List of Tables in Supplementary Materials

Table S1: List of included systematic reviews (network/meta-analysis) Table S2: List of excluded reports by searching systematic reviews (network/meta-analysis) Table S3: List of included randomized controlled trials Table S4: List of excluded reports by searching randomized controlled trials Table S5: Characteristics of included randomized controlled trials Table S6: Treatment types, outcomes, and overall risk of bias for each randomized controlled trial Table S7: Heterogeneity and inconsistency for all comparisons in Grp1 Table S8: Heterogeneity and inconsistency for all comparisons in Grp2 Table S9: Comparison matrix for subgroup analysis among mild depression in Grp 1 Table S10: Comparison matrix for subgroup analysis among moderate depression in Grp 1 Table S11: Comparison matrix for subgroup analysis among severe depression in Grp 1 Table S12: Comparison matrix for subgroup analysis of RCTs using HRSD in Grp 1 Table S13: Comparison matrix for subgroup analysis of RCTs using BDI in Grp 1 Table S14: Comparison matrix for subgroup analysis of RCTs with low risk of bias in Grp 1 Table S15: Comparison matrix for subgroup analysis among mild depression in Grp 2 Table S16: Comparison matrix for subgroup analysis among moderate depression in Grp 2 Table S17: Comparison matrix for subgroup analysis among severe depression in Grp 2 Table S18: Comparison matrix for subgroup analysis of RCTs using HRSD in Grp 2 Table S19: Comparison matrix for subgroup analysis of RCTs using BDI in Grp 2 Table S20: Comparison matrix for subgroup analysis of RCTs with low risk of bias in Grp 2

Author	published	title
	year	
Aderka	2012	Sudden gains during psychological treatments of anxiety and depression: a meta-analysis
Amick	2015	Comparative benefits and harms of second generation antidepressants and cognitive behavioral therapies in initial treatment of major
		depressive disorder: systematic review and meta-analysis
Andersson	2009	Internet-based and other computerized psychological treatments for adult depression: a meta-analysis
Andrews	2010	Computer therapy for the anxiety and depressive disorders is effective, acceptable and practical health care: a meta-analysis
Andrews	2018	Computer therapy for the anxiety and depression disorders is effective, acceptable and practical health care: An updated meta-analysis
Baardseth	2013	Cognitive-behavioral therapy versus other therapies: redux
Barbato	2018	Couple therapy for depression
Barth	2013	Comparative efficacy of seven psychotherapeutic interventions for patients with depression: a network meta-analysis
Bee	2008	Psychotherapy mediated by remote communication technologies: a meta-analytic review
Berryhill	2019	Videoconferencing Psychotherapy and Depression: A Systematic Review
Boschloo	2019	The symptom-specific efficacy of antidepressant medication vs. cognitive behavioral therapy in the treatment of depression: results from
		an individual patient data meta-analysis
Bosmans	2008	Are psychological treatments for depression in primary care cost-effective?
Bower	2011	Counselling for mental health and psychosocial problems in primary care
Braun	2013	Comparing bona fide psychotherapies of depression in adults with two meta-analytical approaches
Brown	2019	Pharmacy-based management for depression in adults
Саре	2010	Brief psychological therapies for anxiety and depression in primary care: meta-analysis and meta-regression
Chartier	2013	Behavioural activation for depression: efficacy, effectiveness and dissemination
Coull	2011	The clinical effectiveness of CBT-based guided self-help interventions for anxiety and depressive disorders: a systematic review
Cristea	2015	The effects of cognitive behavior therapy for adult depression on dysfunctional thinking: A meta-analysis

Table S1: List of Included systematic reviews (network/meta-analysis)

Cristea	2017	The effects of cognitive behavioral therapy are not systematically falling: A revision of Johnsen and Friborg (2015)
Cuijpers	2008	Psychotherapy for depression in adults: a meta-analysis of comparative outcome studies
Cuijpers	2008	Are psychological and pharmacologic interventions equally effective in the treatment of adult depressive disorders? A meta-analysis of
		comparative studies
Cuijpers	2009	Psychological treatment of depression in primary care: a meta-analysis
Cuijpers	2009	Psychotherapy versus the combination of psychotherapy and pharmacotherapy in the treatment of depression: a meta-analysis
Cuijpers	2011	Psychological treatment of depression: results of a series of meta-analyses
Cuijpers	2011	Interpersonal psychotherapy for depression: a meta-analysis
Cuijpers	2014	The effects of psychotherapies for major depression in adults on remission, recovery and improvement: a meta-analysis
Cuijpers	2014	Gender as predictor and moderator of outcome in cognitive behavior therapy and pharmacotherapy for adult depression: an "individual
		patient data" meta-analysis
Cuijpers	2016	Psychological Treatment of Depression in College Students: A Metaanalysis
Cuijpers	2016	Interpersonal Psychotherapy for Mental Health Problems: A Comprehensive Meta-Analysis
Cuijpers	2016	How effective are cognitive behavior therapies for major depression and anxiety disorders? A meta-analytic update of the evidence
Cuijpers	2017	Melancholic and atypical depression as predictor and moderator of outcome in cognitive behavior therapy and pharmacotherapy for adult
		depression
Cuijpers	2018	Negative effects of psychotherapies for adult depression: A meta-analysis of deterioration rates
Cuijpers	2019	Effectiveness and Acceptability of Cognitive Behavior Therapy Delivery Formats in Adults With Depression: A Network Meta-analysis
†Ciharova	2021	Cognitive restructuring, behavioral activation and cognitive-behavioral therapy in the treatment of adult depression: A network meta-
		analysis
Cuijpers	2020	The effects of fifteen evidence-supported therapies for adult depression: A meta-analytic review
Cuijpers	2020	A network meta-analysis of the effects of psychotherapies, pharmacotherapies and their combination in the treatment of adult depression
Cuijpers	2021	The effects of psychotherapies for depression on response, remission, reliable change, and deterioration: A meta-analysis
Cuijpers	2021	Psychologic Treatment of Depression Compared With Pharmacotherapy and Combined Treatment in Primary Care: A Network Meta-
		Analysis

Table S1:	(continued) List of Included s	ystematic reviews	(network/meta-analysis)
-----------	------------	----------------------	-------------------	-------------------------

Cuijpers	2021	Psychotherapies for depression: a network meta-analysis covering efficacy, acceptability and long-term outcomes of all main treatment
		types
De Maat	2006	Relative efficacy of psychotherapy and pharmacotherapy in the treatment of depression: A meta-analysis
de Mello	2005	A systematic review of research findings on the efficacy of interpersonal therapy for depressive disorders
Dedert	2013	Computerized Cognitive Behavioral Therapy for Adults with Depressive or Anxiety Disorders
DeRubeis	1999	Medications versus cognitive behavior therapy for severely depressed outpatients: mega-analysis of four randomized comparisons
Dobson	1989	A meta-analysis of the efficacy of cognitive therapy for depression
Domhardt	2021	Mediators and mechanisms of change in internet- and mobile-based interventions for depression: A systematic review
Driessen	2010	The efficacy of short-term psychodynamic psychotherapy for depression: a meta-analysis
Driessen	2010	Does pretreatment severity moderate the efficacy of psychological treatment of adult outpatient depression? A meta-analysis
Driessen	2015	The efficacy of short-term psychodynamic psychotherapy for depression: A meta-analysis update
Ebrahim	2012	Effectiveness of cognitive behavioral therapy for depression in patients receiving disability benefits: a systematic review and individual
		patient data meta-analysis
Ekers	2008	A meta-analysis of randomized trials of behavioural treatment of depression
Elayne Ahern	2018	Clinical efficacy and economic evaluation of online cognitive behavioral therapy for major depressive disorder: a systematic review and
		meta-analysis
Feng	2012	The effect of cognitive behavioral group therapy for depression: a meta-analysis 2000-2010
Firth	2017	The efficacy of smartphone-based mental health interventions for depressive symptoms: a meta-analysis of randomized controlled trials
Fordham	2021	Cognitive-behavioural therapy for a variety of conditions: an overview of systematic reviews and panoramic meta-analysis
Fu	2020	Effectiveness of digital psychological interventions for mental health problems in low-income and middle-income countries: a systematic
		review and meta-analysis
Fu	2020	Psychological interventions for depression in Chinese university students: A systematic review and meta-analysis
Furukawa	2017	Initial severity of depression and efficacy of cognitive-behavioural therapy: individual-participant data meta-analysis of pill-placebo-
		controlled trials

Furukawa	2021	Dismantling, optimising, and personalising internet cognitive behavioural therapy for depression: a systematic review and component
		network meta-analysis using individual participant data
Gaffan	1995	Researcher allegiance and meta-analysis: the case of cognitive therapy for depression
Gellatly	2007	What makes self-help interventions effective in the management of depressive symptoms? Meta-analysis and meta-regression
Gloaguen	1998	A meta-analysis of the effects of cognitive therapy in depressed patients
†Wampold	2002	A meta-(re)analysis of the effects of cognitive therapy versus 'other therapies' for depression
†Parker	2008	Quantified superiority of cognitive behaviour therapy to antidepressant drugs: a challenge to an earlier meta-analysis
Griffiths	2007	Internet-based mental health programs: a powerful tool in the rural medical kit
Hedman	2012	Cognitive behavior therapy via the Internet: a systematic review of applications, clinical efficacy and cost-effectiveness
Hegerl	2004	Should combined pharmaco- and psychotherapy be offered to depressed patients? A qualitative review of randomized clinical trials from
		the 1990s
Henken	2007	Family therapy for depression
Hrynyschyn	2021	Effectiveness of Smartphone-Based Cognitive Behavioral Therapy Among Patients With Major Depression: Systematic Review of Health
		Implications
Huguet	2018	A systematic review and meta-analysis on the efficacy of Internet-delivered behavioral activation
Hunot	2013	'Third wave' cognitive and behavioural therapies versus other psychological therapies for depression
Huntley	2012	Group psychological therapies for depression in the community: systematic review and meta-analysis
Ijaz	2018	Psychological therapies for treatment-resistant depression in adults
Jakobsen	2011	The effect of interpersonal psychotherapy and other psychodynamic therapies versus 'treatment as usual' in patients with major depressive
		disorder
Jakobsen	2011	The effects of cognitive therapy versus 'no intervention' for major depressive disorder
Jakobsen	2011	The Effects of Cognitive Therapy versus 'No Intervention' for Major Depressive Disorder
Jakobsen	2011	The effects of cognitive therapy versus 'treatment as usual' in patients with major depressive disorder
Jakobsen	2012	The effect of adding psychodynamic therapy to antidepressants in patients with major depressive disorder. A systematic review of
		randomized clinical trials with meta-analyses and trial sequential analyses

Jakobsen	2012	Effects of cognitive therapy versus interpersonal psychotherapy in patients with major depressive disorder: a systematic review of
		randomized clinical trials with meta-analyses and trial sequential analyses
Jakobsen	2014	Systematic reviews of randomised clinical trials examining the effects of psychotherapeutic interventions versus "no intervention" for
		acute major depressive disorder and a randomised trial examining the effects of "third wave" cognitive therapy versus mentalization-based
		treatment for acute major depressive disorder
Johnsen	2015	The effects of cognitive behavioral therapy as an anti-depressive treatment is falling: A meta-analysis
Kaltenthaler	2002	A systematic review and economic evaluation of computerised cognitive behaviour therapy for depression and anxiety
Kaltenthaler	2008	Computerised cognitive-behavioural therapy for depression: systematic review
Kaltenthaler	2008	The acceptability to patients of computerized cognitive behaviour therapy for depression: a systematic review
Karyotaki	2017	Efficacy of Self-guided Internet-Based Cognitive Behavioral Therapy in the Treatment of Depressive Symptoms: A Meta-analysis of
		Individual Participant Data
†Karyotaki	2018	Is self-guided internet-based cognitive behavioural therapy (iCBT) harmful? An individual participant data meta-analysis
Karyotaki	2021	Internet-Based Cognitive Behavioral Therapy for Depression: A Systematic Review and Individual Patient Data Network Meta-analysis
Kendrick	2016	Routine use of patient reported outcome measures (PROMs) for improving treatment of common mental health disorders in adults
Kohnen	2021	Evidence on Technology-Based Psychological Interventions in Diagnosed Depression: Systematic Review
Kriston	2014	Efficacy and acceptability of acute treatments for persistent depressive disorder: a network meta-analysis
Kuroda	2021	Discovering Common Elements of Empirically Supported Self-Help Interventions for Depression in Primary Care: a Systematic Review
Leichsenring	2001	Comparative effects of short-term psychodynamic psychotherapy and cognitive-behavioral therapy in depression: a meta-analytic
		approach
Leichsenring	2014	Empirically supported methods of short-term psychodynamic therapy in depression - towards an evidence-based unified protocol
Li	2018	Cognitive behavioral therapy for treatment-resistant depression: A systematic review and meta-analysis
Linde	2015	Comparative effectiveness of psychological treatments for depressive disorders in primary care: network meta-analysis
†Linde	2015	Effectiveness of psychological treatments for depressive disorders in primary care: systematic review and meta-analysis
Luo	2020	A comparison of electronically-delivered and face to face cognitive behavioural therapies in depressive disorders: A systematic review and
		meta-analysis

Malik	2021	Behavioral Activation as an 'active ingredient' of interventions addressing depression and anxiety among young people: a systematic review
		and evidence synthesis
Maund	2019	Managing Antidepressant Discontinuation: A Systematic Review
Mazzucchelli	2010	Behavioral activation interventions for well-being: A meta-analysis
McNaughton	2009	Brief interventions for depression in primary care A systematic review
Mogoase	2017	Internet-Based Psychotherapy for Adult Depression: What About the Mechanisms of Change?
Musiat	2022	Impact of guidance on intervention adherence in computerised interventions for mental health problems: a meta-analysis
Negt	2016	The treatment of chronic depression with cognitive behavioral analysis system of psychotherapy: a systematic review and meta-analysis
		of randomized-controlled clinical trials
Ng	2018	The efficacy of cognitive behavioral therapy for Chinese people: A meta-analysis
Okumura	2014	Efficacy and acceptability of group cognitive behavioral therapy for depression: a systematic review and meta-analysis
Pang	2021	Efficacy of web-based self-management interventions for depressive symptoms: a meta-analysis of randomized controlled trials
Phadsri	2021	Nonpharmacological Treatment for Supporting Social Participation of Adults with Depression
Pim Cuijpers	2013	A meta-analysis of cognitive-behavioural therapy for adult depression, alone and in comparison with other treatments
Rice	2014	Online and social networking interventions for the treatment of depression in young people: a systematic review
Roshanaei-Moghaddam	2011	Relative effects of CBT and pharmacotherapy in depression versus anxiety: is medication somewhat better for depression, and CBT
		somewhat better for anxiety?
Rost	2017	User Acceptance of Computerized Cognitive Behavioral Therapy for Depression: Systematic Review
Saddichha	2014	Online interventions for depression and anxiety - a systematic review
Santoft	2019	Cognitive behaviour therapy for depression in primary care: systematic review and meta-analysis
Senanayake	2019	Effectiveness of text messaging interventions for the management of depression: A systematic review and meta-analysis
Shalom	2020	A meta-analysis of sudden gains in psychotherapy: Outcome and moderators
Shinohara	2013	Behavioural therapies versus other psychological therapies for depression
Silman	2020	How effective is augmentation with psychotherapy as a next-step option for treatment-resistant depression?
Simmonds-Buckley	2019	Acceptability and Efficacy of Group Behavioral Activation for Depression Among Adults: A Meta-Analysis

Simmonds-Buckley	2020	Acceptability and Effectiveness of NHS-Recommended e-Therapies for Depression, Anxiety, and Stress: Meta-Analysis
Six	2021	Examining the Effectiveness of Gamification in Mental Health Apps for Depression: Systematic Review and Meta-analysis
So	2013	Is computerised CBT really helpful for adult depression?-A meta-analytic re-evaluation of CCBT for adult depression in terms of clinical
		implementation and methodological validity
Spek	2007	Internet-based cognitive behaviour therapy for symptoms of depression and anxiety: a meta-analysis
Stein	2021	Looking beyond depression: a meta-analysis of the effect of behavioral activation on depression, anxiety, and activation
Steinert	2017	Psychodynamic Therapy: As Efficacious as Other Empirically Supported Treatments? A Meta-Analysis Testing Equivalence of Outcomes
Svartberg	1991	Comparative effects of short-term psychodynamic psychotherapy: a meta-analysis
Sztein	2018	Efficacy of cognitive behavioural therapy delivered over the Internet for depressive symptoms: A systematic review and meta-analysis
Thase	1997	Treatment of major depression with psychotherapy or psychotherapy-pharmacotherapy combinations
Timbie	2006	A Meta-Analysis of Labor Supply Effects of Interventions for Major Depressive Disorder
Tolin	2010	Is cognitive-behavioral therapy more effective than other therapies? A meta-analytic review
Tolin	2017	Can Cognitive Behavioral Therapy for Anxiety and Depression Be Improved with Pharmacotherapy? A Meta-analysis
Trivedi	2011	Examination of the utility of psychotherapy for patients with treatment resistant depression: a systematic review
Twomey	2015	Effectiveness of cognitive behavioural therapy for anxiety and depression in primary care: a meta-analysis
Twomey	2017	Effectiveness of a freely available computerised cognitive behavioural therapy programme (MoodGYM) for depression: Meta-analysis
Twomey	2017	Effectiveness of an individually-tailored computerised CBT programme (Deprexis) for depression: A meta-analysis
Uphoff	2020	Behavioural activation therapy for depression in adults
Vallury	2015	Computerized Cognitive Behavior Therapy for Anxiety and Depression in Rural Areas: A Systematic Review
van Ballegooijen	2014	Adherence to Internet-based and face-to-face cognitive behavioural therapy for depression: a meta-analysis
van Bronswijk	2019	Effectiveness of psychotherapy for treatment-resistant depression: a meta-analysis and meta-regression
van Hees	2013	The effectiveness of individual interpersonal psychotherapy as a treatment for major depressive disorder in adult outpatients: a systematic
		review
van't Hof	2011	Psychological treatments for depression and anxiety disorders in low- and middle- income countries: a meta-analysis
Vittengl	2016	Divergent Outcomes in Cognitive-Behavioral Therapy and Pharmacotherapy for Adult Depression

Wade	2010	Use of the Internet to Assist in the Treatment of Depression and Anxiety: A Systematic Review	
Wakefield	2021	Improving Access to Psychological Therapies (IAPT) in the United Kingdom: A systematic review and meta-analysis of 10-years of	
		practice-based evidence	
Waller	2009	Barriers to the uptake of computerized cognitive behavioural therapy: a systematic review of the quantitative and qualitative evidence	
Watts	2015	Treatment-as-usual (TAU) is anything but usual: a meta-analysis of CBT versus TAU for anxiety and depression	
Weitz	2015	Baseline Depression Severity as Moderator of Depression Outcomes Between Cognitive Behavioral Therapy vs Pharmacotherapy: An	
		Individual Patient Data Meta-analysis	
Wells	2018	Computer-Assisted Cognitive-Behavior Therapy for Depression in Primary Care: Systematic Review and Meta-Analysis	
Whiston	2019	Towards personalising treatment: a systematic review and meta-analysis of face-to-face efficacy moderators of cognitive-behavioral	
		therapy and interpersonal psychotherapy for major depressive disorder	
Wilks	2016	Are Trials of Computerized Therapy Generalizable? A Multidimensional Meta-analysis	
Wright	2019	Computer-Assisted Cognitive-Behavior Therapy for Depression: A Systematic Review and Meta-Analysis	
López-López	2019	The process and delivery of CBT for depression in adults: a systematic review and network meta-analysis	
†Wu	2020	Cost-Effectiveness of Different Formats for Delivery of Cognitive Behavioral Therapy for Depression: A Systematic Review Based	
		Economic Model	
Zakhour	2020	Cognitive-behavioral therapy for treatment-resistant depression in adults and adolescents: a systematic review	
Zhang	2019	The effectiveness of four empirically supported psychotherapies for primary care depression and anxiety: A systematic review and meta-	
		analysis	
Zhao	2017	Systematic review of the information and communication technology features of web- and mobile-based psychoeducational interventions	
		for depression	
Zhou	2016	Internet-based cognitive behavioural therapy for subthreshold depression: a systematic review and meta-analysis	
Zhou	2017	Effect of Cognitive Behavioral Therapy Versus Interpersonal Psychotherapy in Patients with Major Depressive Disorder: A Meta-analysis	
		of Randomized Controlled Trials	
Zhou	2021	Are online mental health interventions for youth effective? A systematic review	

†The same data as the above study was used

Author	published year	exclusion reason
Abbass	2003	unsuitable study format (non-systematic review)
Baker	2015	Study aims other than intervention efficacy
Bourbeau	2020	unsuitable intervention (exercise)
Bower	2001	unsuitable participants
Brunwasser	2009	unsuitable participants
Chen	2019	lack of data
Ciapponi	2017	Study aims other than intervention efficacy
Cuijpers	2019	unsuitable intervention
Cuijpers	2021	unsuitable intervention
Etzelmueller	2020	no RCT included
Farah	2016	unsuitable study format (a review of systematic reviews and meta-analyses)
Fernandez	2021	unsuitable intervention
Furukawa	2021	unsuitable intervention
Gaudiano	2009	unsuitable study format (Letter)
Gonzalez-Valero	2019	no RCT included
Gould	2001	unsuitable study format (letter to the editor)
Hans	2013	no RCT included
Hoppen	2021	unsuitable intervention (exercise)
Hoyer	2020	unsuitable study format (non-systematic review)
Huguet	2016	Study aims other than intervention efficacy
Jain	2015	Study aims other than intervention efficacy
Jonasson	2019	unsuitable intervention
Kayrouz	2018	unsuitable participants
Khan	2007	unsuitable study format (meta-synthesis)
Leigh-Hunt	2015	unsuitable participants
Ма	2021	unsuitable participants
Machmutow	2019	Study aims other than intervention efficacy
Maleki	2020	unsuitable intervention
Mayo-Wilson	2007	unsuitable study format (letter)
McCall	2021	unsuitable intervention
Oestergaard	2011	unsuitable study format (a systematic review of systematic reviews)
Oliveira	2021	unsuitable participants
Ontario, Health Quality	2019	unsuitable study format (analysis of meta-analysis)

 Table S2 : List of excluded reports by searching systematic reviews (network/meta-analysis)

Pantoja	2017	Study aims other than intervention efficacy
Parker	2003	unsuitable study format (non-systematic review)
Parker	2006	unsuitable study format (non-systematic review)
Pott	2022	unsuitable participants (substance users)
Price	2007	unsuitable study format (a systematic review of systematic reviews)
Rifkin	2003	unsuitable study format (letter)
Rutherford	2009	unsuitable study format (a review of a meta-analysis)
Schmidt	2018	unsuitable study format (comment)
Scott	2001	unsuitable study format (non-systematic review)
Sin	2015	unsuitable participants (siblings of patients)
Sturmey	2009	unsuitable study format (review of three meta-analysis)
Svarterg	1993	unsuitable study format (letter)
Twomey	2016	unsuitable study format (letter)
Van Leeuwen	2021	unsuitable intervention

Table S2 : (continued) List of excluded reports by searching systematic reviews (network/meta-analysis)

RCT = randomized controlled trial

Author	published	title
	year	
Altamura	2017	Comparing interpersonal counseling and antidepressant treatment in primary care patients with anxious and no anxious
		major depression disorder: a randomized control trial
Andersson	2013	Randomised controlled non-inferiority trial with 3-year follow-up of internet-delivered versus face-to-face group
		cognitive behavioural therapy for depression
Bagby	2008	Personality and Differential Treatment Response in Major Depression: A Randomized Controlled Trial Comparing
		Cognitive-Behavioural Therapy and Pharmacotherapy
Barber	2012	Short-term dynamic psychotherapy versus pharmacotherapy for major depressive disorder: a randomized, placebo-
		controlled trial
Berger	2011	Internet-based treatment of depression: a randomized controlled trial comparing guided with unguided self-help
Bernecker	2016	Attachment style as a moderating influence on the efficacy of cognitive-behavioral and interpersonal psychotherapy
		for depression: A failure to replicate
Blackburn	1997	Controlled acute and follow-up trial of cognitive therapy and pharmacotherapy in out-patients with recurrent
		depression
Blom	2007	Combination treatment for acute depression is superior only when psychotherapy is added to medication
†Blom	2007	Severity and duration of depression, not personality factors, predict short term outcome in the treatment of major
		depression.
Bodenmann	2008	Effects of coping-oriented couples therapy on depression: a randomized clinical trial
Bright	1999	Professional and paraprofessional group treatments for depression: A comparison of cognitive-behavioral and mutual
		support interventions.
Brown	1996	Treatment outcomes for primary care patients with major depression and lifetime anxiety disorders
Browne	2002	Sertraline and/or interpersonal psychotherapy for patients with dysthymic disorder in primary care: 6-month
		comparison with longitudinal 2-year follow-up of effectiveness and costs
Bruijniks	2020	The effects of once- versus twice-weekly sessions on psychotherapy outcomes in depressed patients
†Bruijniks	2021	The relation between therapy quality, therapy processes and outcomes and identifying for whom therapy quality
		matters in CBT and IPT for depression
†Bruijniks	2022	Individual differences in response to once versus twice weekly sessions of CBT and IPT for depression
Burnand	2002	Psychodynamic psychotherapy and clomipramine in the treatment of major depression

Table S3: List of included randomized controlled trials

Chan	2012	A Chinese Chan-based mind-body intervention for patients with depression
Chiang	2015	One-Year Follow-Up of the Effectiveness of Cognitive Behavioral Group Therapy for Patients' Depression: A Randomized, Single-Blinded, Controlled Study
de Jonghe	2001	Combining psychotherapy and antidepressants in the treatment of depression
de Mello	2001	A randomized controlled trial comparing moclobemide and moclobemide plus interpersonal psychotherapy in the treatment of dysthymic disorder
Dimidjian	2006	Randomized trial of behavioral activation, cognitive therapy, and antidepressant medication in the acute treatment of adults with major depression
†Coffman	2007	Extreme nonresponse in cognitive therapy: can behavioral activation succeed where cognitive therapy fails?
Dozois	2009	Changes in self-schema structure in cognitive therapy for major depressive disorder: a randomized clinical trial
†Dozois	2014	Changes in core beliefs (early maladaptive schemas) and self-representation in cognitive therapy and pharmacotherapy for depression
Dunlop	2017	Effects of Patient Preferences on Outcomes in the Predictors of Remission in Depression to Individual and Combined Treatments (PReDICT) Study
Dunner	1996	Cognitive therapy versus fluoxetine in the treatment of dysthymic disorder
Ekers	2011	Behavioural activation delivered by the non-specialist: phase II randomised controlled trial
Elkin	1989	National Institute of Mental Health Treatment of Depression Collaborative Research Program. General effectiveness of treatments
†Shea	1992	Course of depressive symptoms over follow-up. Findings from the National Institutes of Mental Health Treatment of Depression Collaborative Research Program.
Embling	2002	The effectiveness of cognitive behavioural therapy in depression
Fonagy	2015	Pragmatic randomized controlled trial of long-term psychoanalytic psychotherapy for treatment-resistant depression: the Tavistock Adult Depression Study (TADS)
Gibbons	2016	Comparative Effectiveness of Cognitive Therapy and Dynamic Psychotherapy for Major Depressive Disorder in a Community Mental Health Setting: A Randomized Clinical Noninferiority Trial
†Jennissen	2021	Insight as a mechanism of change in dynamic therapy for major depressive disorder
Han	2020	A mind-body lifestyle intervention enhances emotional control in patients with major depressive disorder: a randomized, controlled study
Hemanny	2020	Efficacy of trial-based cognitive therapy, behavioral activation and treatment as usual in the treatment of major depressive disorder: preliminary findings from a randomized clinical trial

Table S3: (continued) List of included randomized controlled trials

Holländare	2011	Randomized trial of Internet-based relapse prevention for partially remitted depression		
†Holländare	2013	Two-year outcome of internet-based relapse prevention for partially remitted depression		
Hollon	1992	Cognitive therapy and pharmacotherapy for depression		
Jacobson	1996	A component analysis of cognitive-behavioral treatment for depression		
Jarrett	1999	Treatment of atypical depression with cognitive therapy or phenelzine: a double-blind, placebo-controlled trial		
Johansson	2012	Tailored vs. standardized internet-based cognitive behavior therapy for depression and comorbid symptoms: a randomized controlled trial		
Johansson	2019	Effectiveness of guided internet-delivered cognitive behavior therapy for depression in routine psychiatry: A randomized controlled trial		
Katayama	2022	Cognitive behavioral therapy effects on frontopolar cortex function during future thinking in major depressive disorder: A randomized clinical trial		
Keller	2000	A comparison of nefazodone, the cognitive behavioral-analysis system of psychotherapy, and their combination for the treatment of chronic depression		
Kennedy	2007	Differences in Brain Glucose Metabolism Between Responders to CBT and Venlafaxine in a 16-Week Randomized Controlled Trial		
King	2014	Comparison of non-directive counselling and cognitive behaviour therapy for patients presenting in general practice with an ICD-10 depressive episode: a randomized control trial		
†Bower	2000	Randomised controlled trial of non-directive counseling cognitive behaviour therapy, and usual general practitioner care for patients with depression. II : cost effectiveness.		
†King	2000	Randomised controlled trial of non-directive counselling, cognitive-behaviour therapy and usual general practitioner care in the management of depression as well as mixed anxiety and depression in primary care.		
†Ward	2000	Randomised controlled trial of non-directive counseling, cognitive-behaviour therapy, and usual general practitioner care for patients with depression. :Clinical effectiveness		
Kocsis	2009	Cognitive behavioral analysis system of psychotherapy and brief supportive psychotherapy for augmentation of antidepressant nonresponse in chronic depression: the REVAMP Trial		
Kooistra	2019	Cost and Effectiveness of Blended Versus Standard Cognitive Behavioral Therapy for Outpatients With Depression in Routine Specialized Mental Health Care: Pilot Randomized Controlled Trial		
Lemmens	2015	Clinical effectiveness of cognitive therapy v. interpersonal psychotherapy for depression: results of a randomized controlled trial		
†van Bronswijk	2021	Precision medicine for long-term depression outcomes using the Personalized Advantage Index approach: cognitive therapy or interpersonal psychotherapy?		

Table S3: (continued) List of included randomized controlled trials

†van Bronswijk	2021	Selecting the optimal treatment for a depressed individual: Clinical judgment or statistical prediction?		
†Kuzminskaite	2021	Patient Choice in Depression Psychotherapy: Outcomes of Patient-Preferred Therapy Versus Randomly Allocated Therapy		
Mantani	2017	Smartphone Cognitive Behavioral Therapy as an Adjunct to Pharmacotherapy for Refractory Depression: Randomized Controlled Trial		
Markowitz	2005	A comparative trial of psychotherapy and pharmacotherapy for "pure" dysthymic patients		
Marshall	2008	Self-criticism predicts differential response to treatment for major depression		
McBride	2006	Attachment as moderator of treatment outcome in major depression: a randomized control trial of interpersonal psychotherapy versus cognitive behavior therapy		
McBride	2007	Changes in autobiographical memory specificity following cognitive behavior therapy and pharmacotherapy for major depression		
McGrath	2013	Toward a neuroimaging treatment selection biomarker for major depressive disorder		
McKnight	1992	Dexamethasone Suppression Test and Response to Cognitive Therapy and Antidepressant Medication		
Menchetti	2014	Moderators of remission with interpersonal counselling or drug treatment in primary care patients with depression randomised controlled trial		
Michalak	2015	A randomized controlled trial on the efficacy of mindfulness-based cognitive therapy and a group version of cognitive behavioral analysis system of psychotherapy for chronically depressed patients		
Mohr	2013	A randomized controlled trial evaluating a manualized Tele Coaching protocol for improving adherence to a web- based intervention for the treatment of depression		
Murphy	1995	Cognitive behavior therapy, relaxation training, and tricyclic antidepressant medication in the treatment of depression		
Nakagawa	2017	Effectiveness of Supplementary Cognitive-Behavioral Therapy for Pharmacotherapy-Resistant Depression: A Randomized Controlled Trial		
†Sado	2021	Cost-effectiveness analyses of augmented cognitive behavioral therapy for pharmacotherapy-resistant depression at secondary mental health care settings		
Nakao	2018	Web-Based Cognitive Behavioral Therapy Blended With Face-to-Face Sessions for Major Depression: Randomized Controlled Trial		
Oehler	2020	Efficacy of a Guided Web-Based Self-Management Intervention for Depression or Dysthymia: Randomized Controlled Trial With a 12-Month Follow-Up Using an Active Control Condition		
Parker	2013	The superiority of antidepressant medication to cognitive behavior therapy in melancholic depressed patients: a 1 week single-blind randomized study		

Table S3: (continued) List of included randomized controlled trials

Perini	2009	Clinician-assisted Internet-based treatment is effective for depression: Randomized controlled trial	
Power	2012	A randomized controlled trial of IPT versus CBT in primary care: with some cautionary notes about handling missing values in clinical trials	
Propst	1992	Comparative efficacy of religious and nonreligious cognitive-behavioral therapy for the treatment of clini depression in religious individuals	
Quilty	2008	Evidence for the cognitive mediational model of cognitive behavioural therapy for depression	
Quilty	2014	Cognitive Structure and Processing During Cognitive Behavioral Therapy vs. Pharmacotherapy for Depression	
Ravindran	1999	Treatment of primary dysthymia with group cognitive therapy and pharmacotherapy: clinical symptoms and functional impairments	
Reins	2019	The more I got, the less I need? Efficacy of Internet-based guided self-help compared to online psychoeducation for major depressive disorder	
Richards	2017	Cost and Outcome of BehaviouRal Activation (COBRA): a randomised controlled trial of behavioural activation versus cognitive-behavioural therapy for depression	
†Richards	2016	Cost and Outcome of Behavioural Activation versus Cognitive Behavioural Therapy for Depression (COBRA): a randomised, controlled, non-inferiority trial.	
Rief	2018	Comparing the Efficacy of CBASP with Two Versions of CBT for Depression in a Routine Care Center: A Randomized Clinical Trial	
Sava	2009	Cost-effectiveness and cost-utility of cognitive therapy, rational emotive behavioral therapy, and fluoxetine (Prozac) in treating depression: a randomized clinical trial	
Schramm	2011	Cognitive behavioral analysis system of psychotherapy versus interpersonal psychotherapy for early-onset chronic depression: a randomized pilot study	
Schramm	2015	Cognitive Behavioral Analysis System of Psychotherapy versus Escitalopram in Chronic Major Depression	
Schramm	2017	Effect of Disorder-Specific vs Nonspecific Psychotherapy for Chronic Depression A Randomized Clinical Trial	
†Meister	2020	Adverse events during a disorder-specific psychotherapy compared to a nonspecific psychotherapy in patients with chronic depression	
Scott	1992	Edinburgh primary care depression study: treatment outcome, patient satisfaction, and cost after 16 weeks	
Scott	1997	Acute and one-year outcome of a randomised controlled trial of brief cognitive therapy for major depressive disorder in primary care	
Scott	2000	Effects of cognitive therapy on psychological symptoms and social functioning in residual depression	
†Paykel	1999	Prevention of relapse in residual depression by cognitive therapy.	

Table S3: (continued) List of included randomized controlled trials

†Scott	2003	Use of cognitive therapy for relapse prevention in chronic depression. Cost-effectiveness study.	
†Paykel	2005	Duration of relapse prevention after cognitive therapy in residual depression: follow up of controlled trial.	
Segal	2006	Cognitive Reactivity to Sad Mood Provocation and the Prediction of Depressive Relapse	
Shamsaei	2008	Efficacy of Pharmacotherapy and Cognitive Therapy, Alone and in Combination in Major Depressive Disorder	
Shapiro	1990	The Second Sheffield Psychotherapy Project :Rationale, design and preliminary outcome data	
Shapiro	1994	Effects of treatment duration and severity of depression on the effectiveness of cognitive-behavioral and psychodynamic-interpersonal psychotherapy	
†Hardy	1995	Impact of cluster C personality disorders on outcomes of contrasting brief psychotherapies for depression.	
Smith	2017	Help from home for depression: A randomised controlled trial comparing internet-delivered cognitive behaviour therapy with bibliotherapy for depression	
Souza	2016	Interpersonal psychotherapy as add-on for treatment-resistant depression: A pragmatic randomized controlled trial	
Stravynski	1994	The treatment of depression with group behavioural-cognitive therapy and imipramine	
Thase	2018	Improving the Efficiency of Psychotherapy for Depression: Computer-Assisted Versus Standard CBT	
Tollefson	1990	24 Hour Urinary Dehydroepiandrosterone Sulfate in Unipolar Depression Treated with Cognitive and/or Pharmacotherapy	
Tong	2020	Group cognitive behavioural therapy can reduce stigma and improve treatment compliance in major depressive disorder patients	
Vernmark	2010	Internet administered guided self-help versus individualized e-mail therapy: A randomized trial of two versions of CBT for major depression	
†Andersson	2013	A 3.5-year follow-up of internet-delivered cognitive behavior therapy for major depression	
Wiles	2008	A Randomized Controlled Trial of Cognitive Behavioural Therapy as an Adjunct to Pharmacotherapy in Primary Care Based Patients with Treatment Resistant Depression: A Pilot Study	
†Mcknight	2013	Cognitive-behavioral therapy improved response and remission at 6 and 12 months in treatment-resistant depression	
†Wiles	2014	Clinical effectiveness and cost effectiveness of cognitive behavioural therapy as an adjunct to pharmacotherapy for treatment-resistant depression in primary care: the CoBalT randomised controlled trial.	
†Hollinghurst	2014	Cost-effectiveness of cognitive-behavioural therapy as an adjunct to pharmacotherapy for treatment resistant depression in primary care: economic evaluation of the CoBalT Trial.	
†Abel	2016	Sudden gains in cognitive-behavior therapy for treatment-resistant depression: processes of change.	

Table S3: (continued) List of included randomized controlled trials

†Wiles	2016	Long-term effectiveness and cost effectiveness of cognitive behavioural therapy as an adjunct to pharmacotherapy for
		treatment-resistant depression in primary care: follow-up of the CoBalT randomised controlled trial.
Wollersheim	1991	Group treatment of unipolar depression: A comparison of coping, supportive, bibliotherapy, and delayed treatment
		groups.
Wong	2008	Cognitive behavioral treatment groups for people with chronic depression in Hong Kong: a randomized wait-list
		control design
†Wong	2008	Cognitive and Health-Related Outcomes of Group Cognitive Behavioural Treatment for People With Depressive
		Symptoms in Hong Kong: Randomized Wait-List Control Study.
Zu	2014	A comparison of cognitive-behavioral therapy, antidepressants, their combination and standard treatment for Chinese
		patients with moderate-severe major depressive disorders

Table S3: (continued) List of included randomized controlled trials

†The same data as the above study was used.

Author	published vear	exclusion reason
Andersson	2005	unsuitable participants (no diagnosis of depression)
Barker	1987	unsuitable participants (inpatients)
Beach	1992	unsuitable participants (marital discord)
Beevers	2017	unsuitable participants (no diagnosis of depression)
Bellack	1981	unsuitable intervention (Placebo +DYN)
Beutler	1981	study aims other than intervention efficacy
Beutler	1991	study aims other than intervention efficacy
Blackburn	1981	lack of data
Blackburn	1986	unsuitable participants (patients after cognitive therapy)
Bolier	2013	unsuitable participants (no diagnosis of depression)
Braithwaite	2007	unsuitable participants (no diagnosis of depression)
Chowdhary	2016	unsuitable participants (no diagnosis of depression)
Christensen	2004	study aims other than intervention efficacy
Christensen	2006	unsuitable participants (no diagnosis of depression)
Conradi	2007	lack of data
Conradi	2008	lack of data
Covi	1987	lack of data
Cramer	2011	unsuitable participants (no diagnosis of depression)
Crits-Christoph	2021	lack of data
Cuijpers	2005	unsuitable participants (mood disorder)
Dalgard	2006	lack of data
de Graaf	2009	unsuitable intervention (unsupported iCBT)
den Boer	2007	unsuitable participants (no diagnosis of depression)
DeRubeis	2005	lack of data
DiMascio	1979	lack of data
Donker	2013	unsuitable intervention (internet IPT)
Driessen	2013	lack of data
Dunn	1979	unsuitable participants (no diagnosis of depression)
Earll	1982	unsuitable participants (no diagnosis of depression)
Ekeblad	2016	unsuitable intervention (mindfulness)
Ekers	2011	study aims other than intervention efficacy (cost effectiveness)
Fennell	1987	lack of data
Fleming	1980	unsuitable participants (no diagnosis of depression)
Fonagy	2020	non-RCT
Forand	2018	unsuitable participants (no diagnosis of depression)

 Table S4: List of excluded reports by searching randomized controlled trials

Table S4: ((continued) List of excluded	reports by	y searching ran	domized con	trolled trials
,	\	/				

Geraedts	2014	unsuitable participants (no diagnosis of depression)
Gibbons	2012	unsuitable participants (no diagnosis of depression)
Gilbody	2015	unsuitable participants (no diagnosis of depression)
Hallgren	2015	unsuitable participants (no diagnosis of depression)
Hallgren	2016	unsuitable participants (no diagnosis of depression)
Hamamci	2006	unsuitable participants (no diagnosis of depression)
Hamdan- Mansour	2009	unsuitable participants (no diagnosis of depression)
Hammen	1975	non-RCT
Hellerstein	2001	unsuitable intervention (combined CBT with IPT)
Hickie	2010	unsuitable participants (no diagnosis of depression)
Hoifodt	2013	unsuitable participants (no diagnosis of depression)
Holdsworth	2009	unsuitable participants (non-depression included)
Hopko	2003	non-RCT
Husain	2014	unsuitable participants (no diagnosis of depression)
Hyer	2008	unsuitable participants (elderly)
Jacobs	2001	unsuitable participants (non-depression included)
Kanter	2015	unsuitable participants (immigrant)
Katon	1996	unsuitable participants (no diagnosis of depression)
Kellett	2021	non-RCT
Kessler	2009	unsuitable intervention (online CBT)
Kivi	2014	lack of data
Klein	2016	unsuitable participants (no diagnosis of depression)
Kovacs	1981	unsuitable participants (no diagnosis of depression)
Kramer	2021	unsuitable participants (no diagnosis of depression)
Kürümlüoğlugil	2022	outcomes by other scales (ATQ, DAS, ICDS)
Lambert	2018	unsuitable participants (no diagnosis of depression)
Lang	2006	outcomes by other scales (Brief Symptom Inventory)
Lave	1998	lack of data
Lee	2022	unsuitable intervention (group BA)
Levesque	2011	unsuitable intervention (preventive therapy)
Levin	2011	unsuitable participants (non-depression included)
Littlewood	2015	unsuitable participants (no diagnosis of depression)
Lobner	2018	unsuitable intervention (unsupported iCBT)
Luty	2007	unsuitable participants (included bipolar)
Mackinnon	2008	unsuitable participants (no diagnosis of depression)
Martin	2001	non-RCT

Table S4: (continued) List of excluded reports by searching randomized controlled trials

Maynard	1993	unsuitable participants (no diagnosis of depression)	
McClay	2015	unsuitable participants (no diagnosis of depression)	
McCrone	2004	unsuitable participants (no diagnosis of depression)	
McIndoo	2016	unsuitable participants (no diagnosis of depression)	
McLean	1979	unsuitable intervention (BT (non-CBT, non-BA) vs TAU)	
McLean	1990	unsuitable intervention	
McNamara	1986	unsuitable participants (no diagnosis of depression)	
Melville	2010	non-RCT	
Meyer	2009	unsuitable intervention (iCBT without support)	
Miranda	2003	unsuitable intervention (CBT group included group therapy and individual one)	
Moggia	2020	unsuitable intervention (CBT vs DFT)	
Moradveisi	2013	lack of data	
Moradveisi	2015	lack of data	
Moritz	2012	unsuitable intervention (iCBT without support)	
Mukhtar	2011	outcomes by other scales (DAS, ATQ)	
Murphy	1984	unsuitable participants (affective disorder)	
Neimeyer	1990	unsuitable intervention (group IPT)	
Newby	2013	unsuitable participants (no diagnosis of depression)	
Newby	2014	unsuitable intervention (durateion:1week)	
Nezu	1989	unsuitable intervention (PST v s CBT)	
Nwabuko	2020	unsuitable participants (no diagnosis of depression)	
Ofoegbu	2020	unsuitable participants (no diagnosis of depression)	
Omidi	2013	outcomes by other scales (BSI)	
Pace	1993	unsuitable participants (no diagnosis of depression)	
Patel	2017	unsuitable participants (no diagnosis of depression)	
Perry	2020	study aims other than intervention efficacy	
Peters	2020	unsuitable intervention (narrative therapy v s CBT)	
Phillips	2014	unsuitable participants (non-depression included)	
Pittaway	2009	unsuitable participants (non-depression included)	
Place	2020	unsuitable intervention (TAU vs TAU + mobile monitoring)	
Proudfoot	2003	unsuitable participants (non-depression included)	
Proudfoot	2004	unsuitable participants (non-depression included)	
Raevuori	2021	unsuitable intervention (mindfulness)	
Revicki	2005	unsuitable intervention (CBT group including group and individual therapy)	
Richards	2015	unsuitable intervention (TAU vs TAU + preventing cognitive therapy)	

Table S4: (continued) List of excluded	reports by	v searching	randomized	controlled	trials
		,					

Rizvi	2015	lack of data
Robichaud	2020	unsuitable participants (no diagnosis of depression)
Robson	1984	unsuitable participants (non-depression included)
Roepke	2015	unsuitable participants (no diagnosis of depression)
Ross	1985	unsuitable participants (no diagnosis of depression)
Rush	1977	unsuitable participants (no diagnosis of depression)
Rush	1981	non-RCT
Ruwaard	2009	unsuitable participants (no diagnosis of depression)
Salisbury	2016	unsuitable intervention (Bibliotherapy)
Salminen	2008	lack of data
Saloheimo	2016	lack of data
Santos	2017	unsuitable participants (immigrants)
Schloegelhofer	2014	unsuitable intervention (Bibliotherapy)
Schneider	2014	study aims other than intervention efficacy
Schulberg	1996	lack of data
Scott	1990	non-RCT
Selmi	1991	unsuitable participants (no diagnosis of depression)
Serretti	2013	non-RCT
Shapiro	1982	unsuitable participants (adjustment disorder with depressed or anxious mood)
Shaw	1977	unsuitable participants (no diagnosis of depression)
Simons	1984	unsuitable participants (affective disorder)
Simons	1984	unsuitable participants (affective disorder)
Simpson	2003	unsuitable participants (no diagnosis of depression)
Songprakun	2012	unsuitable intervention (Bibliotherapy vs TAU)
Stiles-Shields	2019	unsuitable participants (no diagnosis of depression)
Tang	2002	non-RCT
Tang	2005	unsuitable intervention (AT v s CT)
Teasdale	1984	lack of data
Titov	2011	unsuitable intervention (transdiagnostic iCBT)
Tonning	2021	unsuitable participants (just discharged patients)
Town	2017	lack of data
Town	2022	lack of data
Tulbure	2018	unsuitable intervention (MBCT vs religious CBT vs WLC)
-	2010	
Twomey	2013	unsuitable participants (non-depression included)
Twomey Tyrer	2013 2014 1988	unsuitable participants (non-depression included) unsuitable participants (non-depression included)

Wagnar	2014	unquitable nortiginants (no diagnosis of depression)
wagner	2014	unsuitable participants (no diagnosis of depression)
Wang	2021	lack of data
0	-	
Warmerdam	2008	unsuitable participants (no diagnosis of depression)
Weissman	1979	outcomes by other scales (Raskin Three Area Depression Scale)
Weobong	2017	unsuitable participants (no diagnosis of depression)
Wetzel	1992	unsuitable participants (no diagnosis of depression)
Wiersma	2014	unsuitable intervention (CBASP v s TAU which included many
		psychotherapy, e.g., CBT, IPT, DYN, etc.)
Wierzbicki	1987	unsuitable participants (affective disorder)
Wilson	1983	unsuitable participants (no diagnosis of depression)
Wright	2005	lack of data
Yeung	2018	unsuitable participants (no diagnosis of depression)
Zeiss	1979	unsuitable intervention
Zemestani	2016	unsuitable intervention (group BA vs metacognitive therapy)
Zettle	1992	non-RCT

Table S4: (continued) List of excluded reports by searching randomized controlled trials

AT = automatic thoughts, ATQ = automatic thoughts questionnaire, BA = behavioral activation, BSI = brief symptom inventory, BT = behavioral therapy, CBASP=cognitive behavioral analysis system of psychotherapy, CBT = cognitive behavioral therapy, CT = cognitive therapy, DAS = dysfunctional attitude scale, DFT = Dilemma focused therapy, DYN = psychoanalytic/psychodynamic psychotherapy, iCBT = computerized- or internet-cognitive behavior therapy, ICDS = interpersonal cognitive distortions scale, IPT = interpersonal psychotherapy, MBCT = mindfulnessbased cognitive therapy, PST = problem solving therapy, RCT(s) = randomized controlled trial(s), TAU = treatment-as-usual, WLC = wait list control

Nr.	Author	year	treatment	mean age (SD)	baseline severity	primary outcome	secondary outcome	Duration (Weeks)	sessions	study form	note
1	Altamura	2017	1) IPT 2) TAU (pharmacotherapy)	40.36(12.46) 39.62(10.74)	mild	HRSD		8	6	PP	with anxiety
2	Altamura	2017	1) IPT 2) TAU (pharmacotherapy)	40.36(12.46) 39.62(10.74)	mild	HRSD		8	6	PP	without anxiety
3	Andersson	2013	1) iCBT 2) gCBT	42.37 (13.5)	moderate	BDI	MADRS- S	9	8	PP	
4	Bagby	2008	1) CBT (ftf) 2) TAU (pharmacotherapy)	38.1 (12.21)	severe	HRSD		16~20	16~20	PP	
5	Barber	2012	1) DYN 2) TAU (pharmacotherapy)	47.5 (12.2)	severe	HRSD		16	20	ITT	
6	Berger	2011	1) iCBT 2) WLC	38.8 (14.0)	moderate	BDI		10	10	ITT	
7	Bernecker	2016	1) CBT (ftf) 2) IPT	42.89(12.51) 34.06 (10.4)	moderate	BDI		16	16	PP	
8	Blackburn	1997	1) TAU (pharmacotherapy) 2) CBT (ftf)	40.1 (12.7) 39.6 (12)	severe	HRSD	BDI	16	16	mITT	
9	Blom	2007	 IPT IPT+p TAU (pharmacotherapy) 	41.08 (12.2) 41.08 (10.5) 40.08 (11.4)	severe	HRSD	MADRS	12	12	РР	
10	Bodenmann	2008	1) CBT (ftf) + p 2) IPT+p	44.35 47.33	moderate	HRSD	BDI	20	20	PP	

Table S5: Characteristics of included randomized controlled trials

11	Bright	1999	1) gCBT 2) TAU (mutual support group therapy)	45.8	moderate	HRSD	BDI	10	10	PP	by pro- fessional therapist
12	Bright	1999	1) gCBT 2) TAU (mutual support group therapy)	45.8	moderate	HRSD	BDI	10	10	РР	by parapro- fessional therapist
13	Brown	1996	1) IPT 2) TAU (pharmacotherapy)	35 (11.6)	severe	HRSD		16	16~20	ITT	without lifetime anxiety
14	Brown	1996	1) IPT 2) TAU (pharmacotherapy)	40 (11.2)	severe	HRSD		16	16~20	ITT	with lifetime anxiety
15	Browne	2002	1) IPT+p 2) IPT 3) TAU (pharmacotherapy)	42.4 (12.0)	moderate	MADRS		24	12	РР	
16	Bruijniks	2020	1) CBT (ftf) 2) IPT	37.85(12.26)	severe	BDI		16	12~20	ITT	twice weekly sessions
17	Bruijniks	2020	1) CBT (ftf) 2) IPT	37.85(12.26)	severe	BDI		24	12~20	ITT	once weekly sessions
18	Burnand	2002	1) DYN+p 2) TAU (pharmacotherapy)	36 (9.5)	severe	HRSD		10	N/I	ITT	
19	Chan	2012	1) gCBT+p 2) TAU (pharmacotherapy)	46.94 (6.54) 45.44 (8.25)	mild	HRSD		10	10	PP	
20	Chiang	2015	1)gCBT+p 2) TAU (usual outpatient psychiatric care)	45.43(10.88) 46.81(10.38)	severe	HRSD	BDI	12	12	ITT	

Table S5: (continued) Characteristics of included randomized controlled trials

21	De Jonghe	2001	1) DYN+p	34	severe	HRSD		24	16	ITT	
			2) TAU								
			(pharmacotherapy)								
22	de Mello	2001	1) IPT+p	N/I	severe	HRSD	MADRS	16	16	PP	
			2) TAU								
			(pharmacotherapy)								
23	Dimidjian	2006	1) BA	39.95	moderate	HRSD	BDI	16	max24	PP	
			2) CBT (ftf)	(10.28)							low
			3) TAU								MDD
			(pharmacotherapy)								
24	Dimidjian	2006	1) BA	39.86	severe	HRSD	BDI	16	max24	PP	
			2) CBT (ftf)	(11.50)							high
			3) TAU								severity
			(pharmacotherapy)								MIDD
25	Dozois	2009	1) CBT (ftf) +p	46.25 (10.6)	severe	HRSD	BDI	15	15	PP	
			2) TAU								
			(pharmacotherapy)								
26	Dunlop	2017	1) CBT (ftf)	40.0 (11.7)	moderate	HRSD	BDI	12	16	ITT	
			2) TAU								
			(pharmacotherapy)								SSRI
			3) TAU								
			(pharmacotherapy)								SNRI
27	Dunner	1996	1) CBT (ftf)	35.9	moderate	HRSD	BDI	16	16	PP	
			2) TAU								
			(pharmacotherapy)								
28	Ekers	2011	1) BA+p	44.72	severe	BDI		12	12	PP	
			2) TAU (by general								
			practitioner)							ITT	
29	Elkin	1989	1) CBT (ftf)	35 (8.5)	severe	HRSD	BDI	16	16~20		
			2) IPT								
			3) TAU								
			(pharmacotherapy)								
30	Embling	2002	1) gCBT+p	N/I	severe	BDI		8	12	ITT	

Table S5: (continued) Characteristics of included randomized controlled trials

			2) TAU								
			(antidepressants and								
			clinical management)								
31	Fonagy	2015	1) DYN+p	42.7 (10.4)	severe	HRSD	BDI	24	24	ITT	
			2) TAU	46.1 (9.9)							
			(interventions by								
			practitioner)								
32	Gibbons	2016	1) DYN	36.2 (12.1)	severe	HRSD		20	16	ITT	
			2) CBT (ftf)								
33	Han	2020	1) gCBT+p	46.94 (6.54)	mild	HRSD	BDI	10	10	PP	
			2) TAU (usual care	45.44 (8.25)							
			without sychological								
			intervention)								
34	Hemanny	2019	1) CBT (ftf) +p	39.6 (10.4)	severe	HRSD	BDI	12	12	ITT	
			2) BA+p	40.9 (11.0)							
			3) TAU	38.7 (11.9)							
2.5	77 11 1	2011	(pharmacotherapy, etc.)	45.2 (12.0)		DDI		10	10.17	DD	
35	Hollandare	2011		45.3 (12.8)	mild	BDI	MADRS-S	10	10~1/	PP	
			2) IAU(telephone interview a mail contact								
			with a personal therapist								
			for non-specific support.)								
36	Hollon	1992	1) CBT (ftf)	32.6 (10.8)	severe	HRSD	BDI	12	20	ITT	
			2) CBT (ftf) +p								
			3) TAU								
			(pharmacotherapy)								
37	Jacobson	1996	1) CBT (ftf)	38.3	moderate	BDI		N/I	12~20	PP	
			2) BA	36.6							
38	Jarrett	1999	1) CBT (ftf)	39.8 (1.48)	moderate	HRSD	BDI	10	20	ITT	
			2) TAU	38.7 (1.63)							
			(pharmacotherapy)								
39	Johansson	2012	1) TAU (online group discussion)	44.7 (12.1)	moderate	BDI	MADRS- S	10	8	ITT	

Table S5: (continued) Characteristics of included randomized controlled trials

Table S5: (continued) Characteristics of included randomized controlled trials

			2) iCBT (tailored) 3) iCBT	_							treatment targeted both depression and comorbid symptoms
40	Johansson	2019	1) iCBT+p	39	moderate	MADRS-		8	8	ITT	
			2) TAU (pharmacotherapy)			S					
41	Katayama	2022	1) CBT (ftf) +p	38	severe	HRSD		16	16	ITT	
			2) TAU (pharmacotherapy)	37.4							
42	Keller	2000	1) CBT (ftf)	43 (10.7)	moderate	HRSD		12	16	PP	
			2) TAU								
	-		(pharmacotherapy) 3) CBT (ftf) +p	-							
43	Kennedy	2007	1) CBT (ftf)	30 (9.8)	severe	HRSD		16	16	PP	
			2) TAU (pharmacotherapy)	41.25 (9.4)	_						
44	King	2014	1) CBT (ftf)	37 (1.5)	moderate	BDI		12	12	ITT	
			2) TAU(non-directive counseling)	34 (1.7)							
			3) TAU (by general practitioner)	46 (3.1)							
45	Kocsis	2009	1) CBT (ftf) +p	46.4 (11.7)	mild	HRSD	QIDS	12	16	PP	
	_		2) TAU(brief supportive psychotherapy)	45.3 (11.9)							
			3)TAU (pharmacotherapy)	43.2 (13.4)							
46	Kooistra	2019	1) iCBT+p	38.8 (10.9)	severe	IDS-SR		20	18	PP	
	1		2) CBT (ftf) +p		1			1			
47	Lemmens	2015	1) CBT (ftf)	41.2 (12.1)	moderate	BDI		12	16~20	ITT	

			2) IPT								
48	Mantani	2017	1) iCBT+p	40.2 (8.8)	moderate	BDI	PHQ-9	9	8	ITT	
			2) TAU	41.6 (8.9)							
			(pharmacotherapy)								
49	Markowitz	2005	1) IPT	approximate	mild	HRSD	BDI	16	16~18	ITT	
	_		2) IPT+p	40							
			3) TAU								
			(brief supportive								
	-		psychotherapy)	-							
			4) TAU								
50	M	2009	(pharmacotherapy)	NI/I				1(16		
50	Marshall	2008	$\frac{1) \text{CB1 (III)}}{2) \text{IDT}}$	IN/I	moderate	HKSD		10	10	PP	
	-		2) IP I 2) TAU	-				_			
			(nharmacotherany)								
51	McBride	2006	1) CBT (ftf)	40 20(12 21)	moderate	HRSD	BDI	12~16	12~16	ITT	
			2) IPT			11102	221	12 10	12 10		
52	McBride	2007	1) CBT (ftf)	40.71(10.79)	severe	BDI		16	16	ITT	
	-		2) TAU					_			
			(pharmacotherapy)								
53	McGrath	2013	1) CBT (ftf)	43.7	severe	HRSD	BDI	12	16	PP	
			2) TAU	40							
			(pharmacotherapy)								
54	Mcknight	1992	1) CBT (ftf)	37.5	moderate	BDI		8	8	mITT	
			2) TAU								
			(pharmacotherapy)								
55	Menchetti	2014	1) IPT	44.9 (14.1)	moderate	HRSD		8	6	ITT	
			2) TAU								
			(pharmacotherapy)								
56	Michalak	2015	1) gCBT+p	50.2 (10.5)	moderate	HRSD	BDI	8	8	PP	
	1		2) TAU	54 (13.24)	1						
			(pharmacotherapy)								
57	Mohr	2013	1) iCBT+p	47.6 (12.4)	moderate	PHQ-9		6	6	ITT	
	l	1			I						

Table S5: (continued) Characteristics of included randomized controlled trials

			2) TAU	48.49 (11.7)							
			(pharmacotherapy)								
58	Murphy	1995	1) CBT (ftf)	39.4 (10.9)	moderate	HRSD	BDI	16	16~20	PP	
			2) TAU								
	-		(pnarmacotherapy)	-							
			(relevation training)								
50	NT 1	2017		20.5 (0.2)		UDCD	DDI	16	1.0	ITT	
59	Nakagawa	2017	1) CB1 (ftf) +p	39.5 (9.2)	severe	HKSD	BDI	16	16		
			2) TAU	41.7 (10.7)							
			(pharmacotherapy)								
60	Nakao	2018	1) iCBT+p	40.2 (9.8)	moderate	HRSD	BDI	12	12	ITT	
]		2) TAU								
			(pharmacotherapy)								
61	Oehler	2020	1) iCBT+p	42.9 (12.4)	mild	PHQ-9		6	6	PP	
			2) TAU(online	41.7 (12.4)							
			relaxation and								
			pharmacotherapy)								
62	Parker	2013	1) CBT (ftf)	48 (9.5)	moderate	HRSD	QIDS	12	12	PP	
			2) TAU	46.8 (13.5)							
			(pharmacotherapy)								
63	Perini	2009	1) iCBT	49.29	moderate	BDI	PHQ-9	8	6	ITT	
			2) TAU	(12.06)							
			(pharmacotherapy)								
64	Power	2012	1) CBT (ftf) +p	36.1 (11.3)	moderate	BDI		12~16	12~16	PP	
			2) IPT+p								
]		3) TAU]			
			(pharmacotherapy)								
65	Propst	1992	1) CBT (ftf)	40	mild	HRSD	BDI	12	18	PP	
			2) WLC								
66	Quilty	2008	1) CBT (ftf)	42.07(12.34)	moderate	HRSD	BDI	16~20	16~20	ITT	
			2) IPT	42.70(13.14)							
			3) TAU	43.07(11.80)							
			(pharmacotherapy)								

Table S5: (continued) Characteristics of included randomized controlled trials

67	Quilty	2014	1) CBT (ftf)	33.61 (9.97)	moderate	HRSD	BDI	16	16	ITT	
			2) TAU								
			(pharmacotherapy)								
68	Ravindran	1999	1) gCBT+p	N/I	moderate	HRSD		12	12	ITT	
			2) TAU								
			(pharmacotherapy)								
69	Reins	2019	1) iCBT+p	41.6 (10.8)	moderate	HRSD	PHQ-9	6	6	ITT	
			2) TAU (online]						
			psychoeducation +								
			pharmacotherapy)								
70	Richards	2017	1) CBT (ftf) +p	43.5 (14.1)	moderate	PHQ		24	20	PP	
			2) BA+p								
71	Rief	2018	1) CBT (ftf)	40.4 (13)	moderarte	BDI		16	16	ITT	
			2) TAU	38.8 (13.7)							
			(pharmacotherapy)								
72	Sava	2009	1) TAU	39	moderate	BDI		14	max20	ITT	
			2) CBT (ftf)	37							
73	Schramm	2011	1) CBT (ftf)	41.1 (12.7)	moderate	HRSD	BDI	16	22	ITT	
			2) IPT	39.4 (10.6)							
74	Schramm	2015	1) CBT (ftf)	43.63	moderate	MADRS		8	12	ITT	
			2) TAU	(10.56)							
			(pharmacotherapy)								
75	Schramm	2017	1) CBT (ftf)	44.7 (12.1)	moderate	HRSD	IDS-SR	20	24	ITT	
			2) TAU	45.2 (11.6)							
76	Scott	1992	1) CBT (ftf)	N/I	severe	HRSD		16	16	mITT	
			2) TAU								
			(pharmacotherapy)								
			3) TAU (by general								
			practitioner)								
77	Scott	1997	1) CBT (ftf) +p	41 (10.4)	moderate	HRSD	BDI	6	6	PP	
			2) TAU								
			(pharmacotherapy,								
-			counselling)			LID CD			1.6	1777	
78	Scott	2000	1) CBT (ftt) +p	43.5 (9.8)	mıld	HRSD	BDI	20	16	IIT	

Table S5: (continued) Characteristics of included randomized controlled trials

			2) TAU (clinical	43.2 (11.2)							
			management +								
			pharmacotherapy)								
79	Segal	2006	1) CBT (ftf)	37.89(11.25)	severe	HRSD	BDI	24	22	PP	
			2) TAU	36.84(11.59)							
			(pharmacotherapy)								
80	Shamsaei	2008	1) CBT (ftf)	36 (11)	severe	BDI		8	8	ITT	
			2) CBT (ftf) +p								
			3) TAU								
			(pharmacotherapy)								
81	Shapiro	1990	1) DYN	N/I	mild	BDI		8	8	ITT	0
			2) CBT (ftf)								asessions
82	Shapiro	1990	1) DYN	N/I	mild	BDI		16	16	ITT	16
			2) CBT (ftf)								sessions
83	Shapiro	1994	1) CBT (ftf)	40.5 (9.5)	mild	BDI		8	8	PP	low
			2) IPT]			severity
											16-20)
84	Shapiro	1994	1) CBT (ftf)	40.5 (9.5)	mild	BDI		8	8	PP	moderate
	-		2) IDT	-				-			severity
			2) 11 1								(BDI = 21.26)
85	Shaniro	1994	1) CBT (fff)	40.5 (9.5)	moderate	BDI		8	8	рр	high
05	Shapiro			10.5 (5.5)	moderate				0	11	severity
			2) IPT								$(BDI \geq$
0.6	<u> </u>	1004		40.5.(0.5)	.1.1	DDI		1.6	16	DD	27)
86	Shapiro	1994	1) CB1 (m)	40.5 (9.5)	mild	BDI		16	16	PP	severity
			2) IPT]			(BDI =
											16-20)
87	Shapiro	1994	1) CBT (ftf)	40.5 (9.5)	mild	BDI		16	16	PP	moderate
			2) IPT								(BDI =
											21-26)
88	Shapiro	1994	1) CBT (ftf)	40.5 (9.5)	severe	BDI		16	16	PP	high
			2)IPT	1				1			severity
											$(BDI \geq 27)$
89	Smith	2017	1) iCBT	42.50(12.63)	moderate	PHO-9	1	12	6	РР	
			,			< /	I		~	1	1

Table S5: (continued) Characteristics of included randomized controlled trials

Table S5:	(continued)	Characteristics	of included	randomized	controlled trials
-----------	-------------	-----------------	-------------	------------	-------------------

			2) TAU	37.59							
			Any treatment that	(13.29)							
			has already started can								
			be continued.)								
90	Souza	2016	1) IPT+p	49.3 (12.31)	severe	HRSD	BDI	16~19	16	ITT	
			2) TAU	49.18 (12.5)							
			(pharmacotherapy +								
0.1		1004	clinical management)	2.1/1		LIDGD	DDI	1.5	1.5	2.1/1	
91	Stravynski	1994	1) gCBT	N/I	severe	HRSD	BDI	15	15	N/I	
			2) gCBT+p								
92	Thase	2018	1) iCBT	46.3 (14,3)	severe	HRSD	BDI	16	9	ITT	
			2) CBT (ftf)								
93	Tollefson	1990	1) CBT (ftf)	33.64(10.36)	severe	HRSD		12	16	ITT	
			2) CBT (ftf) +p								
			3) TAU								
			(pharmacotherapy)								
94	Tong	2020	1) gCBT+p	38.67(13.17)	moderate	HRSD		8	8	PP	
			2) TAU	36.82 (8.3)							
			(pharmacotherapy)								
95	Vernmark	2010	1) iCBT	37 (12.9)	moderate	BDI	MADRS-	8	7	ITT	
			2) TAU				S				
			(pharmacotherapy)								
96	Wiles	2008	1) CBT (ftf) +p	45.5 (12.8)	moderate	BDI		16	12~20	PP	
			2) TAU	45.1 (11.1)							
			(pharmacotherapy)								
97	Wiles	2013	1) CBT (ftf) +p	49.6 (11.7)	severe	BDI	PHQ-9	24	12~18	PP	
			2) TAU (by general								
	xx 1 1 1	1001	practitioner)	20.4		DDI			10	1000	
98	Wollershei	1991	1) gCBT	39.4	moderate	BDI			10	IIT	
	m		2) TAU (group								
	4		supportive therapy)		4			-			
00	NV	2008	3) WLC	27.4 (0.4)				10	10		
99	wong	2008	1) gCB1+p	37.4 (9.4)	moderate	BDI		10	10	PP	
1			2) IAU								
1		1	(pnarmacotherapy)	1		1				1	1

Table S5: (continued) Characteristics of included randomized controlled trials

100	Zu	2014	1) CBT (ftf)	32.7 (7.4)	moderate	QIDS-SR	24	20	PP	
			2) CBT (ftf) +p	36.6 (10.6)						
			3) TAU	41.3 (11.5)						
			(pharmacotherapy)							
			4) TAU (clinical	43.8 (9.1)						
			management)							

Nr. = trial number, Nr.1 and 2, 11 and 12, 13 and 14, 16 and 17, 23 and 24, and 81 to 88 respectively are from the same study.

BA = behavioral activation, BDI = Beck Depression Index, CBT (ftf) = individual face-to-face cognitive behavioral therapy, DSM = Diagnostic and Statistical Manual of Mental Disorder, DYN = psychoanalytic/psychodynamic psychotherapy, gCBT = group cognitive behavioral therapy, HRSD = Hamilton Rating Scale for Depression, iCBT = computerized- or internet-cognitive behavior therapy, IDS = Inventory of Depressive Symptomatology, IDS-SR = a self-report version of IDS, IPT = interpersonal psychotherapy, ITT = intention-to-treat, MADRS = Montgomery Åsberg Depression Rating Scale, MADRS-S = a self-report version of MADRS, mITT = modified ITT, N/I = not informed, PHQ-9 = Patient Health Questionnaire-9, PP = per-protocol, QIDS = Quick Inventory of Depressive Symptomatology, QIDS-SR = a self-report version of QIDS, SNRI = Serotonin Noradrenaline Reuptake Inhibitor, SSRI = Selective Serotonin Reuptake Inhibitor, TAU = treatment-as-usual, WLC = wait list control, +p = + pharmacotherapy

No.	treatment	n	mean	SD	ROB
1	IPT	8	4.57	3.22	1
1	TAU	11	6.29	3.41	1
2	IPT	9	4.93	2.95	1
2	TAU	13	6.96	3.46	1
3	iCBT	32	13.6	10.1	3
3	gCBT	33	17.9	8.8	3
4	CBT (ftf)	105	6.6	4.98	3
4	TAU	69	5.06	5.1	3
5	DYN	51	14.53	8.32	1
5	TAU	55	14.2	7.62	1
6	iCBT	25	17.3	10.2	3
6	WLC	26	28.5	9.4	3
7	CBT (ftf)	29	10.62	7.37	3
7	IPT	27	12.37	9.71	3
8	TAU	23	11.4	7.3	3
8	CBT (ftf)	24	10.7	7.6	3
9	IPT	34	14.7	8.1	1
9	IPT+p	33	13.8	7.7	1
9	TAU	30	15.1	7.5	1
10	CBT (ftf) +p	19	9.81	8.21	2
10	IPT+p	18	9.34	5.82	2
11	gCBT	18	8.17	6.41	3
11	TAU	22	8.5	6.39	3
12	gCBT	13	6.85	3.71	3
12	TAU	14	6.07	2.65	3
13	IPT	29	10.1	5.7	1
13	TAU	21	8.3	6.3	1
14	IPT	52	12.9	7.3	1
14	TAU	55	12.3	8.3	1
15	IPT+p	212	15	10.4	3
15	IPT	178	16.8	10.6	3
15	TAU	196	14.3	9.8	3
16	CBT (ftf)	49	27.15	12.51	3
16	IPT	47	26.05	14.55	3
17	CBT (ftf)	49	23.17	14.02	3
17	IPT	55	24.81	11.94	3
18	DYN+p	35	8.9	7	3
18	TAU	39	9.7	7.3	3
19	gCBT+p	17	6.82	5.73	3
19	TAU	16	10	4.41	3
20	gCBT+p	30	8.77	3.99	1
20	TAU	32	37.28	7.15	1
21	DYN+p	83	12.13	7.55	2
21	TAU	84	15.62	7.91	2
22	IPT+p	11	4.4	5.6	3
22	TAU	13	8.1	8.8	3
23	BA	13	7.92	7.68	1
23	CBT (ftf)	16	7.19	4.09	1

Table S6: Treatment types, outcomes, and overall risk of bias for each randomized controlled trial

(Table S6 continued on the next page)

contr	ioneu triar				
23	TAU	22	8.45	5.26	1
24	BA	16	7.56	6.94	1
24	CBT (ftf)	18	10.33	7.62	1
24	TAU	27	8.63	7.19	1
25	CBT (ftf) +p	21	6.43	6.95	2
25	TAU	21	9.33	7.21	2
26	CBT (ftf)	115	8.8	7	1
26	TAU	229	7.548472	5.702393	1
27	CBT (ftf)	10	10.8	5.5	1
27	TAU	12	6.9	5.5	1
28	BA+p	16	11.93	11.84	3
28	TAU	22	27.4	14.01	3
29	CBT (ftf)	59	10.7	7.9	1
29	IPT	61	9.8	7.9	1
29	TAU	57	9.8	7.8	1
30	gCBT+p	19	15.17	5.15	3
30	TAU	19	32.17	8.01	3
31	DYN+p	67	16.8	6	1
31	TAU	62	18.3	5.8	1
32	DYN	118	16.89	4.35	1
32	CBT (ftf)	119	16.06	4.23	1
33	gCBT+p	17	6.13	5.11	1
33	TAU	16	9.75	4.16	1
34	CBT (ftf) +p	26	9.84	5.9	3
34	BA+p	24	9.1	7.3	3
34	TAU	26	17.98	6.3	3
35	iCBT	38	9.3	12	3
35	TAU	39	13.4	11.9	3
36	CBT (ftf)	25	13.3	10	1
36	CBT (ftf) + p	25	10.5	10	1
36	TAU	57	14.2	10	1
37	CBT (ftf)	50	10.1	9.6	3
37	BA	56	91	79	3
38	CBT (ftf)	36	10.25	8.1	2
38	TAU	36	8.64	6.42	2
39	TAU	39	21.67	9.5	3
39	iCBT	70	14.88743	9.843648	3
40	iCBT+p	27	13.6	6.1	3
40	TAU	27	23.1	5.7	3
41	CBT (ftf) + p	19	11.7	17	1
41	TAU	19	11.7	1.7	1
42	CBT (ftf)	173	15.1	9.075533	3
42	TAU	167	14.7	9.045994	3
42	CBT (ftf) + n	179	97	8 696407	3
43	CBT (fff)	12	98	7.6	3
43	TAU	12	74	49	3
44	CBT (fff)	58	15	12 94681	3
44	TAU	72	15 59722	10 75444	3
45	CBT (ftf) + n	174	11 29	83	1
45	TAU	244	12.61738	8.430957	1
46	iCBT+p	35	30.7	16.1	3
<u> </u>	Г			-	· ·

Table S6: (continued) Treatment types, outcomes, and overall risk of bias for each randomized controlled trial

(Table S6 continued on the next page)

46	CBT (ftf) +p	30	27.1	15.7	3
47	CBT (ftf)	76	22.6	10.45246	3
47	IPT	75	20.9	9.720693	3
48	iCBT+p	81	19.3	10.33163	3
48	TAU	83	23.3	9.063952	3
49	IPT	23	12.5	5.9	1
49	IPT+p	21	9.9	6.3	1
49	TAU	50	11.056	6.542985	1
50	CBT (ftf)	37	6.3	4.81	3
50	IPT	35	8.4	6.46	3
50	TAU	30	4.7	5.32	3
51	CBT (ftf)	28	3.57	3.2	1
51	IPT	27	4.41	3.26	1
52	CBT (ftf)	21	12.62	10.82	3
52	TAU	21	10	8.63	3
53	CBT (ftf)	33	9.52	5.53	3
53	TAU	32	8.28	5.4	3
54	CBT (ftf)	12	9.9	10.8	3
54	TAU	11	8.4	5.5	3
55	IPT	143	7.8	4.9	1
55	TAU	144	8.6	5.3	1
56	gCBT+p	25	14.64	8.85	3
56	TAU	32	21.16	8.16	3
57	iCBT+p	34	9.84	0.9	3
57	TAU	33	12.51	0.86	3
58	CBT (ftf)	11	2.27	2.37	3
58	TAU	23	6.698696	6.357324	3
59	CBT (ftf) +p	40	8.2	4.7	1
				6.0	
59	TAU	40	13.2	6.9	1
<u>59</u> 60	TAU iCBT+p	40 20	13.2 9.4	6.9 5.1	1
59 60 60	TAU iCBT+p TAU	40 20 20	13.2 9.4 15.5	6.9 5.1 6.3	1 1 1
59 60 60 61	TAU iCBT+p TAU iCBT+p	40 20 20 133	13.2 9.4 15.5 6.9	6.9 5.1 6.3 3.7	1 1 1 3
59 60 60 61 61	TAU iCBT+p TAU iCBT+p TAU	40 20 20 133 129	13.2 9.4 15.5 6.9 7.4	6.9 5.1 6.3 3.7 3.7	1 1 1 3 3
59 60 61 61 62	TAU iCBT+p TAU iCBT+p TAU CBT (ftf)	40 20 133 129 11	13.2 9.4 15.5 6.9 7.4 10.6	6.9 5.1 6.3 3.7 3.7 7.4	$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 3 \\ 3 \\ 3 \end{array} $
59 60 61 61 62 62	TAU iCBT+p TAU iCBT+p TAU CBT (ftf) TAU	40 20 20 133 129 11 18	13.2 9.4 15.5 6.9 7.4 10.6 6.5	6.9 5.1 6.3 3.7 3.7 7.4 4.6	$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 3 \\ 3 \\ 3 \\ 3 \end{array} $
59 60 61 61 62 63	TAU iCBT+p TAU iCBT+p TAU CBT (ftf) TAU iCBT	40 20 20 133 129 11 18 27	13.2 9.4 15.5 6.9 7.4 10.6 6.5 17.3	6.9 5.1 6.3 3.7 3.7 7.4 4.6 9.86	1 1 1 3 3 3 3 3 3 3
59 60 61 61 62 63	TAU iCBT+p TAU iCBT+p TAU CBT (ftf) TAU iCBT TAU	40 20 20 133 129 11 18 27 17	13.2 9.4 15.5 6.9 7.4 10.6 6.5 17.3 23.33	6.9 5.1 6.3 3.7 3.7 7.4 4.6 9.86 9.29	$ \begin{array}{c} 1 \\ 1 \\ 3 \\ $
59 60 61 62 63 64	TAU iCBT+p TAU iCBT+p TAU CBT (ftf) TAU iCBT TAU CBT (ftf)+p	40 20 20 133 129 11 18 27 17 22	13.2 9.4 15.5 6.9 7.4 10.6 6.5 17.3 23.33 18.14	6.9 5.1 6.3 3.7 3.7 7.4 4.6 9.86 9.29 14.701	$ \begin{array}{c} 1 \\ 1 \\ 3 \\ $
59 60 61 62 63 64	TAU iCBT+p TAU iCBT+p TAU CBT (ftf) TAU iCBT TAU CBT (ftf)+p IPT+p	40 20 20 133 129 11 18 27 17 22 39	13.2 9.4 15.5 6.9 7.4 10.6 6.5 17.3 23.33 18.14 14.15	6.9 5.1 6.3 3.7 3.7 7.4 4.6 9.86 9.29 14.701 13.941	$ \begin{array}{r} 1 \\ 1 \\ 3 \\ $
59 60 61 61 62 63 64 64	TAU iCBT+p TAU iCBT+p TAU CBT (ftf) TAU iCBT TAU CBT (ftf)+p IPT+p TAU	40 20 133 129 11 18 27 17 22 39 10	13.2 9.4 15.5 6.9 7.4 10.6 6.5 17.3 23.33 18.14 14.15 23.6	6.9 5.1 6.3 3.7 3.7 7.4 4.6 9.86 9.29 14.701 13.941 14.841	$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 3 \\ $
59 60 61 62 63 64 64 65	TAU iCBT+p TAU iCBT+p TAU CBT (ftf) TAU iCBT TAU CBT (ftf)+p IPT+p TAU CBT (ftf)	40 20 133 129 11 18 27 17 22 39 10 10	13.2 9.4 15.5 6.9 7.4 10.6 6.5 17.3 23.33 18.14 14.15 23.6 9.7	6.9 5.1 6.3 3.7 3.7 7.4 4.6 9.86 9.29 14.701 13.941 14.841 2.04	$ \begin{array}{r} 1 \\ 1 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 1 \end{array} $
$ \begin{array}{r} 59\\60\\61\\61\\62\\62\\63\\63\\64\\64\\64\\65\\65\\65\end{array} $	TAU iCBT+p TAU iCBT+p TAU CBT (ftf) TAU iCBT TAU CBT (ftf) +p IPT+p TAU CBT (ftf) WLC	40 20 20 133 129 11 18 27 17 22 39 10 10 10 11	13.2 9.4 15.5 6.9 7.4 10.6 6.5 17.3 23.33 18.14 14.15 23.6 9.7 13.72	6.9 5.1 6.3 3.7 3.7 7.4 4.6 9.86 9.29 14.701 13.941 14.841 2.04 6.08	$ \begin{array}{r} 1 \\ 1 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 1 \\ 1 \\ 1 \end{array} $
$\begin{array}{c} 59 \\ 60 \\ 61 \\ 61 \\ 62 \\ 62 \\ 63 \\ 63 \\ 64 \\ 64 \\ 64 \\ 65 \\ 65 \\ 66 \\ \end{array}$	TAU iCBT+p TAU iCBT+p TAU CBT (ftf) TAU iCBT TAU CBT (ftf) +p IPT+p TAU CBT (ftf) WLC CBT (ftf)	40 20 20 133 129 11 18 27 17 22 39 10 10 10 11 45	13.2 9.4 15.5 6.9 7.4 10.6 6.5 17.3 23.33 18.14 14.15 23.6 9.7 13.72 4.07	6.9 5.1 6.3 3.7 3.7 7.4 4.6 9.86 9.29 14.701 13.941 14.841 2.04 6.08 3.76	$ \begin{array}{r} 1 \\ 1 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 1 \\ 1 \\ 3 \\ $
$\begin{array}{c} 59 \\ 60 \\ 61 \\ 61 \\ 62 \\ 62 \\ 63 \\ 63 \\ 64 \\ 64 \\ 64 \\ 65 \\ 65 \\ 66 \\ 66 \\ 66$	TAU iCBT+p TAU iCBT+p TAU CBT (ftf) TAU iCBT TAU CBT (ftf) +p IPT+p TAU CBT (ftf) WLC CBT (ftf) IPT	40 20 20 133 129 11 18 27 17 22 39 10 11 45 46	13.2 9.4 15.5 6.9 7.4 10.6 6.5 17.3 23.33 18.14 14.15 23.6 9.7 13.72 4.07 3.87	6.9 5.1 6.3 3.7 3.7 7.4 4.6 9.86 9.29 14.701 13.941 14.841 2.04 6.08 3.76 3.4	$ \begin{array}{r} 1 \\ 1 \\ 3 \\ $
$\begin{array}{c} 59 \\ 60 \\ 61 \\ 61 \\ 62 \\ 62 \\ 63 \\ 63 \\ 64 \\ 64 \\ 64 \\ 65 \\ 65 \\ 66 \\ 66 \\ 66$	TAU iCBT+p TAU iCBT(ff) TAU CBT (fff) TAU iCBT (fff)+p IPT+p TAU CBT (fff) IPT(fff) WLC CBT (fff) IPT TAU	40 20 20 133 129 11 18 27 17 22 39 10 11 45 46 41	13.2 9.4 15.5 6.9 7.4 10.6 6.5 17.3 23.33 18.14 14.15 23.6 9.7 13.72 4.07 3.87 2.32	6.9 5.1 6.3 3.7 3.7 7.4 4.6 9.86 9.29 14.701 13.941 14.841 2.04 6.08 3.76 3.4 2.51	$ \begin{array}{r} 1 \\ 1 \\ 1 \\ 3 \\ $
$\begin{array}{c} 59 \\ 60 \\ 61 \\ 61 \\ 62 \\ 62 \\ 63 \\ 63 \\ 64 \\ 64 \\ 64 \\ 64 \\ 65 \\ 65 \\ 66 \\ 66$	TAU iCBT+p TAU iCBT(ftf) TAU CBT (ftf) TAU CBT (ftf) +p IPT+p TAU CBT (ftf) (ftf) IPT+p TAU CBT (ftf) IPT TAU CBT (ftf) WLC CBT (ftf) IPT TAU CBT (ftf) IPT CBT (ftf)	40 20 20 133 129 11 18 27 17 22 39 10 11 45 46 41 54	13.2 9.4 15.5 6.9 7.4 10.6 6.5 17.3 23.33 18.14 14.15 23.6 9.7 13.72 4.07 3.87 2.32 8.14	6.9 5.1 6.3 3.7 3.7 7.4 4.6 9.86 9.29 14.701 13.941 14.841 2.04 6.08 3.76 3.4 2.51 6.28	$ \begin{array}{r} 1 \\ 1 \\ 1 \\ 3 \\ $
$\begin{array}{c} 59 \\ 60 \\ 61 \\ 61 \\ 62 \\ 62 \\ 63 \\ 63 \\ 64 \\ 64 \\ 64 \\ 64 \\ 65 \\ 65 \\ 66 \\ 66$	TAU iCBT+p TAU iCBT(ftf) TAU CBT (ftf) TAU CBT (ftf) +p IPT+p TAU CBT (ftf) (ftf) IPT+p TAU CBT (ftf) IPT TAU CBT (ftf)	40 20 20 133 129 11 18 27 17 22 39 10 11 45 46 41 54 50	13.2 9.4 15.5 6.9 7.4 10.6 6.5 17.3 23.33 18.14 14.15 23.6 9.7 13.72 4.07 3.87 2.32 8.14 8.19	6.9 5.1 6.3 3.7 3.7 7.4 4.6 9.86 9.29 14.701 13.941 14.841 2.04 6.08 3.76 3.4 2.51 6.28 6.08	$ \begin{array}{r} 1 \\ 1 \\ 1 \\ 3 \\ $
$\begin{array}{c} 59 \\ 60 \\ 61 \\ 61 \\ 62 \\ 62 \\ 63 \\ 63 \\ 64 \\ 64 \\ 64 \\ 65 \\ 65 \\ 66 \\ 66 \\ 66$	TAU iCBT+p TAU iCBT(ftf) TAU CBT (ftf) TAU CBT (ftf) +p IPT+p TAU CBT (ftf) +p IPT+p TAU CBT (ftf) IPT TAU CBT (ftf) IPT TAU CBT (ftf) IPT TAU CBT (ftf) TAU CBT (ftf)	40 20 20 133 129 11 18 27 17 22 39 10 11 45 46 41 54 50 25	13.2 9.4 15.5 6.9 7.4 10.6 6.5 17.3 23.33 18.14 14.15 23.6 9.7 13.72 4.07 3.87 2.32 8.14 8.19 7.5	6.9 5.1 6.3 3.7 3.7 7.4 4.6 9.86 9.29 14.701 13.941 14.841 2.04 6.08 3.76 3.4 2.51 6.28 6.08 5.93	$ \begin{array}{c} 1\\1\\1\\3\\3\\3\\3\\3\\3\\3\\1\\1\\1\\3\\3\\3\\3\\1\\1\end{array} $
$\begin{array}{c} 59\\ 60\\ 60\\ 61\\ 61\\ 62\\ 62\\ 63\\ 63\\ 64\\ 64\\ 64\\ 64\\ 65\\ 65\\ 66\\ 66\\ 66\\ 66\\ 66\\ 67\\ 67\\ 68\\ 68\\ 68\\ 68\\ \end{array}$	TAU iCBT+p TAU iCBT(ff) TAU CBT (fff) TAU iCBT (fff)+p IPT+p TAU CBT (fff) IPT+fff) TAU CBT (fff) IPT TAU CBT (fff) IPT TAU CBT (fff) IPT TAU CBT (fff) TAU	40 20 20 133 129 11 18 27 17 22 39 10 11 45 46 41 54 50 25 22	13.2 9.4 15.5 6.9 7.4 10.6 6.5 17.3 23.33 18.14 14.15 23.6 9.7 13.72 4.07 3.87 2.32 8.14 8.19 7.5 7.5	6.9 5.1 6.3 3.7 3.7 7.4 4.6 9.86 9.29 14.701 13.941 14.841 2.04 6.08 3.76 3.4 2.51 6.28 6.08 5.93 5.5	$ \begin{array}{c} 1\\1\\1\\3\\3\\3\\3\\3\\3\\3\\3\\1\\1\\1\\3\\3\\3\\3\\1\\1\\1\\1\end{array} $
$\begin{array}{c} 59 \\ 60 \\ 61 \\ 61 \\ 62 \\ 62 \\ 63 \\ 63 \\ 64 \\ 64 \\ 64 \\ 64 \\ 65 \\ 65 \\ 66 \\ 66$	TAU iCBT+p TAU iCBT(ftf) TAU CBT (ftf) TAU CBT (ftf) +p IPT+p TAU CBT (ftf) +p IPT+p TAU CBT (ftf) WLC CBT (ftf) IPT TAU CBT (ftf) ICBT (ftf) TAU iCBT+p TAU iCBT+p	$\begin{array}{r} 40\\ 20\\ 20\\ 133\\ 129\\ 11\\ 18\\ 27\\ 17\\ 22\\ 39\\ 10\\ 10\\ 10\\ 10\\ 10\\ 11\\ 45\\ 46\\ 41\\ 54\\ 50\\ 25\\ 22\\ 65\\ \end{array}$	13.2 9.4 15.5 6.9 7.4 10.6 6.5 17.3 23.33 18.14 14.15 23.6 9.7 13.72 4.07 3.87 2.32 8.14 8.19 7.5 13.75	6.9 5.1 6.3 3.7 3.7 7.4 4.6 9.86 9.29 14.701 13.941 14.841 2.04 6.08 3.76 3.4 2.51 6.28 6.08 5.93 5.5 7.52	$ \begin{array}{c} 1\\1\\1\\3\\3\\3\\3\\3\\3\\3\\3\\1\\1\\1\\3\\3\\3\\3\\1\\1\\1\\1\\1\\1\end{array} $

Table S6: (continued) Treatment types, outcomes, and overall risk of bias for each randomized controlled trial

(Table S6 continued on the next page)

	oneu eriur				
70	CBT (ftf) +p	190	9.41	7.04	3
70	BA+p	183	9.72	6.88	3
71	CBT (ftf)	43	17.68	10.63	3
71	TAU	42	23.38	10.78	3
72	TAU	44	10.57	6.51	3
72	CBT (ftf)	49	9.45	6.72	3
73	CBT (ftf)	14	11.21	10.84	1
73	IPT	15	18.87	11.71	1
74	CBT (ftf)	29	23.13	8.68	3
74	TAU	30	19.67	10.35	3
75	CBT (ftf)	29	6.7	6.1	3
75	TAU	55	8.210909	7.913584	3
76	CBT (ftf) +p	18	13.5	5.3	3
76	TAU	16	16.5	6.8	3
77	CBT (ftf) +p	80	8.7	5.3	1
77	TAU	78	9.4	5.2	1
78	CBT (ftf)	88	5.84	4.67	3
78	TAU	56	6	4.83	3
79	CBT (ftf)	40	25.6	5.1	3
79	CBT (ftf) +p	40	19.2	5.7	3
79	TAU	40	23.4	4.2	3
80	DYN	12	11.4	8.6	3
80	CBT (ftf)	12	9.7	8.2	3
81	DYN	12	9.3	6.3	3
81	CBT (ftf)	12	6.6	6.4	3
82	CBT (ftf)	9	6.38	6.37	3
82	IPT	9	7.89	7.64	3
83	CBT (ftf)	10	8.9	8.52	3
83	IPT	10	12.39	8.89	3
84	CBT (ftf)	10	11	7.59	3
84	IPT	10	15.9	7.68	3
85	CBT (ftf)	10	8.3	7.35	3
85	IPT	10	5.9	6.59	3
86	CBT (ftf)	9	3.11	3.95	3
86	IPT	9	9.56	4.9	3
87	CBT (ftf)	10	11.58	6.76	3
87	IPT	9	12.44	9.43	3
88	iCBT	33	8.95	4.77	3
88	TAU	48	13.14	4.91	3
89	IPT+p	17	12.3	7.00928	1
89	TAU	23	13.8	6.714164	1
90	gCBT	12	10.2	5.3	3
90	gCBT+p	12	6.5	6.9	3
91	iCBT	77	8.9	5.6	1
91	CBT (ftf)	77	9.2	6.3	1
92	CBT (ftf)	12	8.78	7.45	2
92	CBT (ftf) +p	12	4.26	5.82	2
92	TAU	23	8.26	8.46	2
93	gCBT+p	43	11.12	3.58	3
93	TAU	45	13.07	2.54	3
94	iCBT	29	12.3	7.3	3

Table S6: (continued) Treatment types, outcomes, and overall risk of bias for each randomized controlled trial

94	TAU	29	16.6	7.9	3
95	CBT (ftf) +p	14	13.1	11.9	3
95	TAU	9	19.3	5.3	3
96	CBT (ftf) +p	206	18.9	14.2	3
96	TAU	213	24.5	13.1	3
97	gCBT	8	20	13.73	3
97	TAU	8	18.38	8.96	3
97	WLC	8	18.25	7.55	3
98	gCBT+p	48	13.1	11.1	3
98	TAU	48	22.4	13.3	3
99	CBT (ftf)	12	4.2	4.1	3
99	CBT (ftf) +p	43	5.9	4.2	3
99	TAU	41	6.382927	4.406604	3
100	CBT (ftf)	137	18.1	10.08	1
100	TAU	131	21.1	9.48	1

Table S6: (continued) Treatment types, outcomes, and overall risk of bias for each randomized controlled trial

No. = trial number, treatment = type of compared intervention, n = number of participants, mean = mean of post-treatment outcome, SD = standard deviation of post-treatment outcome, ROB = overall risk of bias for individual trial, 1 = low risk of bias, 2 = some concern risk of bias, and 3 = high risk of bias in the ROB column. BA = behavioral activation, CBT (ftf) = individual face-to-face cognitive behavioral therapy, DYN = psychoanalytic/psychodynamic psychotherapy, gCBT = group cognitive behavioral therapy, iCBT = computerized- or internet cognitive behavioral therapy, IPT = interpersonal psychotherapy, TAU = treatment-as-usual, WLC = wait list control, +p = + pharmacotherapy,

Arm 1	Arm 2	k	n	prop	12	Direct estimate	Indirect estimate	Diff	p-value
CBT (ftf)	BA	5	592	0.78	0.00%	0.0762 [-0.3045; 0.4569]	0.8611 [0.1520; 1.5702]	0.7849	0.056
TAU	BA	4	166	0.52	76.30%	0.7029 [0.2302; 1.1755]	0.1202 [-0.3727; 0.6131]	-0.5827	0.0945
CBT (ftf)	DYN	3	285	0.38	0.00%	-0.2521 [-0.7765; 0.2723]	0.0402 [-0.3702; 0.4507]	-0.2923	0.3895
CBT (ftf)	iCBT	2	219	0.18	0.00%	-0.0729 [-0.6367; 0.4909]	0.6728 [0.4051; 0.9404]	-0.7457	0.0192
CBT (ftf)	IPT	17	987	0.64	22.90%	-0.1282 [-0.3506; 0.0942]	-0.1618 [-0.4571; 0.1334]	0.0336	0.8585
CBT (ftf)	TAU	39	4380	0.8	62.10%	-0.0921 [-0.2274; 0.0431]	-0.4978 [-0.7711; -0.2245]	0.4056	0.0091
CBT (ftf)	WLC	1	21	0.28		-0.8684 [-1.9981; 0.2612]	-0.2092 [-0.9161; 0.4976]	-0.6592	0.3323
DYN	TAU	4	476	0.65	28.90%	-0.2021 [-0.5936; 0.1893]	0.0902 [-0.4484; 0.6289]	-0.2923	0.3895
gCBT	iCBT	1	65	0.16		0.4544 [-0.3919; 1.3008]	-0.1099 [-0.4736; 0.2538]	0.5643	0.2299
gCBT	TAU	11	537	0.89	90.50%	-0.8109 [-1.0994; -0.5224]	-0.0453 [-0.8812; 0.7906]	-0.7657	0.0897
gCBT	WLC	1	16	0.28		0.1679 [-1.0305; 1.3664]	-1.3849 [-2.1298; -0.6401]	1.5528	0.031
iCBT	TAU	11	1087	0.76	87.30%	-0.7709 [-1.0239; -0.5180]	-0.5047 [-0.9570; -0.0525]	-0.2662	0.3139
iCBT	WLC	1	51	0.44		-1.1429 [-2.0508; -0.2349]	-0.7659 [-1.5645; 0.0328]	-0.377	0.5411
IPT	TAU	14	1645	0.61	48.90%	-0.0121 [-0.2413; 0.2170]	-0.0619 [-0.3491; 0.2252]	0.0498	0.7905
TAU	WLC	1	16	0.25		0.0125 [-1.1851; 1.2100]	-0.3000 [-0.9861; 0.3861]	-0.3125	0.6572

Table S7: Heterogeneity and inconsistency for all comparisons in Grp1

Grp1: a group 1, in which we did not distinguish between psychotherapy alone and psychotherapy combined with medication, and treatment arms were sorted into psychotherapy groups, TAU, and WLC, k: Number of trials providing direct evidence, n: Number of observation providing direct evidence, I2: I² statistics, prop: Direct evidence proportion, Direct estimate: Estimated treatment effect (standardized mean difference: SMD [standard deviation (SD)]) derived from direct evidence, Indirect estimate: Estimated treatment effect (SMD [SD]) derived from indirect evidence, Diff: Difference between direct and indirect treatment estimates, p-value: p-value of test for disagreement (direct versus indirect) BA = behavioral activation, CBT (ftf) = individual face-to-face cognitive behavioral therapy, DYN = psychoanalytic/psychodynamic psychotherapy; gCBT = group cognitive behavioral therapy, iCBT = computerized- or internet cognitive behavioral therapy, IPT = interpersonal psychotherapy, TAU = treatment-as-usual, WLC = wait list control If the I² statistics range from 75% to 100%, heterogeneity may be observed in the comparison (indicated in bold). If the p-value was <0.05, the presence of inconsistencies was determined (indicated in bold)

Arm 1	Arm 2	k	n	prop	I2	Direct estimate	Indirect estimate	Diff	p-value
CBT (ftf)	BA	3	169	0.85	0.00%	0.1271 [-0.3738; 0.6279]	0.1016 [-1.0698; 1.2730]	-0.0254	0.9688
TAU	BA	2	78	0.52	0.00%	0.1219 [-0.5255; 0.7694]	0.1262 [-0.5473; 0.7996]	0.0042	0.9929
BA+p	CBT (ftf)+p	2	423	0.72	0.00%	-0.0167 [-0.5450; 0.5117]	-1.0335 [-1.8817; -0.1854]	1.0168	0.0461
BA+p	TAU	2	88	0.51	0.00%	-1.2782 [-1.9219; -0.6345]	-0.2666 [-0.9173; 0.3841]	-1.0116	0.0303
CBT (ftf)	CBT (ftf)+p	5	561	0.34	78.30%	0.5196 [0.1493; 0.8900]	0.4533 [0.1851; 0.7216]	0.0663	0.7762
CBT (ftf)	DYN	3	285	0.7	0.00%	-0.2502 [-0.7522; 0.2517]	-0.0375 [-0.7975; 0.7224]	-0.2127	0.6472
CBT (ftf)	iCBT	1	154	0.19		0.0503 [-0.6664; 0.7671]	0.6252 [0.2739; 0.9766]	-0.5749	0.1581
CBT (ftf)	IPT	15	889	0.65	26.00%	-0.1662 [-0.3939; 0.0616]	-0.0157 [-0.3253; 0.2939]	-0.1505	0.4428
CBT (ftf)	TAU	29	2785	0.79	44.10%	0.0647 [-0.0860; 0.2154]	-0.2495 [-0.5430; 0.0440]	0.3142	0.062
CBT (ftf)	WLC	1	21	0.29	•	-0.8684 [-1.9713; 0.2344]	-0.3065 [-1.0128; 0.3999]	-0.562	0.4003
CBT (ftf)+p	iCBT+p	1	65	0.18	•	-0.2262 [-1.0344; 0.5821]	0.4298 [0.0523; 0.8072]	-0.6559	0.1495
CBT (ftf)+p	IPT+p	2	98	0.29	0.00%	0.1822 [-0.4313; 0.7958]	-0.3581 [-0.7466; 0.0304]	0.5403	0.1448
CBT (ftf)+p	TAU	15	1923	0.81	56.80%	-0.4437 [-0.6523; -0.2351]	-0.6223 [-1.0584; -0.1863]	0.1787	0.4689
DYN	TAU	1	106	0.33		0.0414 [-0.7063; 0.7892]	0.2541 [-0.2658; 0.7741]	-0.2127	0.6472
DYN+p	TAU	3	370	1	0.00%	-0.2833 [-0.7118; 0.1452]			
gCBT	gCBT+p	1	24	0.23	•	0.6014 [-0.4393; 1.6421]	1.1806 [0.6088; 1.7524]	-0.5792	0.3391
gCBT	iCBT	1	65	0.34	•	0.4544 [-0.3558; 1.2647]	0.5658 [-0.0154; 1.1471]	-0.1114	0.8267
gCBT	TAU	3	83	0.57	0.00%	0.0989 [-0.4799; 0.6776]	-0.0987 [-0.7611; 0.5637]	0.1976	0.6598
gCBT	WLC	1	16	0.33	•	0.1679 [-1.0053; 1.3412]	-0.7640 [-1.5886; 0.0607]	0.9319	0.2028
gCBT+p	TAU	8	454	0.93	92.10%	-1.0743 [-1.3916; -0.7571]	-0.4951 [-1.6394; 0.6491]	-0.5792	0.3391
iCBT	TAU	5	369	0.68	0.00%	-0.6200 [-0.9815; -0.2585]	-0.2900 [-0.8179; 0.2379]	-0.33	0.3121
iCBT	WLC	1	51	0.46	•	-1.1429 [-2.0172; -0.2685]	-0.8479 [-1.6560; -0.0398]	-0.295	0.6273
iCBT+p	TAU	6	718	0.87	93.40%	-0.8761 [-1.2006; -0.5516]	-0.2202 [-1.0511; 0.6107]	-0.6559	0.1495
IPT	IPT+p	3	501	0.52	0.00%	0.2175 [-0.2270; 0.6620]	0.5661 [0.1067; 1.0255]	-0.3486	0.2852
IPT	TAU	11	1266	0.59	50.60%	0.1091 [-0.1319; 0.3502]	0.1174 [-0.1742; 0.4091]	-0.0083	0.9658
IPT+p	TAU	6	655	0.74	19.40%	-0.2156 [-0.5590; 0.1278]	-0.4388 [-1.0190; 0.1413]	0.2232	0.5163
TAU	WLC	1	16	0.25		0.0125 [-1.1598; 1.1848]	-0.6330 [-1.3170; 0.0509]	-0.6455	0.3512

Table S8: Heterogeneity and inconsistency for all comparisons in Grp2

Grp2: a group 2, in which psychotherapy arms were sorted into psychotherapy alone and psychotherapy combined with medication separately, k: Number of trials providing direct evidence, n: Number of observation providing direct evidence, 12: 1² statistics, prop: Direct evidence proportion, Direct estimate: Estimated treatment effect (standardized mean difference: SMD [standard deviation (SD]) derived from direct evidence, Indirect estimate: Estimated treatment effect (SMD [SD]) derived from indirect evidence, Diff: Difference between direct and indirect treatment estimates, p-value: p-value of test for disagreement (direct versus indirect), BA = behavioral activation, CBT (ftf) = individual face-to-face cognitive behavioral therapy, DYN = psychoanalytic/psychodynamic psychotherapy, gCBT = group cognitive behavioral therapy, iCBT = computerized- or internet cognitive behavioral therapy, IPT = interpersonal psychotherapy, TAU = treatment-as-usual, WLC = wait list control, +p = + pharmacotherapy If the I² statistics range from 75% to 100%, heterogeneity may be observed in the comparison (indicated in bold). If the p-value was <0.05, the presence of inconsistencies was determined (indicated in bold)

Table S9:	: Compariso	on matrix for s	subgroup ai	nalvsis among	mild der	pression in G	rp 1
			sasgioap as				

	9 1	<u> </u>			
CBT (ftf)	-0.3128 [-0.8997;			-0.3608 [-0.8352;	-0.1494 [-0.3721;
	0.2740]			0.1136]	0.0733]
*-0.3128 **[-0.8997;	DYN				
0.2740]					
0.5013 [-0.0562;	0.8141 [0.0047;	gCBT			-0.6960 [-1.2129; -
1.0588]	1.6236]				0.1791]
0.0005 [-0.3366;	0.3134 [-0.3634;	-0.5007 [-1.0814;	iCBT		-0.1953 [-0.4599;
0.3377]	0.9902]	0.0800]			0.0694]
-0.1549 [-0.4745;	0.1579 [-0.5103;	-0.6562 [-1.2551;	-0.1554 [-0.5575;	IPT	-0.1655 [-0.5362;
0.1647]	0.8262]	-0.0572]	0.2466]		0.2051]
-0.1947 [-0.4036;	0.1181 [-0.5048;	-0.6960 [-1.2129;	-0.1953 [-0.4599;	-0.0398 [-0.3425;	TAU
0.0141]	0.7410]	-0.1791]	0.0694]	0.2628]	

* = standardized mean difference (SMD), ** = 95% confidence interval (95%CI)

Left-bottom values are network results, and right-upper values are direct estimates. In the network results, SMD > 0 indicates that the row-defining intervention is more efficacious than the column-defining intervention. If the confidence interval does not cover 0, the estimate is statistically significant. Statistically significant differences are indicated in bold.

BA	0.0052 [-0.4207;				-0.0936 [-1.0084;	
	0.4311]				0.8212]	
*-0.0080	CBT (ftf)			-0.1216 [-0.3929;	-0.0458 [-0.2225;	-0.8684 [-1.9496;
**[-0.4206; 0.4045]				0.1498]	0.1308]	0.2127]
0.2652 [-0.2616;	0.2732 [-0.0654;	gCBT	0.4544 [-0.3259;		-0.3496 [-0.6695; -	0.1679 [-0.9849;
0.7919]	0.6119]		1.2348]		0.0298]	1.3208]
0.8180 [0.3186;	0.8261 [0.5319;	0.5529 [0.1941;	iCBT		-0.9035 [-1.1663; -	-1.1429 [-1.9897; -
1.3174]	1.1203]	0.9117]			0.6407]	0.2961]
-0.1524 [-0.6230;	-0.1444 [-0.3773;	-0.4176 [-0.8014;	-0.9705 [-1.3160;	IPT	0.1239 [-0.2001;	
0.3182]	0.0886]	-0.0337]	-0.6249]		0.4478]	
-0.0755 [-0.5118;	-0.0674 [-0.2338;	-0.3407 [-0.6371;	-0.8935 [-1.1389;	0.0769 [-0.1680;	TAU	0.0125 [-1.1394;
0.3608]	0.0989]	-0.0443]	-0.6482]	0.3219]		1.1644]
-0.3126 [-1.0204;	-0.3046 [-0.8844;	-0.5778 [-1.1911;	-1.1307 [-1.7043;	-0.1602 [-0.7723;	-0.2371 [-0.8062;	WLC
0.3951]	0.2752]	0.0354]	-0.5570]	0.4518]	0.3319]	

Table S10: Comparison matrix for subgroup analysis among moderate depression in Grp 1

* = standardized mean difference (SMD), ** = 95% confidence interval (95%CI) Left-bottom values are network results, and right-upper values are direct estimates. In the network results, SMD > 0 indicates that the row-defining intervention is more efficacious than the column-defining intervention. If the confidence interval does not cover 0, the estimate is statistically significant. Statistically significant differences are indicated in bold.

T 11 011	·		1	1 •	1	• •	· •	1
Table SIT:	Comparison	matrix to	r subgroun	analysis among	' severe de	nression i	n (+rr)
I HOIC OIL!	Comparison	Interna io	i subgioup	and your announg	bereie ae	pression i		

	0		1	1		
BA	-0.2323 [-0.7989;					-0.8907 [-1.3635;
	0.3342]					-0.4179]
*-0.5598	CBT (ftf)	-0.1935 [-0.7702;		-0.0659 [-0.5273;	0.0094 [-0.3399;	-0.1388 [-0.3089;
**[-0.9992;		0.3832]		0.3956]	0.3587]	0.0313]
-0.1204]						
-0.5654 [-1.0768;	-0.0056 [-0.3091;	DYN				-0.2064 [-0.5248;
-0.0540]	0.2980]					0.1119]
2.8524 [1.9914;	3.4122 [2.6512;	3.4178 [2.6219;	gCBT			-3.5669 [-4.3115; -
3.7133]	4.1731]	4.2137]				2.8223]
-0.6257 [-1.2628;	-0.0659 [-0.5273;	-0.0603 [-0.6126;	-3.4780 [-4.3680;	iCBT		
0.0115]	0.3956]	0.4921]	-2.5881]			
-0.6300 [-1.1190;	-0.0702 [-0.3237;	-0.0646 [-0.4308;	-3.4824 [-4.2661;	-0.0044 [-0.5308;	IPT	-0.0348 [-0.3304;
-0.1411]	0.1832]	0.3016]	-2.6987]	0.5221]		0.2609]
-0.7146 [-1.1468;	-0.1548 [-0.3117;	-0.1492 [-0.4303;	-3.5669 [-4.3115;	-0.0889 [-0.5763;	-0.0845 [-0.3291;	TAU
-0.2824]	0.0022]	0.1319]	-2.8223]	0.3985]	0.1600]	

* = standardized mean difference (SMD), ** = 95% confidence interval (95%CI)

Left-bottom values are network results, and right-upper values are direct estimates. In the network results, SMD > 0 indicates that the row-defining intervention is more efficacious than the column-defining intervention. If the confidence interval does not cover 0, the estimate is statistically significant. Statistically significant differences are indicated in bold.

BA	-0.1281 [-0.6646;					-0.5599 [-1.0890;	
	0.4083]					-0.0307]	
*-0.2862	CBT (ftf)	-0.1935 [-0.9041;		0.0503 [-0.6843;	-0.1455 [-0.4889;	-0.0640 [-0.2189;	-0.8684 [-1.9830;
**[-0.7572;		0.5172]		0.7850]	0.1979]	0.0909]	0.2461]
0.1849]							
-0.2583 [-0.8329;	0.0279 [-0.3260;	DYN				-0.2026 [-0.5831;	
0.3164]	0.3818]					0.1779]	
0.3330 [-0.2403;	0.6192 [0.2607;	0.5913 [0.1212;	gCBT			-0.7305 [-1.0583;	
0.9064]	0.9777]	1.0614]				-0.4026]	
0.0377 [-0.6147;	0.3239 [-0.1420;	0.2960 [-0.2717;	-0.2953 [-0.8608;	iCBT		-0.6083 [-1.1927;	
0.6902]	0.7898]	0.8637]	0.2702]			-0.0239]	
-0.3967 [-0.9087;	-0.1105 [-0.3456;	-0.1384 [-0.5359;	-0.7297 [-1.1232;	-0.4344 [-0.9390;	IPT	0.0113 [-0.2323;	
0.1153]	0.1245]	0.2590]	-0.3363	0.0701]		0.2550]	
-0.3974 [-0.8678;	-0.1113 [-0.2564;	-0.1392 [-0.4762;	-0.7305 [-1.0583;	-0.4352 [-0.8960;	-0.0007 [-0.2182;	TAU	
0.0729]	0.0338]	0.1978]	-0.4026]	0.0256]	0.2168]		
-1.1546 [-2.3646;	-0.8684 [-1.9830;	-0.8963 [-2.0657;	-1.4876 [-2.6584;	-1.1923 [-2.4004;	-0.7579 [-1.8970;	-0.7572 [-1.8811;	WLC
0.0554]	0.2461]	0.2731]	-0.3168]	0.0157]	0.3812]	0.3668]	

Table S12: Comparison matrix for subgroup analysis of RCTs using HRSD in Grp 1

* = standardized mean difference (SMD), ** = 95% confidence interval (95%CI) Left-bottom values are network results, and right-upper values are direct estimates. In the network results, SMD > 0 indicates that the row-defining intervention is more efficacious than the column-defining intervention. If the confidence interval does not cover 0, the estimate is statistically significant. Statistically significant differences are indicated in bold.

BA	-0.1714 [-0.6508;					-0.5082 [-1.0088;	
	0.3080]					-0.0077]	
*-0.2773 **[CBT (ftf)	-0.3132 [-1.0979;		-0.0391 [-0.8650;	-0.1741 [-0.4207;	-0.1076 [-0.2841;	-0.4949 [-1.6517;
-0.6838; 0.1291]		0.4715]		0.7869]	0.0725]	0.0689]	0.6619]
-0.4289 [-1.1270;	-0.1516 [-0.7294;	DYN				-0.1947 [-1.0327;	
0.2692]	0.4263]					0.6433]	
0.4668 [-0.0554;	0.7441 [0.3810;	0.8957 [0.2310;	gCBT	0.4544 [-0.4538;		-1.0584 [-1.4086;	0.1679 [-1.0751;
0.9890]	1.1072]	1.5603]		1.3627]		-0.7083]	1.4109]
0.1394 [-0.3689;	0.4167 [0.0789;	0.5682 [-0.0855;	-0.3274 [-0.7464;	iCBT		-0.4788 [-0.8483;	-1.1429 [-2.1088;
0.6476]	0.7544]	1.2220]	0.0915]			-0.1092]	-0.1769]
-0.4763 [-0.9352;	-0.1990 [-0.4258;	-0.0474 [-0.6634;	-0.9431 [-1.3567;	-0.6157 [-1.0094;	IPT	0.0470 [-0.3612;	
-0.0174]	0.0278]	0.5685]	-0.5295]	-0.2220]		0.4552]	
-0.4392 [-0.8473;	-0.1619 [-0.3251;	-0.0103 [-0.5896;	-0.9060 [-1.2333;	-0.5785 [-0.8892;	0.0371 [-0.2186;	TAU	0.0125 [-1.2296;
-0.0310]	0.0014]	0.5691]	-0.5786]	-0.2678]	0.2929]		1.2546]
-0.5828 [-1.3261;	-0.3054 [-0.9409;	-0.1539 [-1.0033;	-1.0496 [-1.7254;	-0.7221 [-1.3610;	-0.1064 [-0.7750;	-0.1436 [-0.7728;	WLC
0.1606]	0.3300]	0.6956]	-0.3737]	-0.0832]	0.5621]	0.4856]	

Table S13: Comparison matrix for subgroup analysis of RCTs using BDI in Grp 1

* = standardized mean difference (SMD), ** = 95% confidence interval (95%CI) Left-bottom values are network results, and right-upper values are direct estimates. In the network results, SMD > 0 indicates that the row-defining intervention is more efficacious than the column-defining intervention. If the confidence interval does not cover 0, the estimate is statistically significant. Statistically significant differences are indicated in bold.

BA	-0.1363 [-0.8474;					-0.1218 [-0.8075;	
	0.5748]					0.5639]	
*-0.0453 **[CBT (ftf)	-0.1935 [-0.9556;		0.0503 [-0.7342;	-0.2083 [-0.7257;	-0.0759 [-0.3301;	-0.8684 [-2.0165;
-0.6693; 0.5787]		0.5686]		0.8349]	0.3091]	0.1783]	0.2796]
-0.1434 [-0.9070;	-0.0981 [-0.5768;	DYN				-0.1091 [-0.6784;	
0.6202]	0.3805]					0.4601]	
1.2161 [0.3569;	1.2613 [0.6258;	1.3595 [0.6062;	gCBT			-1.4154 [-2.0094;	
2.0752]	1.8969	2.1127]				-0.8215]	
0.2594 [-0.5218;	0.3046 [-0.2002;	0.4028 [-0.2631;	-0.9567 [-1.7285;	iCBT		-0.6162 [-1.2335;	
1.0405]	0.8095]	1.0687]	-0.1849]			0.0011]	
-0.1522 [-0.8212;	-0.1069 [-0.4245;	-0.0088 [-0.5371;	-1.3682 [-2.0207;	-0.4115 [-0.9655;	IPT	-0.0878 [-0.3823;	
0.5168]	0.2107]	0.5196]	-0.7158]	0.1424]		0.2067]	
-0.1994 [-0.8202;	-0.1541 [-0.3802;	-0.0560 [-0.5192;	-1.4154 [-2.0094;	-0.4587 [-0.9515;	-0.0472 [-0.3171;	TAU	
0.4214]	0.0720]	0.4073]	-0.8215]	0.0340]	0.2228]		
-0.9137 [-2.2204;	-0.8684 [-2.0165;	-0.7703 [-2.0141;	-2.1298 [-3.4420;	-1.1731 [-2.4272;	-0.7615 [-1.9527;	-0.7143 [-1.8845;	WLC
0.3930]	0.2796]	0.4735]	-0.8175]	0.0811]	0.4296]	0.4558]	

 Table S14: Comparison matrix for subgroup analysis of RCTs with low risk of bias in Grp 1

* = standardized mean difference (SMD), ** = 95% confidence interval (95%CI) Left-bottom values are network results, and right-upper values are direct estimates. In the network results, SMD > 0 indicates that the row-defining intervention is more efficacious than the column-defining intervention. If the confidence interval does not cover 0, the estimate is statistically significant. Statistically significant differences are indicated in bold.

CBT (ftf)		-0.3129				-0.3654		
		[-0.9301;				[-0.8589;		
		0.3042]				0.1281]		
*-0.3402	CBT (ftf) +p							-0.1480
**[-1.0697;								[-0.4442;
0.3893]								0.1483]
-0.3129	0.0273	DYN						
[-0.9301;	[-0.9283;							
0.3042]	0.9828]							
0.2080	0.5482	0.5209	gCBT+p					-0.6961
[-0.6570;	[-0.0775;	[-0.5416;						[-1.2472; -
1.0729]	1.1738]	1.5834]						0.1451]
-0.1450	0.1952	0.1679	-0.3530	iCBT				-0.3431
[-1.0166;	[-0.4397;	[-0.9001;	[-1.1397;					[-0.9046;
0.7265]	0.8300]	1.2359]	0.4337]					0.2184]
-0.3530	-0.0128	-0.0401	-0.5610	-0.2080	iCBT+p			-0.1351
[-1.1378;	[-0.5220;	[-1.0385;	[-1.2503;	[-0.9057;				[-0.5493;
0.4318]	0.4964]	0.9583]	0.1284]	0.4897]				0.2790]
-0.3654	-0.0252	-0.0525	-0.5734	-0.2204	-0.0124	IPT	0.4101	-0.1227
[-0.8589;	[-0.5624;	[-0.8427;	[-1.2837;	[-0.9388;	[-0.6226;		[-0.2726;	[-0.5709;
0.1281]	0.5120]	0.7378]	0.1369]	0.4980]	0.5978]		1.0928]	0.3254]
-0.1761	0.1641	0.1368	-0.3841	-0.0311	0.1769	0.1893	IPT+p	-0.1823
[-0.9807;	[-0.4988;	[-0.8772;	[-1.1936;	[-0.8477;	[-0.5464;	[-0.4462;		[-0.7932;
0.6286]	0.8270]	1.1509]	0.4255]	0.7856]	0.9003]	0.8248]		0.4285]
-0.4882	-0.1480	-0.1752	-0.6961	-0.3431	-0.1351	-0.1227	-0.3121	TAU
[-1.1548;	[-0.4442;	[-1.0837;	[-1.2472;	[-0.9046;	[-0.5493;	[-0.5709;	[-0.9051;	
0.1785]	0.1483]	0.7332]	-0.1451]	0.2184]	0.2790]	0.3254]	0.2810]	

Table S15: Comparison matrix for subgroup analysis among mild depression in Grp 2

* = standardized mean difference (SMD), ** = 95% confidence interval (95%CI) Left-bottom values are network results, and right-upper values are direct estimates. In the network results, SMD > 0 indicates that the row-defining intervention is more efficacious than the column-defining intervention. If the confidence interval does not cover 0, the estimate is statistically significant. Statistically significant differences are indicated in bold. BA = behavioral activation, CBT (ftf) = individual face-to-face cognitive behavioral therapy, DYN = psychoanalytic/psychodynamic psychotherapy, gCBT = group cognitive behavioral therapy, iCBT = computerized- or internet cognitive behavioral therapy, IPT = interpersonal psychotherapy, TAU = treatment-as-usual, WLC = wait list control, +p = + pharmacotherapy, Grp2 = a group 2, in which psychotherapy arms were sorted into psychotherapy alone and psychotherapy combined with medication.

BA		-0.0250								-0.0936	
		[-0.6101;								[-1.0242;	
		0.5601]								0.8370]	
*0.1989 **[BA+p		0.0445								
-0.7268;	_		[-0.6164;								
1.1246]			0.7054]								
-0.0580	-0.2569	CBT (ftf)	0.2509					-0.2047		0.0215	-0.8684
[-0.6111;	[-1.0065;		[-0.2831;					[-0.5170;		[-0.1717;	[-1.9629;
0.4952]	0.4927]		0.7849]					0.1075]		0.2146]	0.2260]
0.2434	0.0445	0.3014	CBT (ftf) +p						0.1825	-0.4222	
[-0.4047;	[-0.6164;	[-0.0523;							[-0.4235;	[-0.7979; -	
0.8916]	0.7054]	0.6552]							0.7885]	0.0464]	
-0.1186	-0.3175	-0.0606	-0.3620	gCBT		0.4544				0.0985	0.1679
[-0.8586;	[-1.1971;	[-0.5669;	[-0.9425;			[-0.3444;				[-0.4747;	[-0.9975;
0.6214]	0.5621]	0.4456]	0.2185]			1.2533]				0.6717]	1.3333]
0.4920	0.2931	0.5500	0.2486	0.6106	gCBT+p					-0.5607	
[-0.2017;	[-0.5471;	[0.1134;	[-0.2703;	[-0.0099;						[-0.9584; -	
1.1857]	1.1333]	0.9866]	0.7674]	1.2310]						0.1630]	
0.5808	0.3819	0.6388	0.3374	0.6994	0.0888	iCBT				-0.6947	-1.1429
[-0.0881;	[-0.4389;	[0.2437;	[-0.1494;	[0.1902;	[-0.4451;					[-1.0961; -	[-2.0067; -
1.2498]	1.2028]	1.0339]	0.8242]	1.2087]	0.6228]					0.2932]	0.2791]
1.0143	0.8154	1.0723	0.7709	1.1329	0.5223	0.4335	iCBT+p			-1.0830 [-	
[0.3400;	[-0.0089;	[0.6672;	[0.2783;	[0.5342;	[-0.0160;	[-0.0750;				1.4457; -	
1.6886]	1.6396]	1.4773]	1.2634]	1.7315]	1.0606]	0.9419]				0.7202]	
-0.2476	-0.4465	-0.1896	-0.4910	-0.1290	-0.7396	-0.8284	-1.2619	IPT	0.1753	0.2641	
[-0.8535;	[-1.2223;	[-0.4497;	[-0.8973;	[-0.6745;	[-1.2199;	[-1.2729;	[-1.7137;		[-0.4845;	[-0.0938;	
0.3583]	0.3293]	0.0704]	-0.0848]	0.4165]	-0.2593]	-0.3840]	-0.8102]		0.8352]	0.6219]	
0.1772	-0.0217	0.2351	-0.0663	0.2958	-0.3148	-0.4037	-0.8371	0.4248	IPT+p	-0.1705	
[-0.5261;	[-0.8226;	[-0.2122;	[-0.5187;	[-0.3446;	[-0.8998;	[-0.9605;	[-1.3989;	[-0.0374;		[-0.7103;	
0.8805]	0.7792]	0.6825]	0.3862]	0.9361]	0.2701]	0.1532]	-0.2754]	0.8869]		0.3693]	
-0.0687	-0.2676	-0.0107	-0.3121	0.0499	-0.5607	-0.6495	-1.0830	0.1789	-0.2459	TAU	0.0125
[-0.6371;	[-1.0077;	[-0.1909;	[-0.6453;	[-0.4263;	[-0.9584;	[-1.0058;	[-1.4457; -	[-0.0903;	[-0.6748;		[-1.1520;
0.4998]	0.4725]	0.1695]	0.0211]	0.5261]	-0.1630]	-0.2932]	0.7202]	0.4482]	0.1831]		1.1769]
-0.4845	-0.6835	-0.4266	-0.7280	-0.3660	-0.9765	-1.0654	-1.4988	-0.2369	-0.6617	-0.4159	WLC
[-1.2985;	[-1.6302;	[-1.0327;	[-1.4060;	[-1.0512;	[-1.6922;	[-1.6634;	[-2.1957;	[-0.8816;	[-1.3919;	[-1.0109;	
0.3295]	0.2633]	0.1796]	-0.0500]	0.3192]	-0.2609]	-0.4673]	-0.8020]	0.4077]	0.0685]	0.1791]	

Table S16: Comparison matrix for subgroup analysis among moderate depression in Grp 2

* = standardized mean difference (SMD), ** = 95% confidence interval (95%CI) Left-bottom values are network results, and right-upper values are direct estimates. In the network results, SMD > 0 indicates that the row-defining intervention is more efficacious than the column-defining intervention. If the confidence interval does not cover 0, the estimate is statistically significant. Statistically significant differences are indicated in bold. BA = behavioral activation, CBT (ftf) = individual face-to-face cognitive behavioral therapy, DYN = psychoanalytic/psychodynamic psychotherapy, gCBT = group cognitive behavioral therapy, iCBT = computerized- or internet cognitive behavioral therapy, IPT = interpersonal psychotherapy, TAU = treatment-as-usual, WLC = wait list control, +p = + pharmacotherapy, Grp2 = a group 2, in which psychotherapy arms were sorted into psychotherapy alone and psychotherapy combined with medication separately

BA		-0.3818										-0.1475
		[-1.1362;										[-0.8504;
		0.3727]										0.5555]
*0.8586	BA+p		-0.1138									-1.2824
**[0.0638	•		[-0.7613;									[-1.7938; -
; 1.6535]			0.5337]									0.7711]
-0.3097	-1.1683	CBT (ftf)	0.7882	-0.1935				0.0503		0.0137		0.1252
[-0.9572;	[-1.6561;		[0.4026;	[-0.6133;				[-0.4089;		[-0.2658;		[-0.0432;
0.3379]	-0.6806]		1.1737]	0.2263]				0.5096]		0.2932]		0.2936]
0.3777	-0.4810	0.6874	CBT (ftf)						-0.2262			-0.5532
[-0.2945;	[-0.9591;	[0.4521;	+p						[-0.8181;			[-0.7577; -
1.0499]	-0.0029]	0.9226]	-						0.3658]			0.3486]
-0.3964	-1.2550	-0.0867	-0.7740	DYN								0.0414
[-1.1152;	[-1.8280;	[-0.4157;	[-1.1582;									[-0.4648;
0.3224]	-0.6820]	0.2424]	-0.3899]									0.5477]
0.0962	-0.7624	0.4059	-0.2815	0.4926	DYN+p							-0.2958
[-0.6086;	[-1.3087;	[0.0829;	[-0.6284;	[0.0524;	_							[-0.5808; -
0.8011]	-0.2161]	0.7289]	0.0655]	0.9327]								0.0109]
2.7439	1.8852	3.0536	2.3662	3.1402	2.6477	gCBT	0.6014					
[1.4512;	[0.6717;	[1.9229;	[1.2284;	[1.9707;	[1.4916;		[-0.2819;					
4.0365]	3.0987]	4.1843]	3.5040]	4.3098]	3.8038]		1.4847]					
3.3453	2.4866	3.6550	2.9676	3.7417	3.2491	0.6014	gCBT+p					-3.5449
[2.4015;	[1.6546;	[2.9491;	[2.2505;	[2.9751;	[2.5033;	[-0.2819;						[-4.2342; -
4.2890]	3.3187]	4.3608]	3.6847]	4.5082]	3.9949]	1.4847]						2.8557]
-0.2593	-1.1180	0.0503	-0.6370	0.1370	-0.3556	-3.0032	-3.6046	iCBT				
[-1.0532;	[-1.7879;	[-0.4089;	[-1.1530;	[-0.4279;	[-0.9170;	[-4.2236;	[-4.4467;					
0.5345]	-0.4480]	0.5096]	-0.1210]	0.7020]	0.2059]	-1.7828]	-2.7625]					
0.1515	-0.7071	0.4612	-0.2262	0.5479	0.0553	-2.5924	-3.1938	0.4108	iCBT+p			
[-0.7442;	[-1.4681;	[-0.1758;	[-0.8181;	[-0.1578;	[-0.6309;	[-3.8749;	[-4.1237;	[-0.3744;				
1.0472]	0.0538]	1.0982]	0.3658]	1.2536]	0.7415]	-1.3098]	-2.2639]	1.1961]				
-0.2806	-1.1393	0.0291	-0.6583	0.1157	-0.3768	-3.0245	-3.6259	-0.0213	-0.4321	IPT	0.1156	0.0648
[-0.9542;	[-1.6526;	[-0.1908;	[-0.9469;	[-0.2674;	[-0.7355;	[-4.1659;	[-4.3488;	[-0.5304;	[-1.0907;		[-0.4681;	[-0.2101;
0.3930]	-0.6259]	0.2489]	-0.3697]	0.4989]	-0.0182]	-1.8831]	-2.9031]	0.4879]	0.2264]		0.6994]	0.3397]
0.0036	-0.8550	0.3133	-0.3741	0.4000	-0.0926	-2.7403	-3.3417	0.2629	-0.1479	0.2842	IPT+p	-0.2531
[-0.7430;	[-1.4562;	[-0.0884;	[-0.8015;	[-0.1033;	[-0.5676;	[-3.9234;	[-4.1288;	[-0.3472;	[-0.8781;	[-0.1222;	_	[-0.6589;
0.7502]	-0.2539]	0.7150]	0.0534]	0.9033]	0.3824]	-1.5571]	-2.5546]	0.8731]	0.5823]	0.6906]		0.1527]
-0.1996	-1.0583	0.1100	-0.5773	0.1967	-0.2958	-2.9435	-3.5449	0.0597	-0.3511	0.0810	-0.2032	TAU
[-0.8443;	[-1.5244;	[-0.0421;	[-0.7753;	[-0.1388;	[-0.5808;	[-4.0639;	[-4.2342;	[-0.4241;	[-0.9753;	[-0.1368;	[-0.5833;	
0.44501	-0.5922]	0.2622]	-0.3793]	0.5322]	-0.0109]	-1.8231]	-2.8557]	0.5435]	0.2731]	0.29881	0.1769]	

Table S17: Comparison matrix for subgroup analysis among severe depression in Grp 2

* = standardized mean difference (SMD), ** = 95% confidence interval (95%CI) Left-bottom values are network results, and right-upper values are direct estimates. In the network results, SMD > 0 indicates that the row-defining intervention is more efficacious than the column-defining intervention. If the confidence interval does not cover 0, the estimate is statistically significant. Statistically significant differences are indicated in bold. BA = behavioral activation, CBT (ftf) = individual face-to-face cognitive behavioral therapy, DYN = psychoanalytic/psychodynamic psychotherapy, gCBT = group cognitive behavioral therapy, CBT = computerized- or internet cognitive behavioral therapy, TAU = treatment-as-usual, WLC = wait list control, +p = + pharmacotherapy, Grp2 = a group 2, in which psychotherapy arms were sorted into psychotherapy alone and psychotherapy combined with medication separately.

BA -0.1382-0.1220 [-0.7886; [-0.7445; 0.5122] 0.5004] *0.8137 BA+p -0.1138-1.3653 [-0.9254; [-2.2053; **[-0.1027 0.6979] - 0.5253] ; 1.7301] -0.1564 -0.9701 CBT (ftf) 0.5044 -0.1935 0.0503 -0.1731 0.0914 -0.8684[-1.9422 [-0.7218; [-1.7082; -[0.0589; [-0.8383; [-0.6208 [-0.5171 [-0.0752; 0.2580] ; 0.2053] 0.9499] ; 0.1708] 0.4090] 0.2321] 0.4514] ; 0.7215] -0.5018 0.4683 CBT (ftf) 0.0657 -0.4352 0.3119 [-0.2918; [-1.2236; [0.2089; +p [-0.6748: -[-0.8098 0.9156] 0.2199] 0.7277] ; 0.9412] 0.1955] -0.2579-1.0716 -0.1014-0.5697 DYN 0.0414 [-0.9918; [-1.9408; -[-0.5823; [-1.0987; -[-0.6627; 0.2024] 0.3795] 0.0407] 0.7456] 0.4761] DYN+p -0.6357 0.3344 -0.13390.4359 -0.28470.1780 [-0.5146; [-1.4644 [-0.0979; [-0.5955; [-0.1932: [-0.6876; 0.8706] ; 0.1930] 0.7668] 0.3278] 1.0650] 0.1183] -0.8847 0.0854 -0.3829 0.1868 -0.2490 0.0795 -0.0710gCBT 0.6014 [-1.7940; [-0.4863; [-0.9771; [-0.5451; [-0.9307; [-0.4085; [-0.5614; [-0.8582;0.0245] 0.2113] 0.9187] 0.4326] 0.7203] 0.7161] 0.6571] 1.6113] 0.8163 0.0026 0.9727 0.5044 1.0742 0.6383 0.8873 gCBT+p -0.9580 [-0.7969; [0.0975; [0.1589; [0.5994; [0.4841; [0.1118; [0.2948; [-1.3113; -1.4737] 0.8021] 1.3460] 0.9113] 1.6643] 1.1648] 1.4799] 0.6047] -0.9198 -0.4180 -0.9224 iCBT -0.1061 0.0503 0.1518 -0.2841 -0.0351 [-0.9837; [-1.9174; [-0.6208; [-1.1375; [-0.6739; [-1.0825; [-0.9167; [-1.6904; 0.7715] 0.0778] 0.7215] 0.3016] 0.9774] 0.5143 0.8466] -0.1544] -0.3239 0.4898 0.6463 0.1780 0.7477 0.3118 0.5608 -0.3265 0.5959 iCBT+p -0.5965 [-1.2288; [0.0815; [-0.4095: [-0.2923; [0.0212; [-0.3640; [-0.2116; [-0.9661; [-0.2812 [-1.1391; -1.2719] 0.5810] 1.2110] 0.7654 1.4742] 0.9876] 1.3333] 0.3132] ; 1.4731] 0.0540] 0.0435 -0.1083 IPT 0.0912 -0.2144-1.0281 -0.0580 -0.5263 -0.3924-0.1434 -1.0307 -0.70420.2487 [-1.7834; -[-0.2981; [-0.8343; -[-0.7352; [-0.8212 [-1.2894; [-0.3153 [-0.1533; [-0.8133; [-0.4794; [-0.8511; [-1.4343; 0.3845] 0.2729] 0.1822] 0.2183] 0.5663] 0.0663 0.4485] -0.6271] ; 0.6046] -0.1191] ; 0.8127] 0.3357] -0.6583 -0.2407 0.3119 -0.1564 0.4133 -0.0226 0.2265 -0.6609 0.2615 -0.3344 0.3698 IPT+p 0.1554 [-0.0232 [-0.6617; [-0.5128; [-1.4623; [-0.0766; [-0.5620; [-0.1885; [-0.5647; [-0.4321; [-1.1572; [-0.5140 [-0.9870; ; 0.7629] 0.5195] 0.8237] 0.1457] 0.7004] 0.2491] 1.0151] 0.8851] -0.1646] ; 1.0370] 0.3182] 0.1803]

Table S18: Comparison matrix for subgroup analysis of RCTs using HRSD in Grp 2

Table S18: (continued) Comparison matrix for subgroup analysis of RCTs using HRSD in Grp 2

-0.1067 [-0.6700; 0.4566]	-0.9204 [-1.6446; -0.1962]	0.0498 [-0.1069; 0.2064]	-0.4185 [-0.6439; -0.1932]	0.1512 [-0.3320; 0.6343]	-0.2847 [-0.6876; 0.1183]	-0.0357 [-0.5854; 0.5141]	-0.9230 [-1.2618; -0.5841]	-0.0006 [-0.6898 ; 0.6886]	-0.5965 [-1.1391; - 0.0540]	0.1077 [-0.1115 ; 0.3269]	-0.2621 [-0.6247 ; 0.1005]	TAU	
-1.0249	-1.8386 [-0.8684	-1.3367	-0.7670	-1.2029	-0.9539	-1.8412	-0.9188	-1.5147	-0.8105	-1.1803	-0.9182	WLC
[-2.2384;	-3.1416;	[-1.9422;	[-2.4414;	[-1.9436;	[-2.3605;	[-2.1703;	[-2.9780;	[-2.1851	[-2.7279;	[-1.9108	[-2.3222	[-2.0034;	
0.1887]	-0.5356]	0.2053]	-0.2321]	0.4095]	-0.0453]	0.2626]	-0.7043]	; 0.3475]	-0.3015]	; 0.2898]	; -0.0384]	0.1670]	

* = standardized mean difference (SMD), ** = 95% confidence interval (95%CI) Left-bottom values are network results, and right-upper values are direct estimates. In the network results, SMD > 0 indicates that the row-defining intervention is more efficacious than the column-defining intervention. If the confidence interval does not cover 0, the estimate is statistically significant. Statistically significant differences are indicated in bold.

BA = behavioral activation, CBT (ftf) = individual face-to-face cognitive behavioral therapy, DYN = psychoanalytic/psychodynamic psychotherapy, gCBT = group cognitive behavioral therapy, iCBT = computerizedor internet cognitive behavioral therapy, IPT = interpersonal psychotherapy, TAU = treatment-as-usual, WLC = wait list control, +p = + pharmacotherapy, Grp2 = a group 2, in which psychotherapy arms were sortedinto psychotherapy alone and psychotherapy combined with medication separately.

Table 3	S19:	Com	narison	matrix	for s	ubgroun	analy	sis of	° R(Ts	using	BDI	in (Grn	2
Iunic	J1/ •	Com	pai 15011	math	101 5	ubgroup	anary	313 01		J I G	using	$\mathbf{v}\mathbf{v}\mathbf{i}$		or p	_

BA		-0.2269										0.2284	
		[-0.7328										[-0.4253	
		; 0.2790]										; 0.8820]	
*0.9505 **	BA+p		-0.0029									-1.2363	
[0.1882;			[-0.8607									[-1.8842	
1.7127]			; 0.8549]									; -0.5883]	
-0.0687	-1.0192	CBT (ftf)	0.6918	-0.3132				-0.0391		-0.2038		0.0740	-0.4949
[-0.5352;	[-1.6381;		[0.1055;	[-1.0470				[-0.7655		[-0.4442		[-0.1141	[-1.5829
0.3977]	-0.4002]		1.2782]	; 0.4207]				; 0.6874]		; 0.0366]		; 0.2622]	; 0.5931]
0.4461	-0.5044	0.5148	CBT (ftf)								0.1081	-0.4718	
[-0.0867;	[-1.1183;	[0.2246;	+p								[-0.5113	[-0.7360	
0.9789]	0.1096]	0.8050]									; 0.7274]	; -0.2077]	
-0.3819	-1.3324	-0.3132	-0.8280	DYN									
[-1.2515;	[-2.2924;	[-1.0470;	[-1.6171;										
0.4876]	-0.3723]	0.4207]	-0.0389]										
0.1630	-0.7875	0.2317	-0.2831	0.5449	DYN+p							-0.1947	
[-0.7174;	[-1.7379;	[-0.5285;	[-1.0638	[-0.5117;								[-0.9348	
1.0434]	0.1629]	0.9920]	; 0.4976]	1.6015]								; 0.5455]	
0.0408	-0.9096	0.1095	-0.4053	0.4227	-0.1222 [gCBT	0.2290	0.4544				0.1663	0.1679
[-0.6072;	[-1.6525;	[-0.3604;	[-0.9128	[-0.4487;	-0.9850;		[-0.8066	[-0.3644				[-0.4208	[-1.0113
0.6889]	-0.1668]	0.5795]	; 0.1023]	1.2941]	0.7407]		; 1.2646]	; 1.2733]				; 0.7534]	; 1.3472]
1.3798	0.4294	1.4486	0.9337	1.7617	1.2168	1.3390	gCBT+p					-1.5664	
[0.7790;	[-0.2704;	[1.0440;	[0.4912;	[0.9238;	[0.3910;	[0.8073;						[-1.9531	
1.9806]	1.1291]	1.8531]	1.3762]	2.5997]	2.0427]	1.8708]						; -1.1796]	
0.4313	-0.5192	0.5000	-0.0148	0.8132	0.2683	0.3905	-0.9485	iCBT				-0.5561	-1.1429
[-0.1382;	[-1.1985;	[0.1503;	[-0.4228	[0.0003;	[-0.5406;	[-0.0952;	[-1.4308;					[-0.9667	[-2.0252
1.0007]	0.1601]	0.8497]	; 0.3931]	1.6261]	1.0772]	0.8762]	-0.4663]					; -0.1455]	; -0.2605]
0.3022	-0.6482	0.3709	-0.1439	0.6841	0.1392	0.2614	-1.0776	-0.1291	iCBT+p		•	-0.3339	•
[-0.4367;	[-1.4693;	[-0.2197;	[-0.7606	[-0.2579;	[-0.7916;	[-0.4565;	[-1.7506;	[-0.7812;				[-0.8984;	
1.0411]	0.1728]	0.9616]	; 0.4728]	1.6261]	1.0701]	0.9793]	-0.4046]	0.5231]				0.2306]	
-0.2955	-1.2460	-0.2268	-0.7416	0.0864	-0.4585	-0.3363	-1.6753	-0.7268	-0.5977	IPT	0.7888	0.2678	•
[-0.8097;	[-1.8956;	[-0.4521;	[-1.0922;	[-0.6813;	[-1.2439;	[-0.8472;	[-2.1256;	[-1.1318;	[-1.2205;		[-0.1004	[-0.1831;	
0.2186]	-0.5964]	-0.0014]	-0.3910]	0.8541]	0.3269]	0.1745]	-1.2251]	-0.3218]	0.0250]		; 1.6779]	0.7187]	
0.3529	-0.5975	0.4216	-0.0932 [0.7348	0.1899	0.3121	-1.0269	-0.0784	0.0507	0.6484	IPT+p	-0.2899	
[-0.2793;	[-1.3173;	[-0.0250;	-0.5310	[-0.1243;	[-0.6622;	[-0.2996;	[-1.5859;	[-0.6101;	[-0.6543;	0.1719;		[-0.8071	
0.9851]	0.1222]	0.8683]	; 0.3446]	1.5939]	1.0421]	0.9238]	-0.4679]	0.4534]	0.7557]	1.1249]		; 0.2272]	
-0.0317	-0.9822	0.0370	-0.4778	0.3502	-0.1947	-0.0725	-1.4115	-0.4630	-0.3339	0.2638	-0.3846	TAU	0.0125
[-0.5084;	[-1.5783;	[-0.1366;	[-0.7261;	[-0.4039;	[-0.9348;	[-0.5160;	[-1.7779;	[-0.7895;	[-0.8984;	[0.0009;	[-0.8069;		[-1.1658
0.4450	0.20701	0.21071	-0.2294]	1.10431	0.5455	0.3710]	-1.0452]	-0.1365]	0.2306]	0.5267]	0.0377]		; 1.1907]
<u> </u>	-0.3800]	0.2107			<u> </u>	0	4 000-	0 0	0	0 1	a == t =	C	
-0.4206	-0.3860]	-0.3519	-0.8667	-0.0387	-0.5836	-0.4614	-1.8005	-0.8519	-0.7228	-0.1251	-0.7735	-0.3889	WLC
-0.4206 [-1.1737;	-0.3860 -1.3711 [-2.2136;	-0.3519 [-0.9537;	-0.8667 [-1.5102;	-0.0387 [-0.9877;	-0.5836 [-1.5340;	-0.4614 [-1.1407;	-1.8005 [-2.4922;	-0.8519 [-1.4510;	-0.7228 [-1.5439;	-0.1251 [-0.7620;	-0.7735 [-1.5017;	-0.3889 [-0.9851;	WLC

* = standardized mean difference (SMD), ** = 95% confidence interval (95%CI) Left-bottom values are network results, and right-upper values are direct estimates. In the network results, SMD > 0 indicates that the row-defining intervention is more efficacious than the column-defining intervention. If the confidence interval does not cover 0, the estimate is statistically significant. Statistically significant differences are indicated in bold. BA = behavioral activation, CBT (ftf) = individual face-to-face cognitive behavioral therapy, DYN = psychoanalytic/psychodynamic psychotherapy, gCBT = group cognitive behavioral therapy, iCBT = computerized- or internet cognitive behavioral therapy, IPT = interpersonal psychotherapy, TAU = treatment-as-usual, WLC = wait list control, +p = + pharmacotherapy, Grp2 = a group 2, in which psychotherapy arms were sorted into psychotherapy alone and psychotherapy combined with medication separately.

BA	-0.1356									-0.1217	
	[-0.8736;									[-0.8352;	
	0.6024]									0.5919]	
*-0.1109	CBT (ftf)	0.2800	-0.1935			0.0503		-0.2139		0.0527	-0.8684
**[-0.7662;		[-0.6698;	[-1.0050;			[-0.7823;		[-0.7566;		[-0.2907;	[-2.0499;
0.5445]		1.2298]	0.6181]			0.8830]		0.3289]		0.3961]	0.3130]
0.1201	0.2309	CBT (ftf) +p								-0.2641	
[-0.6300;	[-0.2374;									[-0.6563;	
0.8701]	0.6992]									0.1281]	
-0.2478	-0.1369	-0.3679	DYN							0.0414	
[-1.1152;	[-0.7436;	[-1.0831;								[-0.8180;	
0.6196]	0.4697]	0.3473]								0.9009]	
0.1110	0.2219	-0.0090	0.3589	DYN+p						-0.2540	
[-0.9552;	[-0.6743;	[-0.9372;	[-0.6837;							[-1.0989;	
1.1772]	1.1181]	0.9192]	1.4014]							0.5908]	
1.3001	1.4110	1.1800	1.5479	1.1891	gCBT+p					-1.4431	
[0.4040;	[0.7258;	[0.4535;	[0.6801;	[0.1432;						[-2.0595; -	
2.1962]	2.0961]	1.9066]	2.4158]	2.2349]						0.8266]	
-0.0605	0.0503	-0.1806	0.1873	-0.1716	-1.3606	iCBT					
[-1.1202;	[-0.7823;	[-1.1359;	[-0.8429;	[-1.3949;	[-2.4389;						
0.9991]	0.8830]	0.7747]	1.2175]	1.0517]	-0.2823]						
0.4799	0.5908	0.3598	0.7277	0.3689	-0.8202	0.5404	iCBT+p			-0.6229	
[-0.4390;	[-0.1240;	[-0.3946;	[-0.1637;	[-0.6966;	[-1.7154;	[-0.5569;				[-1.2721;	
1.3988]	1.3055]	1.1143]	1.6191]	1.4343]	0.0750]	1.6378]				0.0263]	
-0.1649	-0.0540	-0.2849	0.0829	-0.2759	-1.4650	-0.1044	-0.6448	IPT	0.2526	-0.0449	
[-0.8666;	[-0.4214;	[-0.7679;	[-0.5801;	[-1.1724;	[-2.1505;	[-1.0145;	[-1.3598;		[-0.4110;	[-0.3746;	
0.5368]	0.3134]	0.1980]	0.7460]	0.6205]	-0.7795	0.8058]	0.0702]		0.9162]	0.2847]	
0.0604	0.1713	-0.0596	0.3082	-0.0506	-1.2397	0.1210	-0.4195	0.2253	IPT+p	-0.1880	
[-0.7599;	[-0.4038;	[-0.6948;	[-0.4804;	[-1.0360;	[-2.0379;	[-0.8910;	[-1.2433;	[-0.3061;		[-0.7323;	
0.8807]	0.7464]	0.5755]	1.0969]	0.9347]	-0.4414]	1.1329]	0.4043]	0.7568]		0.3563]	
-0.1430	-0.0321	-0.2630	0.1048	-0.2540	-1.4431	-0.0824	-0.6229	0.0219	-0.2034	TAU	
[-0.7934;	[-0.3312;	[-0.6475;	[-0.5061;	[-1.0989;	[-2.0595;	[-0.9672;	[-1.2721;	[-0.2778;	[-0.7106;		
0.5074]	0.2670]	0.1215]	0.7157]	0.5908]	-0.8266]	0.8023]	0.0263]	0.3217]	0.3038]		
-0.9793	-0.8684	-1.0994	-0.7315	-1.0904	-2.2794	-0.9188	-1.4592	-0.8144	-1.0397	-0.8363	WLC
[-2.3304;	[-2.0499;	[-2.3702;	[-2.0596;	[-2.5733;	[-3.6452;	[-2.3642;	[-2.8401;	[-2.0517;	[-2.3537;	[-2.0551;	
0.3717]	0.3130]	0.1715]	0.5966]	0.3925]	-0.9137]	0.5266]	-0.0784]	0.4228]	0.2742]	0.3824]	

Table S20: Com	narison matrix	for subgroun	analysis of RCTs	with a low	ROB in Grn 2
Tuble Shot Com	par ison matrix	ior subgroup	analysis of ite is	min a lom	KOD III OI P Z

* = standardized mean difference (SMD), ** = 95% confidence interval (95%CI) Left-bottom values are network results, and right-upper values are direct estimates. In the network results, SMD > 0 indicates that the row-defining intervention is more efficacious than the column-defining intervention. If the confidence interval does not cover 0, the estimate is statistically significant. Statistically significant differences are indicated in bold.

BA = behavioral activation, CBT (ftf) = individual face-to-face cognitive behavioral therapy, DYN = psychoanalytic/psychodynamic psychotherapy, gCBT = group cognitive behavioral therapy, iCBT = computerized- or internet cognitive behavioral therapy, IPT = interpersonal psychotherapy, TAU = treatment-as-usual, WLC = wait list control, +p = + pharmacotherapy, Grp2 = a group 2, in which psychotherapy arms were sorted into psychotherapy alone and psychotherapy combined with medication separately.