that predicts the position of the saturation
interface and the latter, a PDE for the evolution of the concentration in the liquid in region
(i). The two are coupled by the boulder diffusion problem (68)-(70) and we will need to
solve (74) many times to obtain a full picture of the solution in region (i). Since it is
only necessary to evaluate the solution in region (i), we will drop the superscript (i) for
an easier notation.

The numerical solver is based on a finite difference spatial discretisation and a for-
ward Euler-based method in time for the microscopic equations (68)-(70) and a backward
Euler method with upwind approximations of the spatial derivatives for the macroscopic
equation (67) and a forward Euler method for determining the location of the saturation
interface (74). The two scales are combined by defining a system of the microscale equa-
tions at each grid point in the macroscale grid. We note that the analytical solution to the
diffusion problem in the boulders is directly available from the analytical solution (71),
however a numerical solution is easier to implement in the computational solution as it
does not require summation of the series. Overall, as a forward Euler method, the scheme
exhibits first-order accuracy.

E.2.1 Numerical discretisation in the liquid

As the saturation front sd advances down the bed, the spatial domain of region (i) expands
so that z ∈ [0, sd(t)] until the front reaches the outlet, thereafter the domain remains
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z ∈ [0, 1] for the remainder of the brew time. To deal with the expanding domain, we
introduce the following variable transform:

η =
z

sd
, (E26)

such that z ∈ [0, sd] and η ∈ [0, 1]. Under the transform (E26), we denote the source term
on the right-hand side of (67) defined on η coordinates to be Ĝb the problem in the liquid
(67) becomes

∂cl
∂t

=

− q(t)(
ϕl
ϕT

+ 1
3Qf

)
sd

+ η
ṡd
sd

 ∂cl
∂η

+
Ĝb

ϕl
ϕT

+ 1
3Qf

, (E27)

with initial and boundary conditions derived from (67b)

cl|η=0 = 0 and cl|t=0 = 0. (E28)

We discretise the time domain into Nt equally-spaced collocation points, such that the
intervals separating them are of width ∆t, and denoting the points t = ti for i =
0, 1, ..., Nt − 1. 1 The ODE (74) is discretised using a forward Euler method yielding

si+1
d = sid + qi+1

(
ϕl
ϕT

+
1

3Qf

cf,0 − cil|z=sid(t)

1− cil|z=sid(t)

)−1

∆t with s0d = 0, (E29)

allowing us to find the subseqent position of the saturation front given present information.
We now determine the evolution of cl by discretising the spatial domain η ∈ (0, 1)

into N collocation points and denote ∆ to be the distance between any two neighbouring
points. We denote the values of c(η, t) at these points by ci+1

j for j = 0, ..., N − 1 , so
that the superscript indicates the value of t and the subscript denotes the value of η. We
discretise spatial derivatives by a first-order upwind approximation and apply a backward
Euler method to evolve the solution in time. This yields the following system to solve for
cl(η, t) in the liquid:

ci+1
j

(
1

∆t
− qi+1

Bsi+1
d ∆

− ηj ṡd
i+1

si+1
d ∆

)
=

cij
∆t

− ci+1
j−1

(
− qi+1

Bsi+1
d ∆

+
ηj ṡd

i+1

si+1
d

∆

)
+
Ĝj

i

B
, (E30)

with

c00 = 0, (E31)

1To aid the reader when referring to the code on Github [1], we have adopted different notations in
the indexing used the numerical schemes for the full and reduced model. Indexing in the full model starts
from i = 1 and for the reduced model from i = 0. We chose this indexing due to the implementation of
the full model in MATLAB® and the reduced in Python.
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where B = ϕl
ϕT

+ 1
3Qf

is shortened for compactness.

The spatial domain transformation (E26) and the discretisation of η cause the number
of grid points to remain constant but their positions and spacing in the original domain
in z will change at each time step. To obtain a solution for the boulder concentration,
however, we require a fixed grid in the bed. We discretise z identically to η into N
collocation points and denote them by zj for j = 0, ..., N − 1.

E.2.2 Numerical discretisation in the boulders

The transport of solubles (68)-(70) inside the boulders is solved at each grid point in the
bed zj on a uniform grid in r. We discretise the radial domain into M points, rk for
k = 0, ...M − 1. The problem is essentially radial diffusion in a sphere and we apply a
finite-difference approximation. It evolves in time simultaneously with the liquid, and we
apply a forward Euler method. The discretised equations for cb(zj , r, t) at each zj are:

ci+1
b,k − cib,k

∆t
=


Dsb
k∆r2

(
(k + 1)cib,k+1 − 2kcib,k + (k + 1)cib,k−1

)
, k ̸= 0,M,

Dsbcl|zj , k =M,

0, k = 0.

(E32)

The problem in the liquid and the problem in the boulders are coupled by the source term
G(z, t) which is given by the flux condition (70)

G = −Dsb

Qb

∂cb
∂r

∣∣∣
r=1

. (E33)

Allowing a “time lag” of ∆t, we can compute the boulder concentration using concentration
in the liquid ci−1

j at the surface from the previous time step. Doing this allows us separate
(E30) and (E32) and to solve the boulder diffusion in advance to the liquid transport in
order to compute Gi

j directly from the flux condition (E33). The source term is defined

on the two macroscopic spatial domains as G(z, t) for the boulders and as Ĝ(η, t) in the
liquid. To account for this transformation, at each time step t = ti, we interpolate between
the two grids using linear interpolation. The boulders are located at all discrete points
zj , however, only the ones in region (i), i.e. in the domain z ∈ (0, sid) will be dissolving
and there will be no soluble extraction from those outside this region. To account for
the different domains, we first identify all points zj for which zj ≤ sid and we use linear

interpolation to “stretch” the values of Gj ∈ (0, sid) onto η ∈ (0, 1). Now Ĝi
j is used

directly in (E30) to obtain the solution in the liquid in η ∈ (0, 1).
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