
A Appendix A
The clinical notes for all study participants were manually read and assessed by a 
team of trained clinical researchers. Data was then extracted from these clinical 
notes by the clinical researchers and entered into the proforma as required. All 
clinical notes are generated by the study participants’ treating clinician/s as 
part of their standard care.

A.1 Demographics

Biological sex, and age. Current engagement in part- or full-time education or 
employment to determine Not in Education, Employment, or Training (NEET) 
status. NEET is assigned if there was no full- or part-time education, employ-
ment, training, or volunteer work.

A.2 Social and Occupational Functioning

The Social and Occupational Functioning Assessment Scale SOFAS;1 is a 
clinician-rated measure that assesses functioning on a 0–100 scale, with lower 
scores suggesting functional impairment. The instructions emphasise that the 
rater should avoid confounding the rating with clinical symptoms 1-3. A SOFAS 
score of below 70 is considered to be clinically-significant impairment 4.

A.3 Mental Disorder Diagnoses

Mental disorder diagnoses at each time point are classified according to DSM-5 
criteria 5 and specified as either full- or sub-threshold. Diagnoses are also labelled 
as either primary, secondary, or tertiary based on judgement of which was the 
dominant presenting problem at that time point.

Mental disorder diagnosis is determined solely by the symptomology and/or 
diagnosis reported and recorded by the treating clinician/s as presented in the 
clinical notes of each study participant. Based on the information provided
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within these clinical notes, researchers determined whether DSM-5 criteria were
met for a specific disorder at that time point. If symptomology recorded in the
clinical notes indicated only some, but not all criteria being met for a specific
disorder, then a sub-threshold classification was recorded. If symptomology
indicated full DSM-5 criteria were met for that time point, then a full-threshold
classification was recorded.

As per diagnosis, medication is also obtained from a review of the clinical
notes as generated by the study participants’ clinician/s. A certain medication
is recorded if the clinical notes indicate that the study participant took that
particular class of medication within the specified timeframe.



A.4 At-risk Mental States

Clusters of symptoms that have been previously indicated as risk factors for
progression to more severe mental disorders 6-11 are recorded in all individu-
als regardless of diagnosis. This includes psychotic-like experiences (the pres-
ence of any psychotic symptoms including: perceptual abnormalities, bizarre
ideas, disorganised speech, etc), manic-like experiences (the presence of any
manic/hypomanic symptoms including: abnormally elevated mood or irritabil-
ity; increased motor activity, speech, or sexual interest, etc), and circadian dis-
turbance (the presence of significant disruption in sleep-wake or circadian cycles
including the presence of a severe sleep-wake disorder or chronic fatigue). The
presence or absence of these clusters of symptoms is determined solely by the
symptomology reported and recorded by the treating clinician/s as presented
in the clinical notes of each study participant. Similarly, the distinction be-
tween psychotic-like and manic-like symptoms is judged within the context of
the clinical notes.

The threshold for mania like experiences and psychotic like experiences in
this study is low. Conversely, the threshold for circadian disturbance in this
study is high. More specifically, these experiences are rated based on their
presence or absence and the nature (e.g. type, severity, frequency) of these
experiences, and so stage 1a and stage 1b MLEs and PLEs are not necessarily
different, but in some cases may differ in nature. The presence of these symp-
toms does not necessarily mean the participant currently has / or will go on to
develop a serious mental health disorder. It is simply one of many risk factors
that may exist. Moreover, the presence or absence of these symptoms do not,
in and of themselves, determine the staging of a participant.

A.5 Self-harm and Suicidal Thoughts and Behaviours

The presence of suicidal ideation, suicide attempts, and self-harm is recorded. A
suicide attempt is recorded when a young person has taken steps to take their
own life. If an individual harms themselves via cutting, hitting themselves,
burning themselves, or scratching with the intention to self-harm only and not
to take their life, then this is included as self-harm and not a suicide attempt.
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A.6 Physical Health Comorbidities

Any major physical illness is recorded. This includes (but is not limited to):
diabetes, cancer, asthma, chronic pain, epilepsy and obesity.

A.7 Personal Mental Illness History

Known childhood-onset disorders (i.e. with clear onset prior to 12 years old)
are recorded in addition to current diagnoses. Family history of a mental health
disorder is ascertained via the treating clinician’s assessment with the client.
Please note, family history is only recorded when the client has reported a



mental health diagnosis of a first degree relative. Moreover, family history is
only recorded if the client reported that the first-degree family member has
a current of past diagnosed mental health disorder. Symptoms only, but no
diagnosis, is not enough to meet criteria for this category.

A.8 Treatment Utilisation

Exposure to classes of medication (antidepressant, antipsychotic, mood sta-
biliser, or stimulant medication), and hospitalisation overnight or longer due to
a mental health problem are recorded.

B Random effects modelling

In this section, we present technical details of the random effects model derived
for this paper’s statistical analysis. To represent the data, let Y = [y1, . . . ,yJ ]>

denote J individual response trajectories of length T , that is:

yj = [yj1, . . . , yjT ]> ∈ RT , j ∈ {1, . . . , J} . (1)

For each individual j, we have access to their covariates zj ∈ RD recorded
at their first visit to the clinic (baseline). Each individual’s response will be
associated with a category, or cluster, cj ∈ {1, . . . ,K}, where K is pre-specified.

B.1 Response model

Within each cluster k ∈ {1, . . . ,K}, we will assume a Gaussian linear model for
the response trajectories of an individual j ∈ {1, . . . , J}:

yj = Xjβkj + εj , (2)

where εj ∼ N (0, σ2I) represents noise, linear regression coefficients βkj differ by

individual with a common prior per cluster, and Xj ∈ RT×F is a design matrix
based on the individual’s observation time points. In particular, we adopt linear
features:

Xj :=

1 tj1
...

...
1 tjT

 , (3)

3

where tj1, . . . , tjT represent the individual’s observation time points.
For any individual j, we then have a Gaussian likelihood model:

yj |k,βkj , σ2 ∼ N (XTβkj , σ
2I) . (4)

We apply an inverse-gamma prior to the noise variance parameter:

σ2 ∼ Γ−1(aσ, bσ) (5)

due to its conjugacy with a Gaussian likelihood. For the linear regression coef-
ficients vector βkj , following the random effects approach, we place a cluster-



dependent prior, which is dependent on whether the intercept (i.e., the first
component of the vector) and the slope (i.e., the second component of the vec-
tor) are assumed to be correlated or not. Both approaches use K = 3 clusters
(i.e., constant, up and down) and T = 2 time points (with t1 = 0 corresponding
to the baseline).

B.1.1 Correlated-intercept response model

From preliminary experiments with real data, it was possible to observe that
the initial score of an individual affects the cluster which they are assigned to.
Individuals with a low initial score are more likely to improve, while higher
scores indicate the individual is more likely to stay the same or somewhat de-
teriorate, at least during early stages. To model this behaviour, we can model
the dependence of the slope on the intercept in their cluster-conditional priors.
A principled approach for that is to use a multivariate prior for the linear re-
gression coefficients. We would also like to encode constraints on monotonicity
and limits of the initial score. Therefore, we propose the following model:

αjk ∼ N (µα,k,Σα,k), k ∈ {1, 2, 3}, j ∈ {1, . . . , J} (6)

βjk,0 =
1

2
(ymin + ymax) +

1

2
(ymax − ymin)αjk,0 (7)

βjk,1 =


0, if k = 1

exp(αjk,1), if k = 2

− exp(αjk,1), if k = 3

(8)

This transform is invertible for both the intercept and the slope. However, the
linearity of the intercept transform ensures βjk,0 is still Gaussian, which allows
for a closed-form solution for the posterior predictive distribution.

B.1.2 Hyper-priors

For this model, we specify independent hyper-priors for each prior parameter.
The mean vector is assumed Gaussian:

µα,k ∼ N (α̂, Σ̂α) , k ∈ {1, . . . ,K}, (9)
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α̂
20

ymaxHyper-parameter
[0.01, 0.01] [10,

σα

1]
aνymin bν

Value 100 [0, 10] [1, 2]

Table 1: Hyper-parameter settings for the correlated-intercept response model

where the first component of α̂ is set to 0, while the second component is
adjustable, and diag(σα) is a diagonal matrix with diagonal elements given by
the vector σα ∈ R2.

Care needed to be taken regarding the covariance matrix Σα,k for this re-



sponse model. Note that, if the slope and intercept coefficients are not correlated
according to the prior, knowing the intercept provides no information about the
slope. Therefore, one needs to ensure that the correlation between these two
coefficients is non-zero according to the prior. One approach for that is to infer
the prior covariance matrix, placing a hyper-prior on it which allows for corre-
lation, such as a Wishart or a LKJ prior (Lewandowski et al., 2009). In our
case, we use the latter combined with a separate inverse-Gamma hyper-prior
for the diagonal covariance elements for each cluster. We then decompose the
covariance matrices prior into a LKJ prior with concentration parameter set to
1 for the correlations, which makes it a non-informative, uniform prior over the
space of correlation matrices (Lewandowski et al., 2009), and inverse-gamma
priors for the scaling of each row. Namely, for k ∈ {1, . . . ,K}, we set:

Σα,k = diag(ν
1/2
k )Ck diag(ν

1/2
k ) (10)

νk ∼ Γ−1(aν ,bν) (11)

C
1/2
k ∼ LKJ(1) (12)

where the vector notation for the inverse-gamma prior of νk is to indicate in-
dependent inverse-gamma priors for each of the vector’s components. Table 1
presents the hyper-parameter settings for this response model.

B.2 Predictions

To predict trajectories, having the initial score (i.e., the intercept) observed via
the inverse transform:

α̂jk,0 =
2yj,0 − ymin − ymax

ymax − ymin)
, k ∈ {1, 2, 3}, j ∈ {1, . . . , J} . (13)

Conditioning on the observed intercept, the untransformed linear coefficients
are normally distributed:

αjk|α̂jk,0 ∼ N (α̂jk, Σ̂jk) , (14)
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5
bψHyper-parameter

Value 12
gaψ

Table 2: Hyper-parameter settings for the cluster-assignment model

The predictive posterior parameters can be found by conditioning formulas for
multivariate normal distributions:

(15)



α̂jk = µα,k +
1

σ2
α,k,0

[
σ2
α,k,0

σα,k,0,1

]
(αjk,0 − µα,k,0)

Σ̂jk = Σα,k −
1

σ2
α,k,0

[
σ2
α,k,0

σα,k,0,1

]
⊗
[
σ2
α,k,0

σα,k,0,1

]
, (16)

where σ2
α,k,0 := [Σjk]0,0, σα,k,0,1 := [Σjk]0,1 and ⊗ denotes the outer product

of two vectors.

B.3 Cluster-assignment model

We now specify a prior for the cluster membership assignment by making a sim-
plifying assumption for the derivations. For an individual j, we set a categorical
prior:

p(cj = k|Φ, zj) =
exp(zj · φk)

1 +
∑K−1
k′=1 exp(zj · φk′)

, (17)

where we use a compact notation with Φ := [φ1, . . . ,φK ] representing the
matrix of cluster assignment parameters. We place a Zellner’s g-prior (Zellner,
1986) on the cluster assignment parameters Φ:

φk|Z, ψ ∼ N (0, gψ−1(Z>Z)−1), k ∈ {2, 3} , (18)

where ψ ∼ Γ−1(aψ, bψ) is a scaling parameter which is also inferred. We set
φ1 := 0, so that the model is not over-specified. In general, the parameter g
can be set according to expert knowledge or estimated by a variety of methods
(Liang et al., 2008). However, since we will infer ψ from data, we simply set
g := 1. Note that, we now have a data-dependent prior for Φ which allows us
to automatically scale its probability distribution according to the range of the
covariates Z in the data. Also note that Z is not part of the response data.
Hyper-parameter settings for this model are summarised in Table 2.

B.4 Inference

We apply HMC within Gibbs for inference in this setting, since we still have
discrete variables representing the cluster assignments to infer, i.e. cj ∈ {1, 2, 3}.
In particular, we adopt the modified Gibbs sampler proposed by Liu (1996) to
sample the discrete variables. For the continuous variables, we adopt the popular
no-U-turn sampler, an adaptive version of HMC (Hoffman and Gelman, 2014).
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