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Previous estimates of infection to clinical case ratio

Table S1: previous published estimates of the cholera infection to clinical case ratio

Location and
year

Study design &
population

Method to
determine
infection

Biotype Estimate Reference

East Pakistan,
1966–1967

Longitudinal study of all
available village residents in
an endemic area

Serology El Tor 0 out of 27 infected required
treatment

22 out of 27 infections inapparent

(Mccormack,
Islam, and
Fahimuddin
1969)

East Pakistan,
1968-1969

Case contact follow-up Bacterial culture
& serology

Classical Infection to case ratio 4:1 (Bart et al. 1970)

El Tor Infection to case ratio 36:1

(unspecified) Surveys Bacterial culture Classical 59% inapparent infections and 15%
very mild symptoms but detected
only in bacteriological surveys

(Gangarosa 1974)

El Tor 75% inapparent infections and 18%
very mild symptoms but detected
only in bacteriological surveys

Louisiana, US,
1978

Case contact follow-up Bacterial culture El Tor 3 out of 6 infections inapparent (Blake et al.
1980)



Location and
year

Study design &
population

Method to
determine
infection

Biotype Estimate Reference

Review of
published
sources

Case contact follow-up Bacterial culture Classical 50% of infected were asymptomatic
(mean over 5 studies)1

(Feachem 1982)

El Tor 70% of infected were asymptomatic
(mean over 4 studies)1

Gulf Coast Oil
Rig, US, 1983

Outbreak investigation Serology El Tor 1/16 infections inapparent (Johnston et al.
1983)

Truk,
Micronesia,
1982

Cross-sectional study Serology El Tor 68% of infections inapparent (Harris et al.
1986)

Review of
published
sources

- - (not
specified)

1/2 to 1/100 infections leads to
symptomatic cholera in endemic
areas

(Glass and Black
1992)

Bay of Bengal,
1891–1940

Model of historical
incidence of clinical cholera

- Classical high proportion of inapparent
infections

(King et al. 2008)

Sitakunda,
Bangladesh,
2022

Longitudinal study Serology El Tor 1 symptomatic case per 600
infections

1 medically-attended case per 2,340
infections

(Hegde et al.
2023)

1 The studies included in this aggregated estimate are not mentioned separately in this table.



Predictors of self-reported cholera diagnosis

We used multivariable logistic regression in a stepwise procedure to identify predictors of
self-reported watery diarrhea or cholera diagnosis as model outcomes. First, univariate
models with sex, age (in years), location (13 levels, one for each village included in the
survey) and vibriocidal titer (log2-transformed) as the independent variable were fit for each
of the two dependent variables. Only significant predictors in the univariate models (p-value
<0.2) were included in the multivariable analysis. We didn’t adjust for household clustering,
but verified that this didn’t have a significant impact on the standard deviations of the
results of the regression.

Age and log2-transformed vibriocidal titer as well as some of the location levels were
significant predictors for both outcomes in univariate regression. We thus compared
multivariable models with and without location, and including age and vibriocidal titer, using
the Akaike Information Criterion. The best model (for each of the two outcomes) included
location as fixed effect (13 levels). Results from these final models are presented in Tables
S2a and S2b Note that this analysis requires individual level data, which isn’t included in the
authors data repository to protect privacy of the survey participants. Interested researchers
are invited to contact the authors.

A higher log2-transformed vibriocidal titer was associated with self-reported watery diarrhea
(Odds Ratio (OR) 1.10 (95% CI 1.07 to 1.14)) when adjusting for age and location. In
addition, log2-transformed vibriocidal titer was associated with self-reported cholera
diagnosis by a health care worker was (OR 1.12 (95% CI 1.08 to 1.16)) when adjusting for
age and location.



Table S2a: Logistic regression analysis of the association of vibriocidal titer with
self-reported watery diarrhea

Univariate Multivariate

N OR1 95% CI1 p-value OR1 95% CI1 p-value

sex 2,539

f — —

m 0.97 0.80,
1.18 0.8

age 2,536 1.01 1.00,
1.01 <0.001 1.01 1.01,

1.02 <0.001

location 2,539

 Bac Da — — — —

 Chevre 0.52 0.32,
0.86 0.011 0.52 0.31,

0.88 0.014

 Dauphi 0.91 0.57,
1.46 0.7 0.86 0.52,

1.40 0.5

 Drouin 1.19 0.79,
1.81 0.4 1.17 0.77,

1.82 0.5

 Grand 0.80 0.47,
1.35 0.4 0.77 0.45,

1.32 0.3

 Laport 2.01 1.17,
3.47 0.012 2.50 1.42,

4.42 0.002

 Latapi 1.02 0.61,
1.69 >0.9 1.02 0.61,

1.72 >0.9

 Lemeau 0.83 0.35,
1.83 0.7 0.79 0.32,

1.80 0.6

 Petit 0.64 0.32,
1.23 0.2 0.67 0.33,

1.30 0.2

 Ponten 0.57 0.36,
0.89 0.014 0.58 0.37,

0.93 0.023

 Robine 0.77 0.39,
1.49 0.5 0.77 0.38,

1.50 0.5

 Rossig 0.91 0.58,
1.42 0.7 0.85 0.54,

1.35 0.5

 Theard 0.53 0.29,
0.96 0.041 0.48 0.25,

0.88 0.021

vibrioci
dal
titer
(log2)

2,447 1.09 1.06,
1.12 <0.001 1.10 1.07,

1.14 <0.001

1 OR = Odds Ratio, CI = Confidence Interval



Table S2b: Logistic regression analysis of the association of vibriocidal titer with
self-reported cholera

Univariate Multivariate

N OR1 95% CI1 p-value OR1 95% CI1 p-value

sex 2,540

f — —

m 0.96 0.78,
1.17 0.7

age 2,537 1.01 1.00,
1.01 0.001 1.01 1.01,

1.02 <0.001

location 2,540

 Bac Da — — — —

 Chevre 0.54 0.32,
0.92 0.022 0.55 0.32,

0.94 0.028

 Dauphi 0.72 0.44,
1.20 0.2 0.71 0.42,

1.21 0.2

 Drouin 1.01 0.66,
1.58 >0.9 1.00 0.64,

1.58 >0.9

 Grand 0.31 0.15,
0.60 <0.001 0.29 0.14,

0.57 <0.001

 Laport 2.20 1.27,
3.85 0.005 2.79 1.57,

5.01 <0.001

 Latapi 1.12 0.67,
1.89 0.7 1.14 0.67,

1.95 0.6

 Lemeau 0.59 0.21,
1.41 0.3 0.65 0.23,

1.58 0.4

 Petit 0.73 0.36,
1.42 0.4 0.77 0.37,

1.52 0.5

 Ponten 0.58 0.36,
0.93 0.021 0.59 0.37,

0.97 0.034

 Robine 0.89 0.44,
1.72 0.7 0.89 0.44,

1.74 0.7

 Rossig 1.02 0.65,
1.62 >0.9 0.96 0.60,

1.54 0.9

 Theard 0.61 0.33,
1.12 0.12 0.55 0.29,

1.02 0.064

vibrioci
dal
titer
(log2)

2,448 1.10 1.07,
1.14 <0.001 1.12 1.08,

1.16 <0.001

1 OR = Odds Ratio, CI = Confidence Interval



Alternative methods to infer infection rate

Simpler methods to determine infection by classifying measured titer values according to
fixed threshold or a mixture distribution exist. This chapter describes two methods and
their application to our data, one relying on a fixed titer threshold to determine infection,
and the other on Gaussian mixture models.

Fixed vibriocidal antibody titer thresholds to determine recent infection

We used a previously established vibriocidal antibody titer threshold of 320 to identify
people infected with cholera in the previous 200 days (Azman et al. 2019). We accounted
for the imperfect sensitivity and specificity of this threshold using the Rogan-Gladen
estimator, considering estimates from two different populations, a study among previously
uninfected adult North American volunteers challenged with Vibrio cholerae O1 and
confirmed cholera cases in Bangladesh (Rogan and Gladen 1978). Uncertainty around
sensitivity and specificity were propagated through the estimator.

From this approach we estimate that 42.0% (using North American cohort) to 31.2%
(95%CI 14.7 to 46.4, Bangladesh cohort) of the population ≥2 years old was infected. While
the estimates of the infection rate for 2-4 year olds were slightly lower than those from our
main analyses, those for ≥5 were on average 1.6 times lower (Table S2, Figure S1).

Gaussian mixture model to determine recent infection

We also fit a mixture model composed of two normal distributions to the bi-modal
distribution of measured log2-transformed vibriocidal antibody titers of participants. The two
normal distributions were interpreted as the baseline antibody titer levels of uninfected and
increased titer levels of recently infected participants respectively. We accounted for interval
censoring of the titer values and estimated mean and variance of each distribution in
addition to the mixing parameter, which we interpreted as the infection rate. Priors for the
two normal distributions were Normal(4.5, 5) and Normal(8.5, 5). The prior for the mixture
parameter was set to a Beta(1,1) distribution. The model was implemented in Stan using the
RStan package (Stan Development Team 2020).

This approach produced similar central estimates than the threshold model for the
population aged 5 and above (31.8%; 95% CrI 24.1 to 41.3) and a flat distribution with wide
credible interval for 2 to 4 year olds (65.2%; 95% CrI 11.8 to 95.0) (Table S3, Figure S1).

Our supplementary analysis found that our approach to estimating the infection rate led to
generally larger estimates than the alternative approaches including the use of a fixed
threshold and a mixture model. While commonly used and computationally simpler, neither
accounts for the waning of antibody levels in the months post infection. In the absence of
well characterized post-infection kinetics or slowly waning antibodies, these approaches
may perform well but care should be taken when applying these generally with fast waning
antibodies, like vibriocidals (half life ~120 days, (Jones et al. 2022)).





Table S3: Clinical attack rate, attack rate of self reported cholera and watery diarrhoea, and
estimates of infection rate with V. cholerae O1 according to our main and alternative
analyses.

Method Value [95% CI or CrI]a

All ≥ 2 years 2-4 years ≥5 years

Clinical attack rate estimates

Clinical attack rate (reported
cholera incidence)

18.2% 39.5% 16.4%

Clinical attack rate (self-reported
cholera diagnosis)

17.8% 18.5% 17.8%

Clinical attack rate (self-reported
watery diarrhoea)

20.6% 25.0% 20.4%

Infection rate

Infection rate computed using a
vibriocidal decay model

52.6% [49.4 -
55.7]

35.5% [24.2 -
51.6]

53.1% [49.4 -
56.4]

Estimate of the infection rate from alternative analyses

Infection rate computed using a
fixed vibriocidal antibody threshold
and correcting for sensitivity and
specificity computed from a cohort
from Bangladesh

31.2% [14.7 -
46.4]

21% [4.1 -
36.2]

31.7% [15.1 -
46.9]

Infection rate computed using a
fixed vibriocidal antibody threshold
and correcting for sensitivity and
specificity computed from a cohort
of healthy North-Americans

42.0%b

33.9%b 42.3%b

Infection rate computed using a
gaussian mixture model

32.0% [24.5 -
41.3]

65.2% [11.8 -
95.0]

31.8% [24.1 -
41.3]

aCredible Intervals are given for Bayesian estimates
bUncertainty cannot be quantified because no confidence intervals on sensitivity and
specificity of thresholds are given in the source used



Figure S1: Estimates of clinical attack rate (grey) and infection rates (colored) for age groups
2 years and above, 2-4 years and 5 years and above.



Bayesian vibriocidal titer decay model

Parameter values and fit

The vibriocidal titer decay, parametrized by the individual baseline titer , the individual
titer rise and the titer decay rate , didn’t change significantly during the model
inference, and the posterior values are similar to the priors from Jones et al. (2022).
Samples from the posterior distribution are shown in Figure S2. There is a significant
overlap between baseline titer of the uninfected population and titer values of the infected
population, even when infected titer values are at their maximum. This overlap explains the
sigmoid curve and a part of the uncertainty on our parameter identification. In addition, the
figure shows, where the participants who reported a watery diarrhea onset date lie on the
decay curve. Most individuals have a vibriocidal titer compatible with our decay model,
though there is a proportion of people who reported a cholera diagnosis who have a titer
lower than expected.

Figure S2: Visualization of the posterior of the vibriocidal titer decay model for individuals 5
and older (A) and those 2-4 years old (B). The decay of infected individuals (red shade, with
100 samples in gray lines) is shown from the maximum titer rise, 11 days after infection.
Uninfected individual titer values remain constant at their baseline level (blue shade). The
crosses show the position of survey participants who reported watery diarrhea onset date,
as the delay between onset and the survey on the x-axis, relative to their measured
vibriocidal titer on the y-axis. Those reporting to have been diagnosed with cholera by a
health care worker are marked in red.

Posterior predictive checks

Posterior predictive checks compare the observed data with replicated data from the fitted
decay model. The discrepancies between posterior predictive checks and posterior values
may come from a inadequacy in the model definition (Figure S3). All observations fall within
the range of posterior predictive values, but for the lower titer values, the model

https://www.codecogs.com/eqnedit.php?latex=%5Coverline%5Comega%5Ei#0
https://www.codecogs.com/eqnedit.php?latex=%5Clambda%5Ei#0
https://www.codecogs.com/eqnedit.php?latex=r#0


underestimates the median count. One possible explanation would be that the discrete
latent parameters indicating infection are not inferred correctly, a common pitfall in
Bayesian inference. However, given that the posterior of the Bernoulli draws of the infection
indicator are correctly distributed with respect to its inferred parameter value, the
infection rate, , we ruled out this possibility. It is thus most likely that this bias is due to
our model specification and the difficulty to reconcile observed data with the provided
decay parameters and the case time series.

Figure S3: Posterior predictive checks of the three bayesian decay models developed for
each age group. The red circle represents the observed count in each titer bin, and the
violin plots the posterior predictive values.

https://www.codecogs.com/eqnedit.php?latex=%5Cdelta%5Ei#0
https://www.codecogs.com/eqnedit.php?latex=%5Ctext%7BiAR%7D#0


MCMC diagnostic checks

The convergence diagnostic, also known as the Gelman-Rubin diagnostic compares
between- and within-chain estimates for model parameters to assess chain mixing (Vehtari
et al. 2021). If chains have not well mixed, R-hat is larger than 1 and it is recommended not

to use samples if the . In Figure S4, we present the for all parameters of the 5

and older and 2-4 years old models. All parameters in all models have an .

Figure S4: convergence diagnostic for our model parameters. For parameters with
individual values (subscript ), we report the mean (dot) and 95% interval (bars).

Posterior
In Figure S5 the prior and posterior of all our model parameters are presented. For the
parameters with individual values (subscript ), we show all values across all individuals.

https://www.codecogs.com/eqnedit.php?latex=%5Chat%7BR%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Chat%7BR%7D%3E1.05#0
https://www.codecogs.com/eqnedit.php?latex=%5Chat%7BR%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Chat%7BR%7D%3C1.05#0
https://www.codecogs.com/eqnedit.php?latex=%5Chat%7BR%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Ei#0
https://www.codecogs.com/eqnedit.php?latex=%5Ei#0


Figure S5: Prior (grey) and posterior (red) distributions of our model parameters. The day of

infection ( ) has been aggregated by week to improve clarity.

https://www.codecogs.com/eqnedit.php?latex=T%5Ei_I#0


Sensitivity analysis on the decay rates of antibody

The antibody decay rate parameter is derived from prior studies and informed by a single,
relatively narrow prior common to all age groups (Table 1). A hypothetical explanation for
the observed difference in infection rate and infection-to-reported-case ratio between age
groups could be a true decay rate varying by age. We performed a sensitivity analysis,
assessing the influence of the decay rate on the infection-to-case ratio, specifically whether
different decay rates could explain the differences in infection rate between age groups.

We fit our models for 2-4 years olds and 5 years and older with a prior on the decay rate
multiplied by 1/10, 1/2, 5, and 9. As shown in Figure S6, the differences in decay rate
influence our estimates, changing the density and modes of the infection to the reported
case ratio and of the infection rate. For example in 2-4 years olds, the mean of the infection
to the reported case ratio varied from 0.8 (95%CrI 0.7-1.1) with a multiplier of 1/10 to 1.3
(95%CrI 0.7-2.2) with a multiplier of 9. This variation, however, remains small compared to
the variation between age groups. The distinction between the two age groups remains
clear even when assuming a much faster or slower decay rate for children. The different
infection rates and infection to reported case ratios for the two age groups are thus not an
artifact of our choice of the decay rate prior. Similarly, when varying the decay rates in the
population 5 years and older, the variations of our main outcomes, the infection rate and the
number of infections per reported case, remain small, except for the case when the decay
rate would be several times higher than in our main model.

Fig S6: infection to reported case ratio and infection rate derived from our main model for
individuals 5 years and older, and from a model with different priors on the decay rate
parameter for the individuals 2-4 years old (top). and the same quantities derived from our
main model for 2-4 years olds, and from a model with different priors on the decay rate
parameter for the individuals 5 years and older (bottom).

https://www.codecogs.com/eqnedit.php?latex=r#0


Sensitivity analysis on the baseline titer

The baseline titer and titer rise are obtained from a study in Bangladesh (Jones et al. 2022).
It is likely that this population is regularly exposed to cholera, different from the population
of Haiti in 2010. We perform a sensitivity analysis on the baseline titer to evaluate the
influence of these priors on our main results. We decrease the prior of the (log-transformed)
baseline titer by ¼ and ½ of its standard deviation (3.96 as per Table 1). Given that the

baseline titer and the titer rise are sampled from a multivariate distribution with
negative covariance, these lower baseline titers are compensated by a higher titer rise. As
shown in Figure S7, lower priors on the baseline titers significantly increase the inferred
infection rate and thus the number of infections per reported case. For example in 2-4 years
old, the mean of the infection to the reported case ratio increased to 1.3 (95%CrI 0.9-1.7)
with a decrease of the prior of the baseline titer by ¼ of its standard deviation, and to 1.8
(95%CrI 1.3-2.2) with ½ of its standard deviation, and to respectively 4.2 (95%CrI 4.0-4.4)
and 5.5 (95%CrI 5.3-5.7) for individuals 5 year and older. The difference between age
groups is still present if the prior value remains the same for both groups.

Fig S7: infection to reported case ratio and infection attack rate derived from our main
model and models with the prior of the log-transformed baseline titer decreased by ¼ and
½ of its standard deviation (darker shades).
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