Supplementary Materials

for the article

"What diet to recommend before pregnancy to reduce the risk of gestational diabetes and during pregnancy to affect its course and improve perinatal outcomes?"

Table S1. Extensive search strategy. When searching PubMed for four the main search terms,
the search term and filters are presented in the Table and the resulting query in footnotes.
When searching PubMed for additional terms and Cochrane Reviews
for basic terms - only the search term and filters
are presented in the Table for simplicity.

			Articles	
	Found	Duplicates	Excluded	Included
PubMed search (in All fields)				
Filter: Clinical Study, Clinical Trial, Meta-Analysis,				
Randomized Controlled Trial, Systematic Review, from				
2014 - 2024				
Search terms	-			
diet and gestational diabetes *	-			
diet and risk of gestational diabetes +	_			
nutrition in gestational diabetes ‡				
treatment for GDM §	_			
PubMed search				
Filter: Systematic Review, from 2014 - 2024	_		Not diet centric	
Search terms	_		topic: 666	
Mediterranean dietary patterns and gestational diabetes	_			
DASH diet and gestational diabetes	2,746	1,388		192
dietary patterns and gestational diabetes	,		Topic out of the	
risk of progression to type 2 diabetes and gestational			review interest:	
diabetes	-		530	
carbohydrate intake and gestational diabetes	-			
diet acidity and gestational diabetes	-			
soft drink consumption and gestational diabetes	-			
fried foods and gestational diabetes	_			
polyphenols and flavonoids and gestational diabetes	_			
plant diets and gestational diabetes	_			
vegetarian diet and gestational diabetes	_			
vitamin D and gestational diabetes				
Cochrane Reviews search (in Title, Abstract, Keywords)				
Filter: Cochrane Reviews, from 2014 – 2024				
diet and gestational diabetes	_	-		
diet and risk of gestational diabetes	- 54			
nutrition in gestational diabetes	54			
treatment for GDM				

* **Resulting query:** (("diet"[MeSH Terms] OR "diet"[All Fields]) AND ("diabetes, gestational"[MeSH Terms] OR ("diabetes"[All Fields] AND "gestational"[All Fields]) OR "gestational diabetes"[All Fields] OR ("gestational"[All Fields] AND "diabetes"[All

Fields]))) AND ((clinicalstudy[Filter] OR clinicaltrial[Filter] OR meta-analysis[Filter] OR randomizedcontrolledtrial[Filter] OR systematicreview[Filter]) AND (2014:2024[pdat]))

- Resulting query: (("diet"[MeSH Terms] OR "diet"[All Fields]) AND ("risk"[MeSH Terms] OR "risk"[All Fields] OR "risk of"[All Fields]) AND ("diabetes, gestational"[MeSH Terms] OR ("diabetes"[All Fields] AND "gestational"[All Fields]) OR "gestational diabetes"[All Fields] OR ("gestational"[All Fields] AND "diabetes"[All Fields]))) AND ((clinicalstudy[Filter] OR clinicaltrial[Filter] OR meta-analysis[Filter] OR randomizedcontrolledtrial[Filter] OR systematicreview[Filter]) AND (2014:2024[pdat]))
- Resulting query: (("nutrition s"[All Fields] OR "nutritional status"[MeSH Terms] OR ("nutritional"[All Fields] AND "status"[All Fields]) OR "nutritional status"[All Fields] OR "nutritional sciences"[MeSH Terms] OR ("nutritional"[All Fields] AND "sciences"[All Fields]) OR "nutritional sciences"[All Fields] OR "nutritional"[All Fields]]
- § Resulting query: (("therapeutics"[MeSH Terms] OR "therapeutics"[All Fields] OR "treatments"[All Fields] OR "therapy"[MeSH Subheading] OR "therapy"[All Fields] OR "treatment"[All Fields] OR "treatment s"[All Fields]) AND "GDM"[All Fields]) AND ((clinicalstudy[Filter] OR clinicaltrial[Filter] OR meta-analysis[Filter] OR randomizedcontrolledtrial[Filter] OR systematicreview[Filter]) AND (2014:2024[pdat]))

Author, year, Design * ref.		Study group		Outcomes Intervention effect
		Interv.	Control	-
Paula <i>et al.,</i> 2022 ⁽⁴⁵⁾	SR & MA (61 studies)	69	98,803	The consumption of ultra-processed foods should be limited, especially during pregnancy
Mijatovic- Vukas <i>et al.,</i> 2018 ⁽⁴⁷⁾	SR & MA (40 studies)	30	0,871	Diets like MedDiet/DASH, as well as higher dietary and/or physical activity before or in early pregnancy, were associated with a lower risk or likelihood of GDM
Quan <i>et al.,</i> 2021 ⁽⁴⁴⁾	SR & MA of PCS	1	2,331	Subgroup analysis demonstrated that the consumption of red meat and processed red meat increased the risk of GDM more than either poultry or fish intake
Hassani Zadeh <i>et al.,</i> 2020 ⁽⁴⁶⁾	SR & MA of CS (13 studies)		om 168 24,111	Western dietary pattern could increase the risk of GDM
Tabaeifard <i>et al.,</i> 2024 ⁽³⁹⁾	SR of CS (8 studies) & MA of PCS (5 studies)		4,160 ,450 GDM	Consumption of animal protein and total protein before pregnancy is associated with an increased risk of GDM Plant protein intake is linked to a decreased risk of GDM, however, the results are not significant Further cohort studies are required to validate these findings
Hajhashemy <i>et al.,</i> 2024 ⁽⁴⁷⁾	SR & MA (13 studies)	31,005 incl. 3,451 GDM		A significant positive association between total protein intake and GDM was found The associations of animal and plant protein intake with GDM were dose-dependent
Talebi <i>et al.,</i> 2024 ⁽⁴¹⁾	SR & MA (54 studies)	552,686		Both before to and during pregnancy, chronic and excessive intake of ultra-processed foods is associated with an increased risk of GDM and preeclampsia
Gao and Cui, 2022 ⁽⁴²⁾	MA of OS	3,237		Increased dietary cholesterol intake is associated with increased GDM risk
O'Reilly <i>et al.,</i> 2020 ⁽⁴³⁾	SR (38 studies)	1	2,509	The measuring tools were very heterogeneous, it is difficult to draw unambiguous conclusions
Schoenaker et al., 2016 ⁽³⁵⁾	SR of OS (34 studies)	3	3,362	As part of a generally balanced diet, you should limit the intake of foods containing saturated fats and cholesterol, such as processed meats and eggs
Schiattarella et al., 2021 ⁽⁵³⁾	SR (13 studies)		om 27 13,100	Healthy plant-based diet might favourably impact on the onset of GDM
Raghavan <i>et al.,</i> 2019 ⁽⁵⁴⁾	SR (378 studies)		N/A	8 of the 11 included studies found statistically significant associations between dietary patterns and GDM risk among healthy Caucasian women
Talebi <i>et al.,</i> 2024 ⁽³⁸⁾	SR of PCS (17 studies)	49,120		Consuming more animal protein-rich foods can increase the risk of GDM The results need to be validated by well-designed prospective studies
Marí-Sanchis <i>et</i> al., 2018 ⁽³⁷⁾	OS	3,298		Higher prepregnancy consumption of total meat, especially red and processed meat, and heme iron intake, are significantly associated with an increased GDM risk
Li <i>et al.,</i> 2021 ⁽⁵⁵⁾	OS	2,987		Appropriate quantity of fruit and vegetable intakes throughout pregnancy may have a beneficial effect on preventing the development of GDM
Chen <i>et al.,</i> 2021 ⁽⁵¹⁾	OS		846	Greater prepregnancy adherence to a healthful plant-based diet was associated with lower risk of GDM
Nicolì <i>et al.,</i> 2021 ⁽⁵⁰⁾	OS		376	Non-nutritive-sweetened soft drink consumption is common among pregnant women and is associated with an increased risk of GDM

Table S2. Evidence for dietary intervention to prevent the development of GDM.

Author, year, Design * ref.		Study group	Outcomes Intervention effect		
		Interv. Control	_		
Gao <i>et al.,</i> 2021 ⁽⁵²⁾	FFQ	2,231	Higher dietary intake of total polyphenols and flavonoids and the intake from fruits was associated with lower GDM risk		
Donazar- Ezcurra <i>et al.,</i> 2018 ⁽⁴⁹⁾	FFQ	172	Family history of diabetes, smoking, total energy intake, physical activity, parity, fast-food consumption, adherence to Mediterranean dietary pattern, alcohol intake, multiple pregnancy, cardiovascular disease/hypertension at baseline, fibre intake, following special diet and snacking, sugar- sweetened soft drink consumption was significantly associated with an increased risk of incident GDM		
Osorio-Yáñez <i>et</i> al., 2017 ⁽⁴⁸⁾	FFQ	169	Regular intake of fried fish and fried chicken are associated with elevated GDM risk		
Yuste Gómez <i>et al.,</i> 2022 ⁽³⁶⁾	QNN	133	The results obtained showed that women who developed GDM had erroneous knowledge regarding nutrition		

 SR – systematic review, MA – meta-analysis, RCT – randomized controlled trial, PCS – prospective cohort study, CS – cohort study, OS – observational study, FFQ – food frequency questionnaire, QNN – questionnaire on nutritional knowledge

Author, year, ref.			/ group	Outcomes Intervention effect
		Interv.	Control	-
Irwinda <i>et al.,</i>	SR & MA	From 52		Vitamin D supplementation > 2000 IU/day might be important
2022 (59)	(27 RCTs)	To 965		to reduce the risk of GDM
				Myo-inositol supplementation significantly decreased
	CD 0 144			the plasma glucose levels. Decreased the need
Wei <i>et al.</i> ,	SR & MA	1,3	321	of insulin treatment, and reduced the
2022 (63)	(7 RCTs)			incidence of preterm delivery
				and neonatal hypoglycaemia
\/iteeliene				Inositol administration during pregnancy may improve
Vitagliano	SR & MA	9	65	the glycaemic homeostasis and may reduce
et al., 2019 ⁽⁶²⁾	of RCTs			GDM rate and preterm delivery rate
Maculli at al		Гие		Probiotics during pregnancy do not reduce the incidence
Masulli <i>et al.</i> 2020 ⁽⁶⁹⁾	SR & MA	-	m 56	of GDM, with a very little (statistically but not clinically significant)
2020 (00)	(17 RCTs)	10	454	reduction of fasting plasma glucose
Chu et al.,	SR & MA	1	400	Excessive probiotics supplementation might increase
2022 (71)	(5 studies)	1,4	400	the risk of preeclampsia
				Diet and exercise interventions in women at risk of GDM
Quotah <i>et al.,</i>	SR & MA	525		may be an effective strategy for prevention
2024 (64)	(2 RCTs at	5	25	Further studies to target high-risk women for intervention before
	prepregnancy)			and during pregnancy are warranted
Davidson	MA	1 6 4 7		The effect of probiotics on the risk of gestational diabetes
et al., 2021 ⁽⁷²⁾	(7 studies)	1,647		has not been clearly demonstrated (studies of poor quality)
Zhou <i>et al.,</i>	MA	1,304		Low vitamin C exposure during pregnancy
2023 (66)	(15 studies)	1,:	304	may increase the risk of GDM
	N4A			Probiotics significantly reduced the risk of GDM in women with BMI
Li <i>et al.,</i> 2024 ⁽⁶⁸⁾	MA (14 RCTs)	25	,527	< 26 kg/m ² and those younger than 30 years, but not in women with
	(14 KCTS)			BMI \ge 26 kg/m ² and those aged \ge 30 years
Li and Shi	МА			Inositol supplementation during pregnancy has the potential
Li and Shi, 2023 ⁽⁶⁵⁾	(7 RCTs)	1,3	319	to prevent GDM, improve glycaemic control,
2023	(7 KCTS)			and reduce preterm birth rates
Zhang et al.,	SR			Blood vitamin D level for women with GDM were lower than in the
2018 ⁽⁵⁷⁾	(25 RCTs,	2,445	in RCTs	control women. Blood vitamin D levels correlate with fasting plasma
2018	87 OSs)	55,859	9 in OSs	glucose levels (HOMA-IR)
Palacios et al.,	SR	7 (033	Supplementing pregnant women with vitamin D alone probably
2019 (56)	(30 studies)	7,033		reduces the risk of pre-eclampsia,
Suárez-Varela <i>et</i>	SR	From 25		Appropriate levels of vitamin D during pregnancy are associated
al., 2022 ⁽⁶⁰⁾	(28 studies)	To 4,285		with less mobility during pregnancy
Griffith <i>et al.,</i>	SR	446		Vitamin D supplementation versus placebo or control in pregnancy
2020 (61)	(4 studies)	4	÷+0	possibly reduced the risk of GDM
Shahriari <i>et al.,</i>	RCT	271 271		Probiotics supplementation of pregnant women not reduce
2021 (70)				the risk of GDM
Callaway et al.,	RCT	4	11	The probiotics did not prevent GDM in overweight
2019 (67)		-	-	and obese pregnant women
Bao <i>et al.</i> ,	OS	21	,356	Prepregnancy supplemental vitamin D intake was significantly and
2018 (58)		,	,	inversely associated with risk of GDM

Table S3. Effects of supplements on preventing the development of GDM.

* SR – systematic review, MA – meta-analysis, RCT – randomized controlled trial, OS – observational study

Author, year, ref.	Design *	Study group		Outcomes Intervention Effect
		Interv.	Control	
Zhao <i>et al.,</i> 2022 ⁽⁷³⁾	OPS	1,3	327	A significant positive association between dietary acid load during early pregnancy and the risk of GDM was found
Saraf-Bank <i>et al.,</i> 2018 ⁽⁷⁵⁾	CCS	200	263	Women with higher scores of dietary acid load were more likely to have GDM

Table S4. Evidence regarding the impact of dietary acidityon the increased risk of developing GDM.

* OPS – observational prospective study, CCS – case–controlled observational study

Table S5. Evidence of the effectiveness of the Mediterranean Diet (MedDiet), Dietary Approachesto Stop Hypertension (DASH) and Alternative Healthy Eating Index (AHEI)diets in reducing the risk of developing GDM.

Author, year, ref.	Design *	Design * Study group		Outcomes Intervention effect
		Interv.	Control	-
Gao <i>et al.,</i> 2023 ⁽⁸⁶⁾	SR & MA (19 studies)	108	8,084	Poorer diet quality increased the risk of GDM
Hassani Zadeh <i>et al.,</i> 2020 ⁽⁴⁶⁾	SR & MA (13 CS)		m 168 24,111	Mediterranean, prudent, and vegetable dietary patterns could decrease the risk of GDM
Jafari Nasab <i>et al.,</i> 2024 ⁽⁸⁵⁾	SR & MA (10 RCTs)	N/A		Adhering to diets resembling MedDiet, before or in early pregnancy, lowers risks or odds of GDM
Zhang <i>et al.,</i> 2022 ⁽⁷⁸⁾	MA (4 RCTs)	2,277		Mediterranean diet was associated with reduced incidence of GDM
Zaragoza-Martí <i>et al.,</i> 2022 ⁽⁸¹⁾	SR (14 studies)		om 45 L,5245	The MedDiet is optimal to ensure an adequate supply of nutrients during pregnancy
Assaf-Balu <i>et al.,</i> 2017 ⁽⁷⁷⁾	RCT	500	500	An early nutritional intervention with a supplemented MedDiet reduces the incidence of GDM
Assaf-Balut <i>et al.,</i> 2018 ⁽⁸³⁾	RCT	٤	374	High adherence to defined dietary goals in the late first trimester of the MedDiet in pregnancy is associated with a reduced risk of GDM
Melero <i>et al.,</i> 2020 ⁽⁸⁰⁾	RCT	600		MedDiet-based intervention reduces the rate of GDM and several adverse maternal-foetal outcomes
Al Wattar <i>et al.,</i> 2019 ⁽⁷⁶⁾	MRT	Ľ	593	A significant reduction in the likelihood of GDM was found
de la Torre <i>et al.,</i> 2019 ⁽⁸⁴⁾	СТ	ç	932	Early MedDiet nutritional intervention reduces GDM

* SR – systematic review, MA – meta-analysis, RCT – randomized controlled trial, MCT – multicentre randomized trial, CT – clinical trial

Author, year, ref.			y group	Outcomes Intervention effect		
		Interv.	Control	-		
Zhang <i>et al.</i> 2024 ⁽⁸⁸⁾	SR & MA (13 studies)	39,720		No significant association between GI and GDM was found A relationship between glycaemic load and the risk of GDM was indicated		
Tieu <i>et al.,</i> 2017 ⁽⁸⁹⁾	RA (3 studies)	-	777	Considering primary outcomes, no clear differences were shown in the risks of three trials between the low-GI and moderate- to high-GI dietary advice groups		
Markovic <i>et al.,</i> 2016 ⁽⁸⁷⁾	RCT	139		A low-GI diet and a healthy diet produce similar pregnancy outcomes		
Bruno <i>et al.,</i> 2017 ⁽⁹⁰⁾	RCT	69	62	Following a personalized, hypocaloric, low-glycaemic, low-saturated fat diet, started early in pregnancy, prevents the onset of GDM in women with a BMI of ≥ 25 kg/m ²		

Table S6. Evidence of the effectiveness of a low glycaemic index (low-GI) dietin reducing the risk of developing GDM.

* SR – systematic review, MA – meta-analysis, RCT – randomized controlled trial, OS – observational study

Author, year, ref.	Design *	Study group		Outcomes Intervention effect
		Interv.	Control	-
Hernandez <i>et al.,</i> 2014 ⁽⁷⁴⁾	RCT		16	Isocaloric and complex carbohydrate liberalization and fat reduction diets continue to achieve glycemia below current treatment goals and lower postprandial FFAs
Hernandez et al., 2016 ⁽⁹¹⁾	RCT	6	6	The CHOICE diet can improve maternal insulin resistance and infant obesity
Zhou <i>et al.,</i> 2018 ⁽⁹³⁾	PCS	2	,755	A diet characterized by a high protein intake and low CHO intake during pregnancy was associated with a higher risk of GDM
Dong <i>et al.,</i> 2021 ⁽⁹⁴⁾	PCS	1,455		A low-CHO dietary pattern characterized by high animal fat and protein during the first trimester is associated with an increased risk of GDM in Chinese women
Bao <i>et al.,</i> 2014 ⁽⁹²⁾	OS	:	867	A prepregnancy low-CHO dietary pattern with high protein and fat from animal-food sources is positively associated with GDM risk

Table S7. Evidence of the effectiveness of a low-carbohydrate (low-CHO) dietin reducing the risk of developing GDM.

* RCT – randomized controlled trial, PCS – prospective cohort study, OS – observational study

Author, year, ref.	Design *	Study	group	Outcomes Intervention Effect		
		Interv. Control				
Cui <i>et al.,</i> 2023 ⁽⁹⁷⁾	SR & MA	831,798		With regard to maternal outcomes, prepregnancy intake of fried food, fast food, red and processed meat, heme iron and a low-CHO dietary pattern was positively associated with the risk of GDM. A high dietary fibre intake and folic acid supplementation were negatively associated with GDM risk		
Jorquera <i>et al.,</i> 2022 ⁽¹⁰⁹⁾	SR & MA	252	,534	Analyses showed no association of GDM with polyphenol-rich food consumption during pregnancy		
Najafi <i>et al.,</i> 2019 ⁽⁹⁵⁾	SR & MA (33 OSs)	42,	211	GDM risk was increased by 4% per unit increase in BMI		
He <i>et al.,</i> 2024 ⁽¹¹²⁾	SR & MA (16 RCTs)	7,3	351	mHealth-based lifestyle interventions were effective in preventing GDM among overweight and obese pregnant women		
Wu <i>et al.,</i> 2022 ⁽⁹⁹⁾	SR & NMA (23 studies)	8,8	877	There is a tendency that diet and physical activity are preventative factors of GDM		
Giannakou <i>et al.,</i> 2019 ⁽¹¹¹⁾	RMA (31 OSs)	112,880	MI 282,458 yroidism 278,609	The compilation of results from synthesis of observational studies suggests that increased BMI and hypothyroidism show the strongest consistent evidence for an association with GDM		
Guo <i>et al.,</i> 2019 ⁽¹⁰⁸⁾	MA (47 RCTs)	15,745		The best strategy to prevent GDM is to target the high-risk population predicted by risk evaluation models and to control the GWG of women through intensified diet and exercise modifications early in their pregnancy		
Song <i>et al.,</i> 2016 ⁽⁹⁸⁾	MA of RCTs	11,487		Lifestyle modifications during pregnancy, especially before 15 weel of pregnancy, can reduce the risk of GDM		
Pham <i>et al.,</i> 2019 ⁽¹¹⁰⁾	MA (12 studies)	5,5	786	The results suggest that dietary patterns rich in polyphenols may reduce the risk of GDM despite inconclusive evidence for polyphenol-rich food groups		
Lamminpää <i>et al.,</i> 2018 ⁽¹⁰⁶⁾	SR (12 RCTs, 3 CTs)		m 50 1,280	There is considerable variability in the strategies used to guide dietary interventions in studies aimed at reducing GWG and preventing gestational diabetes in overweight and obese women Ten studies reported significant differences in the measured outcomes regarding GWG or the prevention of GDM between the intervention and the control groups		
Shepherd <i>et al.,</i> 2017 ⁽¹⁰⁴⁾	SR (23 RCTs)	8,918		Moderate-quality evidence suggests reduced risks of GDM and caesarean section with combined diet and exercise interventions during pregnancy as well as reductions in gestational weight gain, compared with standard care		
Bain <i>et al.,</i> 2015 ⁽¹⁰¹⁾	SR (13 RCTs)	4,983		When comparing women receiving a diet and exercise intervention with those receiving no intervention, there was no clear difference in the risk of developing GDM		
Poston <i>et al.,</i> 2015 ⁽¹⁰⁷⁾	RCT	629	651	A behavioral intervention addressing diet and physical activity in women with obesity during pregnancy is not adequate to prevent GDM or to reduce the incidence of LGA infants		
Simmons <i>et al.,</i> 2017 ⁽¹⁰²⁾	RCT	4	36	The combined healthy eating and physical activity intervention was able to limit GWG but did not reduce fasting glycemia		

Table S8. Evidence of the effectiveness of prenatal lifestyle interventions,diet and exercise on the risk of developing GDM.

Author, year, ref.	Design *	Stud	y group	Outcomes Intervention Effect	
		Interv.	Control		
				Lifestyle changes alone are unlikely to prevent GDM among women with a BMI of ≥29 kg/m ²	
Sahrakorpi <i>et al.,</i> 2019 ⁽¹⁰⁰⁾	RCT	192	186	Combined diet and physical activity intervention did not provide health related quality of life benefits in the study	
Koivusalo <i>et al.,</i> 2016 ⁽¹⁰⁵⁾	RCT	155	138	A moderate individualized lifestyle intervention reduced the incidence of GDM by 39% in high-risk pregnant women	
Lin <i>et al.,</i> 2020 ⁽¹⁰³⁾	RCT	139	142	Lifestyle intervention was associated with lower risks of GDM and adverse maternal outcomes	
Zhang <i>et al.</i> 2022 ⁽⁹⁶⁾	OS	6	,751	Weight gain during pregnancy had a fetal sex-specific mediating effect between prepregnancy BMI and GDM	

* SR – systematic review, MA – meta-analysis, NMA – network meta-analysis, RMA – review of meta-analyses, RCT – randomized controlled trial, OS – observational study

Author, year, Design * Study group Outcomes **Intervention Effect** ref. Control Interv. Adequate antenatal diet and lifestyle interventions were associated with reduced GWG and a lower risk of adverse outcomes Teede et al., SR & MA in the mother and newborn 34,546 2022 (125) (117 RTCs) The use of dietary treatment had a greater effect on reducing GWG than physical activity alone Results confirm that diet and physical activity based interventions i-WIP in pregnancy reduce GWG Collaborative SR & MA 36 12,526 Group, RCTs) No strong evidence was found that interventions had an effect 2017 (120) on individual offspring outcomes SR & MA Excessive weight Diet or exercise, or both, reduced the risk of excessive Muktabhant (24 studies) gain: 7,096 GWG by an average of 20% overall et al., 2015 (118) SR & MA Low weight gain: This intervention resulted in pregnant women being more likely to experience low GWG than women in the control (11 studies) 4.422 Combined lifestyle interventions in pregnant women with GDM significantly reduced foetal growth and neonatal fat mass, variable decrease in GWG Mitanchez et al., SR & MA 3,168 2020 (121) (4 studies) Individually, specific diets had controversial or no effect on foetal growth, except the DASH diet, which reduced the risk of macrosomia and birth weight Only a small reduction in infant birth weight and the risk of Bennett et al., SR & MA 2,401 macrosomia and LGA can be achieved by interventions 2019 (130) 7 RCTs to reduce excessive GWG SR & MA Pregnant women A larger decrease in fasting and postprandial glucose was noted Yamamoto et al.. (18 RCTs) outcomes: 1,151 2018 (133) SR & MA Neonatal Dietary interventions were associated with lower infant birth weight and less macrosomia (16 RCTs) outcomes: 841 The reduction in GWG due to lifestyle interventions during Ruifrok et al., MA nov had no statistical offact on the incidence 1 000

Table S9. Evidence of the effectiveness of dietary intervention for preventing excessive weight gain during pregnancy in women with GDM.

(23 RCTs)	4,990		pregnancy had no statistical effect on the incidence of pregnancy complications
MA (33 RCTs)	4,429		Even moderate exceedances of GWG outside of the established IOM recommendations are associated with an increased risk of negative outcomes in mother and offspring
MA (6 RCTs)	674	626	The energy-restricted diet has not been shown to be superior to the regular/standard GDM diet. It was found only that the women in the intervention group achieved slightly better glycaemic control
MA (7 studies)	574	565	Despite reduced excessive weight gain in pregnancy, birth weights, low and high for gestational age, were not significantly different between the intervention group and control group
QMS (42 studies)	1,339		Effective interventions to encourage healthy weight gain in pregnancy must take into account the social environment
SR (13 RCTs)	3,980		The review points to high methodological variability in dietary interventions aimed at controlling weight gain in pregnancy and improving clinical outcomes in overweight and obese pregnant women
SR (8 RCTs)	592		There were no significant differences in total weight gain during pregnancy, caesarean section, birth weight of newborns, macrosomia between diet and exercise groups, and diet groups
	MA (33 RCTs) MA (6 RCTs) MA (7 studies) QMS (42 studies) SR (13 RCTs) SR	(23 RCTs)MA (33 RCTs)4,42MA (6 RCTs)674MA (7 studies)574QMS (42 studies)1,33SR (13 RCTs)3,98SR SR59	MA (33 RCTs) 4,429 MA (33 RCTs) 674 626 MA (6 RCTs) 674 565 MA (7 studies) 574 565 QMS (42 studies) 1,339 SR (13 RCTs) 3,980

Author, year, Design * ref.		Study group		Outcomes Intervention Effect	
		Interv.	Control	-	
				The interventions improved controls of postprandial blood glucose in women diagnosed with GDM, but these interventions did not change outcomes in either the mother or the newborn	
Li <i>et al.,</i> 2021 ⁽¹³⁴⁾	RCT	410	410	An individualized nutritional intervention can effectively reduce the incidence of complications during pregnancy and childbirth and improve maternal and infant outcomes	
Dodd <i>et al.,</i> 2019 ⁽¹²³⁾	RCT	316	313	Improvements in maternal diet quality did not improve intervention outcomes with respect to total GWG or other pregnancy and delivery outcomes	
Egan <i>et al.,</i> 2014 ⁽¹¹⁷⁾	OS		802	Excessive GWG confers a risk for LGA birth weight, macrosomia and gestational hypertension	
Aiken <i>et al.,</i> 2019 ⁽¹¹⁹⁾	OS		546	Higher total GWG was associated with caesarean section and LGA, and there were no significant associations between early GWG (0-28 weeks) and pregnancy outcomes	
Conway <i>et al.,</i> 2022 ⁽¹²⁷⁾	OS	258	313	Consumption of a low-calorie sweetener resulted in slightly greater weight gain (no statistical significance)	

* SR – systematic review, MA – meta-analysis, QMS – qualitative meta-synthesis, RCT – randomized controlled trial, OS – observational study

Author, year, ref.	Design *	Study group	Outcomes Intervention Effect		
		Interv. Control	_		
Young <i>et al.,</i> 2019 ⁽¹³⁶⁾	SR & MA (95 studies)	N/A	Low maternal Hb (<110 g/L) was associated with poor birth outcomes (low birth weight, preterm birth, SGA, stillbirth, and perinatal and neonatal mortality, and adverse maternal outcomes		
Martín-Calvo <i>et al.,</i> 2022 ⁽¹³⁷⁾	SR & MA (28 studies)	N/A	Compared with children or adolescents born with a size appropriate for gestational age, SGAs had a 2.33-fold higher risk of T2DM LBW and SGA were associated with higher HOMA-IR values		
Bennett <i>et al.,</i> 2019 ⁽¹³⁰⁾	SR & MA (7 RCTs)	2,401	Only a small reduction in infant birth weight and the risk of macrosomia and LGA, can be achieved by interventions to reduce excessive GWG		
Tan <i>et al.,</i> 2019 ⁽¹³⁵⁾	MA (19 studies)	770 1,675	The overall estimated relation between vegetarian diet in pregnancy and LBW was marginally significant		

Table S10. Evidence of the effect of dietary treatment on low birth weight (LBW) and small forgestational age (SGA) in newborns of women with GDM.

* SR – systematic review, MA – meta-analysis, RCT – randomized controlled trial

Author, year, ref.	Design *	Study group	Outcomes Intervention Effect		
		Interv. Control			
Lin <i>et al.,</i> 2023 ⁽¹³⁸⁾	SR & MA (27 RCTs)	1,923	Nutritional interventions during pregnancy reduce birth weight and the incidence of macrosomia, improve some labour outcomes and glycaemic parameters		
Viana <i>et al.,</i> 2014 ⁽¹³⁹⁾	SR & MA (9 RCTs)	884	Total restriction and a low-carbohydrate diet do not affect the results in either the mother or the newborn A low-GI diet was associated with less frequent insulin use		
Wong <i>et al.,</i> 2024 ⁽¹⁴⁰⁾	SR & MA (13 RCTs)	877	Low-glycaemic load diet may reduce macrosomia risk		
Han <i>et al.,</i> 2017 ⁽¹⁴¹⁾	SR (19 RCTs)	1,398	The impact of different types of dietary advice for women with GDM on the health outcomes of women and their children is unclear		

Table S11. Evidence of the impact of total carbohydrate intake on the health outcomes of women with GDM and their children.

* SR – systematic review, MA – meta-analysis, RCT – randomized controlled trial

Author, year, ref.	Design *	Stud	y group	Outcomes Intervention Effect		
		Interv.	Control	-		
Gallo <i>et al.,</i>	SR & MA (20	2,756		Vitamin D supplementation significantly reduces the assessment of the homeostatic model of maternal insulin resistance and increases the birth weight of infants		
2020 (147)	RCTs)			There was no effect of maternal supplementation on other maternal outcomes (preeclampsia, caesarean section) and infant (gestational age, length of delivery)		
Pérez-López <i>et al.,</i> 2015 ⁽¹⁴⁵⁾	SR & MA (13 RCTs)	2	,299	Vitamin D supplementation had an effect on higher birth weight and birth length, but no effect on the incidence of preeclampsia, SGA, low birth weight,		
Wu <i>et al.,</i> 2023 ⁽¹⁵²⁾	SR & MA (20 RCTs)	837	845	preterm birth, and caesarean section Vitamin D supplementation in GDM increased HDL-C levels and decreased serum LDL-C, TG and total cholesterol levels Vitamin D supplementation reduced the risk of preterm birth,		
Wang <i>et al.,</i> 2021 ⁽¹⁵³⁾	SR & MA (19 RCTs)	1,550		hyperbilirubinemia, and neonatal hospitalization Vitamin D supplementation in women with GDM reduced fasting plasma glucose, insulin concentration, and HOMA-IR in women with GDM, adverse maternal outcomes, including caesarean section, maternal hospitalization, postpartum haemorrhage, and a reduction in unfavourable maternal-neonatal outcomes was shown		
Wang <i>et al.,</i> 2020 ⁽¹⁶⁹⁾	SR & MA (7 RCTs)	540	553	Probiotic supplements did not considerably affect newborn birth weight in pregnant women with GDM		
Yefet <i>et al.,</i> 2023 ⁽¹⁶⁷⁾	SR & MA (14 RCTs)	430 424		Probiotic supplements in women with GDM improve glycaemic control and lipid profile and reduce neonatal birth weight		
Pan <i>et al.,</i> 2019 ⁽¹⁶⁰⁾	SR & MA (6 RCTs)	:	830	Compared to the control intervention in GDM, probiotic supplementation was found to significantly reduce fasting insulin resistance (HOMA-IR) and serum insulin, but without affecting fasting plasma glucose, gestational age, and weight		
Rodrigues <i>et al.,</i> 2019 ⁽¹⁵⁴⁾	SR & MA (6 studies)		456	No reduction in the incidence of caesarean delivery after Vitamin D supplementation in pregnant women with GDM was found Vitamin D supplementation in women with GDM may reduce neonatal complications such as hyperbilirubinemia, polyhydramnios, and the need for maternal or infant hospitalization		
Taylor <i>et al.,</i> 2017 ⁽¹⁶¹⁾	SR & MA (4 RCTs)	288		Probiotic supplementation was not effective in decreasing fasting blood glucose or LDL-C in women with GDM A significant reduction in HOMA-IR was observed No significant differences in GWG, delivery method or neonatal outcomes between experimental and control groups, and no adverse effects of the probiotics were reported		
Akbari <i>et al.,</i> 2017 ⁽¹⁵¹⁾	SR & MA (6 RCTs)	187 184		There was no beneficial effect of vitamin D supplementation on FPG, insulin, HbA1c, total cholesterol, HDL and triglycerides Supplementation can lead to an improvement in HOMA-IR, QUICKI and LDL cholesterol levels, increase HOMA-β		
Jin <i>et al.,</i> 2020 ⁽¹⁵⁰⁾	SR & NMA (2 RCTs)	75	76	Vitamin D supplementation significantly reduced fasting plasma glucose and regulated HOMA-IR		
Morales-Suárez- Varela <i>et al.,</i> 2022 ⁽¹⁴²⁾	SR & MA (23 MAs of OSs)	I	N/A	Vitamin D supplementation has a protective effect on pregnant women, significantly affecting the incidence of preeclampsia		

Table S12. Evidence of the effects of vitamins and probiotics used as dietary supplements on the health outcomes of women with GDM and their children.

Author, year, ref.	Design *	Stud	y group	Outcomes Intervention Effect				
		Interv.	Control					
				and reducing the risk of premature birth, premature babies and infections in both the mother and infants				
Yang <i>et al.,</i> 2024 ⁽¹⁵⁵⁾	SR & MA (66 studies)	17,276		Benefits of vitamin D supplementation in pregnancy remain uncertain because current evidence has high heterogeneity and high risk of bias				
Zhao <i>et al.,</i>	MA (26 studies)	Preed 4,518	clampsia 55,203	 An inverse association between 25(OH)D levels and the risk of 				
2022 ⁽¹⁴⁴⁾	MA (11 studies)		ational rtension 50,685	preeclampsia and gestational hypertension was found				
Palacios <i>et al.,</i> 2016 ⁽¹⁴³⁾	MA (15 studies)	1,162	1,147	Vitamin D supplementation in pregnant women leads to significant higher levels of 25(OH)D compared to placebo/controls Vitamin D supplementation may be related to lower risk of preeclampsia				
Zhou <i>et al.,</i> 2021 ⁽¹⁶⁶⁾	MA (12 RCTs)s	894		Probiotic/symbiotic-based metabolism, anti-inf 894 in diet-controlled G outcomes on		Probiotic/symbiotic-based interventions improve glucose and lipic metabolism, anti-inflammatory and antioxidant ability in diet-controlled GDM patients, and exert beneficial outcomes on foetal hyperbilirubinemia, foetal macrosomia, and newborn weight		
Okesene-Gafa <i>et al.,</i> 2020 ⁽¹⁵⁹⁾	MA (9 RCTs)	695		There is no certain evidence on whether probiotics have any effec compared to placebo on hypertension in pregnancy, on the induction of labour No trials reported primary outcomes of: mode of birth as vaginal /assisted and subsequent development of T2DM Probiotics may be associated with a slight reduction in TGs and total cholesterol				
				There was evidence of reduction in HOMA-IR and HOMA-β, and increase in QUICKI				
Jiang <i>et al.,</i> 2022 ⁽¹⁵⁸⁾	MA (5 RCTs)	N/A		In women with GDM or prediabetes supplementation with omega- fatty acids in combination with vitamin D or E may improve glycaemic control, and lower TG level, but has no effect on total cholesterol, preterm birth, or macrosomia > 4000 g				
Zhang <i>et al.,</i> 2018 ⁽⁵⁷⁾	SR (25 RCTs, 87 OSs)	OSs: 55,859 RCTs: 2445		Blood vitamin D level for women with GDM were lower than in the control women Blood vitamin D levels correlate with fasting plasma glucose levels (HOMA-IR)				
Palacios <i>et al.,</i> 2019 ⁽⁵⁶⁾	SR (30 studies)	7	,033	Supplementing pregnant women with vitamin D alone probably reduces the risk of preeclampsia				
Palacios <i>et al.,</i> 2024 ⁽¹⁴⁸⁾	SR (10 studies)	N/A		Overall, it remains uncertain whether vitamin D supplementation alone (8 studies, 2,313 women) effectively prevents pregnancy- related hypertension, GDM, preterm birth, or kidney disease				
Bialy <i>et al.,</i> 2020 ⁽¹⁴⁶⁾	SR (13 SRs)	From 16 To 12,861		RCTs have not shown significant benefits of vitamin D in relation to preterm birth, preeclampsia, stillbirth, low birth weight, caesarean section				
Asgharian <i>et al.</i> 2020 ⁽¹⁶⁴⁾	RCT	64	64	A significant difference was found for LGA The probiotics supplementation has some beneficial effects on glucose metabolism (fasting plasma glucose, and 2-h OGTT) There were not statistically significant differences between the groups regarding the preterm delivery and other maternal and infant outcomes				

Author, year, ref.	Design *	Stud	y group	Outcomes Intervention Effect
		Interv.	Control	-
Lindsay <i>et al.,</i> 2015 ⁽¹⁶⁵⁾	RCT	48	52	There were no differences between the probiotic and placebo groups in postintervention fasting plasma glucose, requirement for pharmacological therapy or birth weigh
Jamilian <i>et al.,</i> 2019 ⁽¹⁷⁰⁾	RCT	87		Vitamin D and probiotic cosupplementation significantly reduced fasting plasma glucose, serum insulin levels, HOMA-IR Vitamin D and probiotic cosupplementation resulted in a significant reduction in TGs
Maktabi <i>et al.,</i> 2018 ⁽¹⁵⁶⁾	RCT	30 30		Magnesium and vitamin E supplements in women with GDM resulted in significantly lower fasting plasma glucose levels, serum insulin levels, and HOMA-IR It also results in a significant reduction in serum TGs,
				but does not affect HDL-C levels
Taghizadeh <i>et al.,</i> 2016 ⁽¹⁵⁷⁾	RCT	30	30	Concomitant supplementation with omega-3 fatty acids and vitamin E in GDM had a beneficial effect on glucose homeostasis, serum TGs, VLDL-C and HDL-C, but did not affect total cholesterol and LDL-C levels
Kijmanawat <i>et al.,</i> 2019 ⁽¹⁶³⁾	RCT	29	29	Four weeks of probiotic supplements in women with diet-controlled GDM in the late second and early third trimester lowered fasting -plasma glucose and increased insulin sensitivity
Dolatkhah <i>et al.,</i> 2015 ⁽¹⁶²⁾	RCT	29	27	The probiotic supplement appeared to affect glucose metabolism (decreased FPG, HOMA-IR) and weight gain among pregnant women with GDM
Hajifaraji <i>et al.,</i> 2018 ⁽¹⁶⁸⁾	RCT	27	29	In women with GDM, the levels of C-reactive protein and tumour necrosis factor, which were highly sensitive, improved in the probiotic group compared to the placebo group
Asemi <i>et al.,</i> 2015 ⁽¹⁴⁹⁾	RCT	22	23	Vitamin D supplementation for a short period (6 weeks) in pregnant women with GDM resulted in a reduction in maternal polyhydration and infant hyperbilirubinemia compared to placebo

* SR – systematic review, MA – meta-analysis, NMA – network meta-analysis, RCT – randomized controlled trial, OS – observational study

Author, year, ref.	Design *	Stud	ly group	Outcomes Intervention Effect
		Interv.	Control	-
Ojo et al.,	SR & MA	41	42	A low-GI diet significantly reduced interleukin-6 levels in patients with T2DM compared to a higher GI diet
2019 (173)	(9 RCTs)	3) 12 1	72	The effect of diet on lipid profiles in patients with GDM was not consistent
Wong <i>et al.,</i> 2024 ⁽¹⁴⁰⁾	SR & MA (13 RCTs)		877	Low-carbohydrate and low-GI diets do not differ from usual care for most maternal and foetal outcomes in GDM
				Compared to control diets, low-GI diets significantly reduced fasting blood glucose, 2-hour postprandial glucose levels
Zhang <i>et al.,</i> 2018 ⁽¹⁷⁶⁾	MA (11 RCTs)	1	.,985	Lower GWG and birth weight were also observed, but without significant statistical differences
				Low-GI diets did not affect other maternal and neonatal outcomes
Xu <i>et al.,</i> 2020 ⁽¹⁷²⁾	MA (RCTs)	532		Compared to the control intervention in GDM, a low-GI diet significantly lowers 2-hour postprandial glucose levels, with no effect on fasting plasma glucose, HbA1c,
Wei <i>et al.,</i> 2016 ⁽¹⁷⁵⁾	MA (5 RCTs)		302	birth weight, macrosomia, and insulin requirements Low-GI diets reduced the risk of macrosomia in patients with GDM, and low-GI diets with added dietary fibre further reduced the risk of macrosomia
Mohd Yusof <i>et al.,</i> 2014 ⁽¹⁷⁹⁾	SR (3 studies)	104	105	After following a low-GI diet, a tendency to lower birth weight was observed
Moses <i>et al.,</i> 2014 ⁽¹⁷⁸⁾	RCT	576		Comparison of a dietary intervention promoting a low-GI diet with a diet promoting healthy eating in pregnancy did not show any significant differences in birth weight or foetal percentile
Zhang <i>et al.,</i> 2019 ⁽¹⁷⁷⁾	RCT	200 200		Individualized low-GI dietary consultations do not have a significant effect on maternal or neonatal insulin resistance compared to standard nutritional consultations with overweight or obese pregnant women
Hu <i>et al.,</i> 2014 ⁽¹⁷¹⁾	RCT	66	74	A low-GI diet significantly reduces postprandial glucose levels in women with GDM
Sanpawithayakul et al., 2023 ⁽¹⁷⁴⁾	RCT		96	The use of rice with a low or moderate GI in GDM reduces the number of patients requiring insulin therapy

Table S13. Evidence of the effects of a low glycaemic index (low-GI) diet on the health outcomes of women with GDM and their children.

* SR – systematic review, MA – meta-analysis, RCT – randomized controlled trial

Author, year, ref.	Design *	Stud	y group	Outcomes Intervention Effect
		Interv.	Control	-
Ha <i>et al.,</i> 2017 ⁽¹⁸²⁾	SR & MA (21 studies)	1,865		In the absence of advice on weight gain in pregnancy, a DASH-style diet appears to be optimal for fasting glucose
Li <i>et al.,</i> 2020 ⁽¹⁸¹⁾	MA (6 RCTs)	300 298		The adherence of pregnant women with cardiometabolic disorders to DASH eating pattern has a significant effect on decreasing fasting plasma glucose levels, ponderal index, incidence of preeclampsia, foetal macrosomia, LGA, and newborn head circumference
Amati <i>et al.</i> ,	SR		om 50	The MedDiet in pregnancy and early infancy is safe and beneficial
2019 ⁽¹⁸⁴⁾ Han <i>et al.</i> ,	(22 studies) SR (3 studies)	To 9,885 136		for a wide range of maternal and offspring outcomes No clear differences were observed for preeclampsia between patients on DASH diet compared to the control diet
2017 (141)	SR (2 studies)		86	There were fewer caesarean sections in the DASH group
Melero <i>et al.,</i> 2023 ⁽¹⁸⁵⁾	RCT	369 1,031		An intervention based on MedDiet principles and supplemented with extra virgin olive oil and nuts started early in pregnancy has metabolic benefits up to 3 years postpartum compared to a nutritional intervention started after delivery
Assaf-Balut <i>et al.,</i> 2018 ⁽⁸³⁾	RCT	874		High nutritional adherence to a MedDiet in the late first trimester of pregnancy is associated with a reduction in caesarean sections, perineal injuries, pregnancy-induced hypertension, preeclampsia, prematurity, LGA and/or SGA and urinary tract infections
Melero <i>et al.,</i> 2020 ⁽⁸⁰⁾	RCT	128	132	A MedDiet-based intervention reduces several adverse maternal- foetal outcomes in Hispanic women living in Spain
Asemi <i>et al.,</i> 2014 ⁽¹⁸⁰⁾	RCT	26 26		Infants born to mothers on the DASH diet had significantly lower body weight, head circumference, BMI, compared to children born to mothers on the control diet The proportion of subjects who had to start insulin therapy after the intervention differed significantly between the two groups
Al Wattar <i>et al.,</i> 2019 ⁽⁷⁶⁾	MRT	593	612	An individualized MedDiet in pregnancy does not reduce the overall risk of adverse complications for mother and offspring, but it may reduce weight gain in pregnancy

Table S14. Evidence for the effects of the Mediterranean Diet (MedDiet) and Dietary Approaches to Stop Hypertension (DASH) on the health outcomes of women with GDM and their children.

* SR – systematic review, MA – meta-analysis, RCT – randomized controlled trial, MRT – multicentre randomized trial

Author, year, ref.	Design *	Stud	y group	Outcomes Intervention Effect
		Interv. Control		-
Papadopoulou et al., 2025 ⁽¹⁸⁹⁾	SR & MA (8 studies)	72	2,284	Following a strict vegetarian diet during pregnancy was associated with an increased risk of SGA babies and LBW Dietary guidelines emphasizing adequate intake of critical nutrients should be developed to mitigate these risks
Tan <i>et al.,</i> 2019 ⁽¹³⁵⁾	MA (19 studies)	770	1,675	The overall estimated relation between vegetarian diet in pregnancy and LBW was marginally significant
Han <i>et al.,</i> 2017 ⁽¹⁴¹⁾	SR (1 study)	27		Comparison of the effects of a diet rich in unsaturated fats with a diet low in unsaturated fats showed no clear differences with respect to: LGA, preeclampsia, prevalence of hypertension in pregnancy, and number of caesarean sections
Gadgil <i>et al.,</i> 2019 ⁽¹⁸⁸⁾	RCT	1,220		Higher dietary quality at GDM diagnosis is associated with optimal overall glycaemic control, especially postprandial glycaemic control
Wang <i>et al.,</i> 2015 ⁽¹⁸⁶⁾	RCT	41	43	Appropriately increasing the intake of polyunsaturated fatty acids may be beneficial for women with GDM Comparison of pregnancy outcomes, birth weight of the baby, incidence of macrosomia, and weight gain in pregnancy did not differ significantly between the groups
Hernandez <i>et al.,</i> 2014 ⁽⁷⁴⁾	RCT	16		This trial randomizing isocaloric diets and using continuous glucose monitoring found that complex CHO liberalization and fat reduction still achieve glycemia below current treatment goals and lower postprandial FFAs
Hernandez et al., 2016 ⁽⁹¹⁾	RCT	6 6		This pilot intervention demonstrated that women with GDM randomized to CHOICE diet compared with the conventional low- CHO/higher-fat diet have greater adipose tissue insulin sensitivity
Barbour <i>et al.,</i> 2018 ⁽¹⁸⁷⁾	СТ		54	Women with obesity in early pregnancy (14-16 weeks) already have higher fasting and postprandial glucose and insulin, and 30-40% higher triglycerides than normal-weight women later (26-28 weeks) despite a controlled diet

Table S15. Evidence of the effects of other diets (not covered in Tables S13 and S14) on the healthoutcomes of women with GDM and their children.

* MA – meta-analysis, RCT – randomized controlled trial, CT – clinical trial

Author, year, ref.	Design *	Objectives	Study group Interv. Control	Technology	Outcomes	
Halligan <i>et al.,</i> 2021 ⁽¹⁹³⁾	SR &MA (14 RCTs in qualitative and 6 RCTs in quantitative analysis)	To analyse digital and telemedicine interventions targeting weight loss and reductions in BMI	3,764	Various systems: smartphone apps, wearable devices, Web-based programs plus standard education, SMS, telephone calls, emails, and printed materials	There was a clinically significant but statistically insignificant improvement in BMI and body weight compared to the control groups	
Xie <i>et al.,</i> 2020 ⁽²⁰³⁾	MA (32 RCTs)	To assess the effectiveness of telemedicine interventions on glycaemic control and pregnancy outcomes in GDM	5,108	Web-based systems (7), health devices (3), health apps (7), and WeChat (15)	Improvements in controlling HbA1c, fasting and 2-hour postprandial blood glucose were noted Lower incidences of caesarean section, neonatal hypoglycaemia, premature rupture of membranes macrosomia, pregnancy-induced hypertension or preeclampsia, preterm birth neonatal asphyxia were shown	
Adesina <i>et al.,</i> 2021 ⁽¹⁹⁰⁾	SR (16 studies incl. 12 RCTs)	To assess the effectiveness of digital tools in promoting healthy diet, lifestyle changes, and monitoring blood glucose levels	1,707	Digital tools focusing on dietary and/or lifestyle management of GDM	Digital tools beneficially supported the improvement of lifestyles in terms of healthy eating and health behaviours	
Eberle <i>et al.,</i> 2021 ⁽²⁰⁰⁾	SR (6 RCTs, CCT)	To investigate clinical effectiveness of specific mHealth apps on clinical health-related short and long-term outcomes in mother and child	4UX 4U5	Support of medical procedures and health care measures through mobile devices such as smartphones	Compared to control groups, there was a trend of lower fasting and 2- hour postprandial blood glucose levels, and more vaginal births and fewer (emergency) caesarean sections	
Eberle and Stichling, 2021 ⁽²⁰¹⁾	SR) (4 SRs or MAs, 6 RCTs, 1 NRCT)	To assess clinical efficacy of telemetry interventions (glycemia, visits, satisfaction, adherence, maternal complications during pregnancy and delivery, as well as foetal and neonatal outcomes)	563	Real-time video communication, real- time audio communication, asynchronous communication via email, SMS text messaging, server or home gateway, and web-based platforms, and combined communication	Improved glycaemic control, decreased number of scheduled and unscheduled visits, and some foetal and neonatal short-term outcomes were revealed	

Table S16. Effectiveness of telemedicine support in patients with GDM.

Author, year, ref.	Design *	Objectives	Study Interv.	group Control	Technology	Outcomes
Zhang <i>et al.,</i> 2019 ⁽¹⁷⁷⁾	RCT	To investigate the effectiveness of individualized Low-GI dietary consultations based on the assessment of glycaemic load in the diet and the impact of the applied program on maternal and neonatal insulin resistance	200	200	DietGI mobile phone app with food type assessment and GI and glycaemic load calculation	Individualized dietary consultations did not result in a significant difference in maternal or neonatal insulin levels compared to the control group
Yew <i>et al.,</i> 2021 ⁽¹⁹⁷⁾	RCT	To prevent excessive weight gain in pregnancy (EGWG) and improve glycaemic control and impact on maternal and neonatal outcomes	170	170	Smartphone app- based lifestyle coaching program	Improved maternal glycaemic control was noted Overall neonatal complications were significantly reduced in the intervention group, but no reduced EGWG was shown
Surendran <i>et al.,</i> 2021 ⁽¹⁹⁵⁾	RCT	To evaluate perceived usefulness with using a mobile health app	170	170	The app has three key components: interactive educational lessons, tracking tools (self- monitoring blood glucose, physical activity, diet, and weight), and coaching	A largely automated mHealth app has the potential to promote self- awareness of healthy lifestyle choices
Guo <i>et al.,</i> 2019 ⁽¹⁹²⁾ and Tian <i>et al.,</i> 2021 ⁽¹⁹⁶⁾	RCT	To evaluate the blood glucose control and impact on pregnancy outcomes	147	162	Health education and lifestyle management delivered through WeChat	More effective blood glucose control in the intervention than in the control group (standard clinical prenatal care) Differences in pregnancy outcomes were not significant
Borgen <i>et al.,</i> 2019 ⁽²⁰⁷⁾	RCT	To assess the effect of the Pregnant+ app on the 2- hour glucose levels of the routine postpartum OGTT among women with GDM	115	123	The Pregnant+ app was designed to provide information about GDM, and promote physical activity and a healthy diet	The Pregnant+ app had no effect on 2-hour glucose levels of OGTT No differences in birth weight and obstetric complications were noted
Garnweidner- Holme <i>et al.,</i> 2020 ⁽¹⁹¹⁾	RCT	To determine whether the Pregnant+ app with targeted dietary information and blood glucose monitoring had an effect on the eating behaviour of women with GDM	115	123	The Pregnant+ app promoted 10 diet tips for GDM	The Pregnant+ app did not have a beneficial effect on the GDM women diet
Kytö <i>et al.,</i> 2024 ⁽¹⁹⁸⁾	RCT	To investigate if a periodic mobile application with wearable	76 2	72	eMOM system with a continuous glucose monitor, an activity	Self-tracking of lifestyle and glucaemia without additional guidance

Author, year, ref.	Design *	Objectives	Study group		Technology	Outcomes	
		sensors improves maternal and neonatal outcomes among women with diet-controlled GDM without additional guidance from healthcare	Interv.	Control	tracker, and a food diary 1 week/month until delivery	improves self- management and the treatment of GDM, which also benefits newborns	
Miremberg <i>et al.,</i> 2018 ⁽²⁰²⁾	RCT	To investigate the impact of a smartphone-based platform for daily feedback and communication between patients with GDM and their doctors on patient adherence, glycaemic control, pregnancy outcomes, and patient satisfaction	60	90	Daily feedback on patients' compliance and glycaemic control via an app installed on smartphones	The intervention group showed higher level of compliance, lower mean blood glucose, lower rate of off-target measurements both fasting and 1-hour postprandial, and lower rate of pregnancies requiring insulin treatment	
Munda <i>et al.,</i> 2023 ⁽¹⁹⁴⁾	RCT	To compare the outcomes of telemedicine care and the standard care in women with GDM	54	52	Sending glucose readings via an app installed on a smartphone and monthly individual video calls replacing on-site visits	The intervention group showed less postprandia blood glucose results above the target and lower average postprandial glucose Percentage of caesarean section was lower in the intervention group	
Rasekaba <i>et al.,</i> 2018 ⁽²⁰⁶⁾	RCT	To explore the effects of telemedicine supported GDM care on health service utilization and costs as well as maternal and foetal outcomes	61	34	A web-based system was used by patients to share data with healthcare professionals. Nurses provided individualized feedback via the messaging feature	Telemedicine care showed no impact on service utilization and costs The intervention and	

* SR – systematic review, CCT – clinical controlled trial, MA – meta-analysis, RCT – randomized controlled trial, NRCT – nonrandomized controlled trial

Author, year, ref.	Design *	Study group		Outcomes Intervention Effect				
		Interv.	Control	-				
Vounzoulaki <i>et al.,</i> 2020 ⁽²¹⁴⁾	SR & MA (20 studies)	67,956	1,264,417	Women with a history of GDM appear to have a nearly 10-fold higher risk of developing T2DM than those with a normoglycemic pregnancy				
Juan <i>et al.,</i> 2022 ⁽²¹⁵⁾	SR & MA	21,978	39,954	Women with GDM had 3.69 times higher risk of developing prediabetes (including impaired fasting glucose and/or impaired glucose tolerance) than controls				
Gilinsky <i>et al.,</i> 2015 ⁽²²⁷⁾	SR & MA (11 studies)	2,	736	There is minimal evidence for a change in physical activity followir lifestyle intervention in women with prior GDM, with six out of eleven studies reporting favourable change Lifestyle interventions did not change fasting blood glucose				
Tanase-Nakao et al., 2017 ⁽²³²⁾	SR & MA (9 studies)		m 122 1,035	Longer and exclusive lactation may be beneficial for T2DM prevention in women with previous GDM				
Li et al., 2021 ⁽²²²⁾	SR & MA		733	Lifestyle intervention initiated within 3 years after delivery was highly effective in reducing the risk of postpartum diabetes				
Bellou <i>et al.,</i> 2018 ⁽²²⁴⁾	UR of MAs (86 studies)	From 2,892 To 17,782		Unhealthy dietary pattern (increased consumption of processed meat and sugar-sweetened beverages, decreased intake of whole grains, coffee and heme iron, and low adherence to a healthy dietary pattern), low level of education and conscientiousness, decreased physica activity, high sedentary time and duration of television watching low alcohol drinking, smoking, air pollution, and some medical conditions (high systolic blood pressure, late menarche age, gestational diabetes, metabolic syndrome, preterm birth) presented robust evidence for increased risk of T2DM				
Guo <i>et al.,</i> 2021 ⁽²³⁰⁾	MA (6 studies)	1,516		Study suggests that higher potato intake is associated with higher T2DM risk				
O'Reilly <i>et al.,</i> 2020 ⁽⁴³⁾	SR (38 studies)	12	,509	Interventional studies on lifestyle and postpartum diabetes in women with GDM showed that health status was the predominant risk factor for diabetes				
Winkler Pedersen et al., 2017 ⁽²²⁶⁾	SR (10 studies)	3,	642	This study indicates that intervention is superior to no interventio in prevention of T2DM among women with previous GDM (no specific intervention or intervention components were found superior)				
Dennison <i>et al.,</i> 2019 ⁽²¹⁶⁾	SR (21 studies)	N/A		Six themes of interacting factors were identified, influencing postpartum behaviour Many factors hinder healthy lifestyles after gestational diabetes, y how women interpret them can motivate or prevent changes that reduce diabetes risk				
D'Arcy <i>et al.,</i> 2020 ⁽²²⁵⁾	SR (5 studies)	194	189	Findings from two cross-sectional and one prospective study indicated poorer diabetes outcomes for women with higher intakes of branched-chain amino acids, total and heme iron, and a diet relatively low in CHOs and high in animal fat and protein and better outcomes among those consuming diets rich in fruit, vegetables, nuts, fish, and legumes, and low in red and processed meats and sugar-sweetened beverages, after adjustment for confounders, including BMI				
Ferrara <i>et al.,</i> 2016 ⁽²¹⁸⁾	RCT	1,193	1,087	A Diabetes Prevention Program (DPP)-derived lifestyle interventio modestly reduced postpartum weight retention and increased vigorous-intensity physical activity				

Table S17. Evidence for the risk of developing type 2 diabetes (T2DM) after GDM in relation to lifestyle interventions.

Author, year, ref.	Design *	Study group		Outcomes Intervention Effect
		Interv.	Control	
Tandon <i>et al.,</i> 2022 ⁽²¹⁰⁾	RCT	800	801	The lifestyle intervention, compared with usual care, did not reduce worsening subsequent glycaemic status
Hu <i>et al.,</i> 2012 ⁽²²⁰⁾	RCT	568	594	The Tianjin GDM Prevention Program with lifestyle intervention resulted in larger body weight decrease in the intervention group. Improved behaviours including increased leisure time activity and dietary fibre and fat intake were noted
Lee <i>et al.,</i> 2022 ⁽²²⁸⁾	RCT	130	168	Two years after delivery incidence of T2DM was 20% in the intervention arm (system-based intervention) compared to 17% in the control arm (not statistically significant)
Pérez-Ferre <i>et al.,</i> 2015 ⁽²²³⁾	RCT	126	111	Lifestyle intervention was effective for the prevention of glucose disorders in women with prior GDM Body weight gain and an unhealthy fat intake pattern were found to be the most predictive factors for the development of glucose disorders
Ferrara <i>et al.,</i> 2016 ⁽²¹⁹⁾	RCT	96	101	Implementing a lifestyle intervention during pregnancy and extending it into the postpartum period is feasible and may help prevent pregnancy-related weight retention while supporting weight loss in overweight women
Chen <i>et al.,</i> 2021 ⁽²²¹⁾	CS	1,450		Women with GDM have a higher risk of T2DM 4-6 years after indicator pregnancy Prepregnancy overweight and obesity and prepregnancy overweight and obesity increase the risk of postpartum dysglycaemia

* SR – systematic review, UR – umbrella review, MA – meta-analysis, RCT – randomized controlled trial, CS – cohort study