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SUPPLEMENTARY MATERIAL 

Details of ARIMA modeling 

The fitted ARIMA models were used to assess the stationarity (constancy of variance), 
fluctuation, and autocorrelation of the data. ARIMA models include two modules, 
Autoregression (AR) and Moving Average (MA), which can be integrated to describe statistical 
patterns when the data are not stationary but differenced to achieve stationarity.  
The ARIMA model is represented as ARIMA (p, d, q), where the p indicates the order of the 
autoregression, d indicates the order of the differencing, and q indicates the order of the 
smoothing moving average. The AR (p) process assumes that the recent value can be predicted 
from previous (i.e., lagged) values, and the number of previous explanatory values is p. 
Generally: 

 𝑦𝑦𝑡𝑡 =  𝜙𝜙𝑡𝑡−1𝑦𝑦𝑡𝑡−1 +  𝜙𝜙𝑡𝑡−2𝑦𝑦𝑡𝑡−2 + ⋯+ 𝜙𝜙𝑡𝑡−𝑝𝑝𝑦𝑦𝑡𝑡−𝑝𝑝              (1) 
where yt is the value of the response variable at time t, yt−1 is the value of the response variable 
at time t-1, thus lagging 1 time period, and Φt-1 is the coefficient of the effect of the response 
variable at time t-1, thus being the first autoregressive coefficient. The difference component of 
an ARIMA model refers to accounting for seasonality in the data (d). Because we use yearly 
data, the use of this parameter would be warranted in the presence of multi-year cycles. Multi-
year cycles were immediately apparent, and we explored models that would include multi-year 
cycles. The MA (q) adds a smoothing function to the error at each time lag, and q indicates the 
length of the lag to include in the smoothing function. Therefore, the ARIMA (1,0,1) model is: 

𝑦𝑦𝑡𝑡 =  𝜙𝜙𝑡𝑡−1𝑦𝑦𝑡𝑡−1 + 𝜀𝜀𝑡𝑡−1 −  𝜃𝜃𝑡𝑡−1𝜀𝜀𝑡𝑡−1   (2) 
where εt is the immediate error, εt-1 is the error at time t-1, and θt-1 is the smoothing coefficient 
for the error component at t−1. 

 
Because we sought to explain the variance in the current observation (year) after 

accounting for the autocorrelation or cycle components with our explanatory variables, the use of 
the MA component was not warranted. Thus, we fitted some variations including only structures 
where q was zero in the ARIMA models: ARIMA(1,0,0), ARIMA(2,0,0), ARIMA(3,0,0), 
ARIMA(1,1,0),  ARIMA(2,1,0), ARIMA(3,1,0). The appropriate lag [p] and differencing [d] for 
each species and colony were assessed by examining the autocorrelation (ACF) and partial 
autocorrelation (PACF) plots.  

 
Finally, we checked the residuals from our chosen model by plotting the ACF of the 

residuals. To demonstrate covariate effects, we generated variable influence plots as follows. We 
obtained the predictions from the model and their 95% confidence intervals. In the absence of 
any other covariates, we could have simply regressed the predictions against the values of the 
covariate. However, the predictions include the effects of all other covariates as well and thus 
such a regression would not truly portray the effect of each variable alone in the model. To 
overcome this limitation, we first regressed the variable of interest against all other variables and 
extracted the residuals of this regression. We then added these residuals to the mean value of the 
variable of interest, thereby obtaining the values of the variable not explained by covariation 
with the other variables. We then plotted predictions against this adjusted covariate. 
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Table SM1. Model AIC comparison between best model and reduced (one variable at a time, 
i.e., “no”) models for the Cape Crozier Adélie penguin colony, and 1st order autocorrelation (null 
model). 
Model AIC ∆AIC K Log-

likelihood 
Adj. R-sq. 

Top model: Gyre_lag 4 y + SIE_lag 4 y 
+  CumFish_3y + mnAirTemp_lag 5 y 
+ OpenWater_dateRSP  

-8.42 0 6 11.21 0.551 

No Gyre_lag 4 y -3.18 5.24 5 7.59 0.316 

No SIE_lag 4 y -2.52 5.90 5 7.26 0.318 

No CumFish_3 y -7.81 0.61 5 9.90 0.502 

No OpenWater_dayRSP 2.10 6.32 5 7.05 0.282 

No minAirTemp_lag 5 y -6.65 1.77 5 9.32 0.484 

1st order autocorrelation only -3.65 4,77 1 3.82 0.136 
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Table SM2. Model AIC comparison between best model and reduced (one variable at a time, 
i.e., “no”) models for the Cape Bird Adélie penguin colony, and 1st order autocorrelation 
(null model). 

Model AIC ∆AIC K 
Log-

likelihood Adj. R-sq 
Top model: avg_SIE+ Gyre +  
  CumFish_3y + 
  OpenWater_dateRSP_lag 4 y 

7.78 0 5 2.11 0.307 

No avg_SIE 9.57 1.79 4 0.21 0.175 

No Gyre 10.89 3.11 4 -0.44 0.057 

No CumFish_3y 12.06 4.28 4 -1.03 0.027 

No OpenWater_dateRSP_lag 4 y 10.77 2.99 4 -0.39 0.109 

1st order autocorrelation only 7.95 0.17 1 -1.97 0.083 
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Table SM3. Model AIC comparison between best model and reduced (one variable at a time, 
i.e., “no”) models for the Erebus Bay Weddell seal population, and the intercept-only model 
(null model). 

Model AIC ∆AIC K 
Log-

likelihood Adj. R-sq 
Top model: FastIceExtent + 
  CumFish_3y + 
  meanOpenWater_MCM_lag 6 y + 
  Gyre 

-9.69 0 5 10.85 0.742 

No FastIceExtent 2.71 12.4 4 3.65 0.386 

No CumFish_3y -7.69 2.0 4 8.85 0.693 

No meanOpenWater_ MCM_lag 6 ys 0.45 10.14 4 4.77 0.472 

No Gyre -3.04 6.65 4 6.52 0.625 

Intercept-only 10.22 19.91 1  -3.11  0 

 

 

Review of the Cape Crozier Adélie penguin growth model results with reference subcolony 
count data 
 
To increase confidence in our results, we used an unpublished dataset consisting of counts of all 
active nests in the same subcolonies over time (6-31 subcolonies depending on year), including 
those having 10 to 1,000 active nests (Ballard et al., unpubl.). Counts were made within a day of 
aerial census of the entire colony (Lyver et al. 2014; AntarcticaNZ, unpubl.). From this dataset, 
the proportion of growth was estimated as 1 + (Ct – Ct-1)/Ct-1), where Ct and Ct-1 are, 
respectively the count of active nests at time t and t-1. Changes in counts of active nests at 
specific locations may not be a good metric for population growth, and sample sizes may be too 
small and not representative of the behavior of the entire colony. Therefore, this dataset can 
provide only a crude indication of the ability of our model to represent the reality of population 
changes at Crozier. We fit our model to this dataset and evaluated the similarity in slope 
estimates to our original estimates, as well as the quantile placement of the density data slopes 
within the distribution of possible values for the slopes from our model. 
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Table SM4. Model fitting results using the best model from Crozier on Adélie penguin growth 
estimates from reference subcolony count data. The Quantile column provides the quantile 
(lower tail) of the slope of each covariate in this table within the confidence interval of the 
estimates shown in Table 2. The Difference column shows the difference between the slope 
estimates using this dataset and the slopes from our model, shown in Table 2. 
 
Variable Estimate SE Z-value P-value Difference Quantile 

1st order autocorr. -0.7714 0.2268 -3.401 0.0007 -0.0300 44.2% 

Sea Ice Ext. lag 4 y -0.1522 0.1165 -1.306 0.1916 -0.1084 9.09% 

Gyre Speed lag 4 y  0.0485 0.0456  1.065 0.2867  0.0676 1.91% 

Air Temp. Lag 5 y -0.0688 0.0455 -1.513 0.1304  0.0054 43.2% 

Open Water date RSP -0.0100 0.0072 -1.400 0.1614 -0.0082 5.39% 

Cum. Fish_3 y -0.0039 0.0039 -1.000 0.3175  0.0090 0.06% 

 
 
Figure SM1. Cape Crozier Adélie penguin annual growth trend 

1.1)  Uncorrected trend 
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1.2)  Arima (1,0,0) 

 

 
 

 

Fig. SM3. Cape Bird Adélie penguin annual growth trend 

2.1)  Uncorrected trend 
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2.2) Arima (1,0,0) 

 
 

 

 

 


