1. The general linear mixed model and the linear mixed model hypothesis

It is common to define the general linear mixed model as a statement about only the observations for independent sampling unit $i \in \{1, ..., N\}$ (Muller and Stewart, 2006, section 6.7). Let p_i be the number of outcomes for independent sampling unit i, and let $j \in \{1, 2, ..., p_i\}$ index outcomes. For example, if there are 6 repeated measures of BMI for a person in the study, we would have $p_i = 6$. Let y_{ij} indicate the j^{th} outcome (dependent) variable for independent sampling unit i. For independent sampling unit i, define the $(p_i \times 1)$ vector of outcomes by y_i , where

$$\begin{aligned} \mathbf{y}_i \\ p_i \times 1 \\ \end{bmatrix} \begin{bmatrix} y_{i1} \\ y_{i2} \\ \vdots \\ y_{ip_i} \end{bmatrix}. \end{aligned} \tag{1}$$

Here, we define the total number of outcome observations by

$$n = \sum_{i=1}^{N} p_i .$$
⁽²⁾

The mixed model includes fixed-effect predictors X_i (fixed and known) and randomeffect predictors Z_i (fixed and known):

$$\boldsymbol{y}_i = \boldsymbol{X}_i \boldsymbol{\beta} + \boldsymbol{Z}_i \boldsymbol{d}_i + \boldsymbol{e}_i .$$

$$p_i \times 1 \quad (p_i \times q)(q \times 1) \quad (p_i \times r)(r \times 1) \quad (p_i \times 1).$$
(3)

Here β contains unknown fixed-effect parameters which represent slopes and intercepts, X_i includes intercepts and predictors, Z_i is the participant-specific matrix of random effects, d_i is the participant specific matrix of random slopes and intercepts, and e_i is the participant-specific matrix of errors. By assumption, both d_i and e_i are independently normally distributed, with mean zero. The distributions are

$$\begin{bmatrix} \boldsymbol{d}_i \\ \boldsymbol{e}_i \end{bmatrix} \sim \mathcal{N}_{r+p_i} \left(\begin{bmatrix} \boldsymbol{0} \\ \boldsymbol{0} \end{bmatrix}, \begin{bmatrix} \boldsymbol{\Sigma}_d & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{\Sigma}_{e_i} \end{bmatrix} \right), \tag{4}$$

which implies $E(\boldsymbol{y}_i) = \boldsymbol{X}_i \boldsymbol{\beta}$ and $\boldsymbol{\mathcal{V}}(\boldsymbol{y}_i) = \boldsymbol{\Sigma}_i = \boldsymbol{Z}_i \boldsymbol{\Sigma}_d \boldsymbol{Z}'_i + \boldsymbol{\Sigma}_{e_i}$.

For the entire study sample, construct stacked matrices, so that

$$\boldsymbol{y} = \begin{bmatrix} \boldsymbol{y}_1 \\ \boldsymbol{y}_2 \\ \vdots \\ \boldsymbol{y}_N \end{bmatrix}, \qquad (5)$$

$$\boldsymbol{X} = \begin{bmatrix} \boldsymbol{X}_1 \\ \boldsymbol{X}_2 \\ \vdots \\ \boldsymbol{X}_N \end{bmatrix},$$
(6)

$$\boldsymbol{Z} = \begin{bmatrix} \boldsymbol{Z}_1 \\ \boldsymbol{Z}_2 \\ \vdots \\ \boldsymbol{Z}_N \end{bmatrix},$$
(7)

$$\boldsymbol{d} = \begin{bmatrix} \boldsymbol{d}_1 \\ \boldsymbol{d}_2 \\ \vdots \\ \boldsymbol{d}_N \end{bmatrix}, \qquad (8)$$

and

$$\boldsymbol{e} = \begin{bmatrix} \boldsymbol{e}_1 \\ \boldsymbol{e}_2 \\ \vdots \\ \boldsymbol{e}_N \end{bmatrix},.$$
 (9)

The general linear mixed model is given by

$$\boldsymbol{y} = \boldsymbol{X}\boldsymbol{\beta} + \boldsymbol{Z}\boldsymbol{d} + \boldsymbol{e} \,. \tag{10}$$

A general linear mixed model hypothesis about fixed effects can be written in terms of $\theta = C\beta$ as

$$H_0: \boldsymbol{\theta} = \boldsymbol{\theta}_0 . \tag{11}$$

2. The three models: a simplified version

2.1 Definitions and notation

We start with thinking about the data for one participant in the study. The paired data for person *i* looks like this, where y_{ij} is the outcome for person *i* at time point *j*, and x_{ij} is the predictor for person *i* at time point *j*. To make the dataset labels short, write PID for participant ID, write *y* for the outcome, *a* for age in years, and *x* for the predictor. For the purposes of this explanation, we assume four time points, and ignore covariates.

2.2 Fixed effect predictor matrix for the all-times-before model

The fixed effect predictor matrix for participant i is

$$\boldsymbol{X}_{i} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & x_{i1} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & x_{i1} & x_{i2} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & x_{i1} & x_{i2} & x_{i3} \end{bmatrix},$$
(13)

with β

$$\boldsymbol{\beta} = \begin{bmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \\ \beta_4 \\ \beta_5 \\ \beta_6 \\ \beta_7 \\ \beta_8 \\ \beta_9 \\ \beta_{10} \end{bmatrix}.$$
(14)

2.3 Fixed effect predictor matrix for the immediately-before model

The fixed effect predictor matrix for participant i is

$$\boldsymbol{X}_{i} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & x_{i1} & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & x_{i2} & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & x_{i3} \end{bmatrix}.$$
 (15)

The contrast matrix to test the difference between all-times-before model and the immediately before model is

which tests

$$H_0: \ \beta_5 = 0 \quad \beta_8 = 0 \quad \beta_9 = 0. \tag{17}$$

If these coefficients are zero, the all-times-before model reduces to the immediatelybefore model.

2.4 Fixed effect predictor matrix for the differential-sensitive-period model

The fixed effect predictor matrix for participant i is

$$\boldsymbol{X}_{i} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & x_{i1} & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & x_{i1} & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & x_{i1} \end{bmatrix}.$$
 (18)

The contrast matrix to test the difference between all-times-before model and the differential-sensitive period model is

which tests

$$H_0: \ \beta_6 = 0 \quad \beta_9 = 0 \quad \beta_{10} = 0. \tag{20}$$

If these coefficients are zero, the all-times-before model reduces to the differential sensitive period model.

The fixed-effect predictor model for the differential sensitive period is as follows

$$\boldsymbol{\beta} = \begin{bmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \\ \beta_4 \\ \beta_5 \\ \beta_7 \\ \beta_8 \end{bmatrix} .$$
(21)

2.5 Fixed effect predictor matrix for the stable-sensitive-period model

The fixed effect predictor matrix for participant i is

$$\boldsymbol{X}_{i} = \begin{bmatrix} 1 & 0\\ 1 & x_{i1}\\ 1 & x_{i1}\\ 1 & x_{i1} \end{bmatrix}.$$
(22)

The contrast matrix to test the difference between the differential-sensitive period model and the stable-sensitive period model is

$$\boldsymbol{C} = \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & -1 \end{bmatrix},$$
(23)

which tests

$$H_0: \ \beta_5 - \beta_7 = 0 \quad \beta_5 - \beta_8 = 0 \tag{24}$$

If these hypotheses are true, the differential sensitive period model reduces to the stable sensitive period model.

3. Organizing the dataset for the models

3.1 Data set-up for all-times-before model

Reformat the data for person i so it looks like this, where xj is the predictor value for the participant at age j.

PID	$oldsymbol{y}$	\boldsymbol{a}	\boldsymbol{x}	x1	x2	x3	x4
1	y_{i1}	1	x_{i1}	x_{i1}	x_{i2}	x_{i3}	x_{i4}
1	y_{i2}	2	x_{i2}	x_{i1}	x_{i2}	x_{i3}	x_{i4}
1	y_{i3}	3	x_{i3}	x_{i1}	x_{i2}	x_{i3}	x_{i4}
1	y_{i4}	4	x_{i4}	x_{i1}	x_{i2}	x_{i3}	x_{i4}

The goal is reformat the predictor matrix to define the all-times-before model. For this purpose, define indicator variables. Let

$$b1 = \begin{cases} 0 & \text{age} \le 1\\ 1 & \text{otherwise} \end{cases}$$
(26)

Let

$$b2 = \begin{cases} 0 & \text{age} \le 2\\ 1 & \text{otherwise} \end{cases}.$$
(27)

In general, define

$$bj = \begin{cases} 0 & \text{age} \le j \\ 1 & \text{otherwise} \end{cases}.$$
(28)

We do not define an indicator variable b4, because we are getting set up for a model which uses only predictors measured before the outcome.

PID	y	\boldsymbol{a}	\boldsymbol{x}	b1	b2	b3	b4
1	y_{i1}	1	x_{i1}	0	0	0	0
1	y_{i2}	2	x_{i2}	1	0	0	0
1	y_{i3}	3	x_{i3}	1	1	0	0
1	y_{i4}	4	x_{i4}	1	1	1	0

Form i1 = b1 * x1, i2 = b2 * x2, and so forth.

PID	\boldsymbol{y}	\boldsymbol{a}	\boldsymbol{x}	i1	i2	i3
1	y_{i1}	1	x_{i1}	0	0	0
1	y_{i2}	2	x_{i2}	x_{i1}	0	0
1	y_{i3}	3	x_{i3}	x_{i1}	x_{i2}	0
1	y_{i4}	4	x_{i4}	x_{i1}	x_{i2}	x_{i3}

Define indicator variables for ages so that

$$aj = \begin{cases} 1 & \text{age} = j \\ 0 & \text{otherwise} \end{cases}.$$
(31)

PID	$oldsymbol{y}$	\boldsymbol{a}	\boldsymbol{x}	i1	i2	i3	a1	a2	a3	a4	
1	y_{i1}	1	x_{i1}	0	0	0	1	0	0	0	
1	y_{i2}	2	x_{i2}	x_{i1}	0	0	0	1	0	0	(3
1	y_{i3}	3	x_{i3}	x_{i1}	x_{i2}	0	0	0	1	0	
1	y_{i4}	4	x_{i4}	x_{i1}	x_{i2}	x_{i3}	0	0	0	1	

Form h21 = a2*i1, h31 = a3*i1, h32 = a3*i2, h41 = a4*i1, h42 = a4*i2, and h43 = a4*i3. The columns of the dataset have been re-sorted to show the sets of predictors for y_{i1} , y_{i2} and so on in order.

PID	y	\boldsymbol{a}	\boldsymbol{x}	a1	a2	h21	a3	h31	h32	a4	h41	h42	h43	
1	y_{i1}	1	x_{i1}	1	0	0	0	0	0	0	0	0	0	
1	y_{i2}	2	x_{i2}	0	1	x_{i1}	0	0	0	0	0	0	0	(33)
1	y_{i3}	3	x_{i3}	0	0	0	1	x_{i1}	x_{i2}	0	0	0	0	
1	y_{i4}	4	x_{i4}	0	0	0	0	0	0	1	x_{i1}	x_{i2}	x_{i3}	

The fixed effect predictor matrix for participant i is then

3.2 Data set-up for immediately before model

Start with the data formatted as shown below.

PID	\boldsymbol{y}	\boldsymbol{a}	\boldsymbol{x}	i1	i2	i3	a1	a2	a3	a4	
1	y_{i1}	1	x_{i1}	0	0	0	1	0	0	0	
1	y_{i2}	2	x_{i2}	x_{i1}	0	0	0	1	0	0	(35)
1	y_{i3}	3	x_{i3}	x_{i1}	x_{i2}	0	0	0	1	0	
1	y_{i4}	4	x_{i4}	x_{i1}	x_{i2}	x_{i3}	0	0	0	1	

Define variables k21 = a2*i1, k32 = a2*i2, k42 = a4*i3.

PID	$oldsymbol{y}$	\boldsymbol{a}	x	i1	i2	i3	a1	a2	a3	a4	k21	k32	k42	
1	y_{i1}	1	x_{i1}	0	0	0	1	0	0	0	0	0	0	
1	y_{i2}	2	x_{i2}	x_{i1}	0	0	0	1	0	0	x_{i1}	0	0	(36)
1	y_{i3}	3	x_{i3}	x_{i1}	x_{i2}	0	0	0	1	0	0	x_{i2}	0	
1	y_{i4}	4	x_{i4}	x_{i1}	x_{i2}	x_{i3}	0	0	0	1	0	0	x_{i3}	

The fixed effect predictor matrix for participant i is then

$$\boldsymbol{X}_{i} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & x_{i1} & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & x_{i2} & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & x_{i3} \end{bmatrix}.$$
(37)

3.3 Data set-up for differential sensitive periods model

Assume that the sensitive period is at age 1. Start with the data formatted as follows.

PID	y	\boldsymbol{a}	x	x1	a1	a2	a3	a4
1	y_{i1}	1	x_{i1}	x_{i1}	1	0	0	0
1	y_{i2}	2	x_{i2}	x_{i1}	0	1	0	0
1	y_{i3}	3	x_{i3}	x_{i1}	0	0	1	0
1	y_{i4}	4	x_{i4}	x_{i1}	0	0	0	1

Compute k21 = a2*x1, k31 = a3*x1, and k41 = a4*x1.

PID	y	\boldsymbol{a}	\boldsymbol{x}	x1	a1	a2	a3	a4	k21	k31	k41	
1	y_{i1}	1	x_{i1}	x_{i1}	1	0	0	0	0	0	0	
1	y_{i2}	2	x_{i2}	x_{i1}	0	1	0	0	x_{i1}	0	0	(39)
1	y_{i3}	3	x_{i3}	x_{i1}	0	0	1	0	0	x_{i1}	0	
1	y_{i4}	4	x_{i4}	x_{i1}	0	0	0	1	0	0	x_{i1}	

The fixed effect predictor matrix for participant i is then

$$\boldsymbol{X}_{i} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & x_{i1} & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & x_{i1} & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & x_{i1} \end{bmatrix}.$$
(40)

3.4 Data set-up for stable sensitive periods model

Again assuming that the sensitive period is period 1, start with the data formatted as below.

PID	$oldsymbol{y}$	\boldsymbol{a}	\boldsymbol{x}	x1
1	y_{i1}	1	x_{i1}	x_{i1}
1	y_{i2}	2	x_{i2}	x_{i1}
1	y_{i3}	3	x_{i3}	x_{i1}
1	y_{i4}	4	x_{i4}	x_{i1}

As before, let

$$b1 = \begin{cases} 0 & \text{age} \le 1\\ 1 & \text{otherwise} \end{cases}, \tag{42}$$

and define an intercept as a column where every value is 1. Form i1 = b1 * x1, yielding a the dataset which follows

PID	y	\boldsymbol{a}	\boldsymbol{x}	intercept	x1	b1	i1
1	y_{i1}	1	x_{i1}	1	x_{i1}	0	0
1	y_{i2}	2	x_{i2}	1	x_{i1}	1	x_{i1}
1	y_{i3}	3	x_{i3}	1	x_{i1}	1	x_{i1}
1	y_{i4}	4	x_{i4}	1	x_{i1}	1	x_{i1}

The fixed effect predictor matrix for participant i is then

$$\boldsymbol{X}_{i} = \begin{bmatrix} 1 & 0\\ 1 & x_{i1}\\ 1 & x_{i1}\\ 1 & x_{i1} \end{bmatrix}.$$
(44)

4. Definitions and notation for the example study

Let $\mathbf{1}_N$ be an $(N \times 1)$ vector containing the entry 1 in every spot, and $\mathbf{0}_N$ similarly. Let N = 191 be the number of study participants. Let *i* index study participant, for $i \in \{1, 2, ..., N\}$. Let *j* index outcome measurement within study participant, for $j \in \{1, 2, ..., p_i\}$ indexing the number of measurements. Here, p_i is the number of outcome measures for study participant *i*. The total number of observations (i.e., the total number of repeated measured per person, summed over all the people in the study) is given by

$$n = \sum_{i=1}^{N} p_i.$$
(45)

The maximum number of observations per participant is 8, so $N_i \leq 8$. For participant *i* at measurement time *j*, let

 $a_{ij} = \text{age (years)}$ for participant *i* at measurement time *j*, (46) $a_{ij}^2 = \text{age}^2$ (years) for participant *i* at measurement time *j*, $s_{i6} = \text{income to needs ratio for participant$ *i*at 6 months of age, and $<math>c_{i6} = \text{predictor for participant } i$ at 6 months of age.

For study participant *i*, form vectors of predictors, so that, for example

$$\boldsymbol{a}_{i} = \begin{bmatrix} a_{i1} \\ a_{i2} \\ \vdots \\ a_{iN_{i}} \end{bmatrix}.$$
(47)

Let y_{ij} be the outcome measured on participant *i* for measurement *j*. The outcome vector for person *i* is given by

$$\boldsymbol{y}_{i} = \begin{bmatrix} y_{i1} \\ y_{i2} \\ \vdots \\ y_{iN_{i}} \end{bmatrix}.$$
(48)

The population outcome vector stacks the participants-specific outcome vectors, so

$$\boldsymbol{y}_{(N\times1)} = \begin{bmatrix} y_{i1} \\ y_{i2} \\ \vdots \\ y_{in} \end{bmatrix}.$$
(49)

The population random effect matrix is

$$\boldsymbol{Z} = \begin{bmatrix} \boldsymbol{Z}_1 & & & \\ & \boldsymbol{Z}_2 & & \\ & & \ddots & \\ & & & \boldsymbol{Z}_n \end{bmatrix}$$
(50)

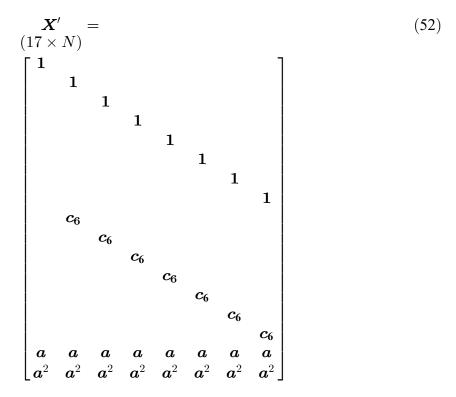
with $Z_i = \begin{bmatrix} \mathbf{1}_{N_i} & \mathbf{a}_i \end{bmatrix}$, and with corresponding random effects $d_i = \begin{bmatrix} d_{0i}, d_{1i} \end{bmatrix}$, and independent error term $e_i = \begin{bmatrix} e_{0i}, e_{1i} \end{bmatrix}$.

5. Specification of four models from the paper

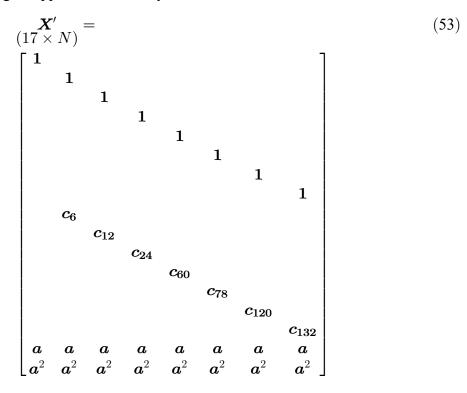
The model differ only in their predictor matrix, and estimates. The stable-sensitive period model (Equation 51) was the model used to produce the figures and estimates for the paper. The all-times-before model (Equation 54) was used for hypothesis testing, to compare to thethe immediately-before model (Equation 15), or the differntial sensitive period model (Equation 52) was the best.

Stable-sensitive period model

Differential-sensitive period model:



Immediately-before model Here, because X_{IB} has 17 columns, we present X'_{IB} , with columns containing 0 suppressed for clarity.



<u>All-times-before model</u>: Here, because X_b has 38 columns, we present X'_b , with columns

containing 0 suppressed for clarity.

