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1 Simulation Study for Parameter Recovery

We conducted three simulation studies to assess the ability of the fitting algorithms for the
three models to recover the true model parameters. This section details the simulation setup,
assumptions, and results for the three models. The code for the three simulations can be found
here: https://github.com/HassanAbdelrahman/HMM_Simulations

1.1 Continuous-time Model
Simulation Setup

The simulated data involves a portfolio of 1,000 individuals, each characterized by three distinct
covariates:

e x1: A numerical variable randomly sampled from integers 1 to 50 for each individual.
e x2: A categorical variable with three levels: A, B and C.
e x3: A categorical variable with two levels: X and Y.

The simulated dataset spans T = 100 discrete time points, representing the observation pe-
riod for each individual. For the common hidden Markov process, we assume the following
parameters:

e Initial distribution: 7 = (1,0), indicating the process always starts in state 1.
e Number of hidden states: g = 2.

e Transition matrix:
r— {0.70 0.30}

0.40 0.60

The simulation process involves generating a time series of hidden states (c1, ¢, ..., c100). These



hidden states, representing the underlying state at each time point, are simulated using the
specified initial distribution and transition matrix.

Given the simulated path of hidden states, we proceed to simulate count data (n;1, 742, ..., 7 100)
for each individual ¢. This count data is a realization of a Poisson process with intensity
log(\ (x;)) at each time point k. The Poisson intensities are defined through the following
regression functions:

log Aer, @) = {0.2 40.001-x1+0.05-1{x2 =B} +0.10- 1{x2 = C} — 0.05- 1{x3 =Y}, ifc, =1,

' 0.4+40.002-x1+0.10- 1{x2 = B} +0.15- 1{x2 =C} — 0.05- 1{x3 =Y}, if¢; = 2.
Each individual’s observed count data is generated as a realization of a Poisson process based
on the simulated hidden states and covariates. The exposure term q;(x), representing the
probability of reporting, is assumed constant and equal to 1 for all individuals and all time
points, indicating that all claims are reported and the exposure is constant across time.

Initialization of Parameters

Before we apply our EM algorithm, we need to initialize the parameters. The parameters were
initialized as follows:

e Initial Distribution (7): The initial distribution of the hidden states was set to be
uniform across all g states:

e Regression Coefficients (0): The regression coefficients for log(\) were initialized based
on the observed data:

1. Observed Intensity Estimation: The average observed intensity was computed for
each time point as the ratio of total observed counts to total exposure.

2. Clustering: A k-means clustering algorithm was applied to group these average in-
tensities into g clusters, with the cluster centers sorted in ascending order to align
with the expected intensity levels for the hidden states.

3. Intercept Initialization: For each hidden state, the intercept was set to the log of the
mean intensity within its corresponding cluster. All other regression coefficients were
initialized to zero.

e Transition Matrix (I'): The transition matrix was initialized by fitting a Markov chain
to the sequence of cluster assignments derived from the k-means clustering. This matrix
represents the probabilities of transitioning between hidden states.



Results

We fitted the model using g = 2,3,4,5 hidden states and selected the best model based on
the Bayesian Information Criterion (BIC) (see 7, Chapter 6 for details). The following table
presents the BIC values for models with different numbers of hidden states:

Number of Hidden States (g) BIC

2 122,871.4
3 122,897.0
4 122,939.8
5 122,991.5

Table 1: BIC values for the Continuous-time model with varying g

The BIC suggested that the best model was with g = 2, which aligns with the simulation setup.
For g = 2, the estimated parameters were:

e Initial distribution:
7 = (1.00,0.00).

e Transition matrix:

r_ [073 027
~ (041 059

e Regression coefficients:

Intercept  x;  1{za =B} 1{za=C} {z3=Y}
State 1 0.21 0.0010 0.035 0.093 —0.048
State 2 0.40 0.0023 0.090 0.14 —0.050

The values for the initial distribution, transition matrix, and regression coefficients closely match
the true parameters used in the simulation, confirming that the fitting algorithm was able to
recover the model parameters successfully. Note that with a larger portfolio or more time points,
the estimates become more accurate.

1.2 Multinomial Model
Simulation Setup

We use the generated data from the previous simulation, assuming the same time points, number
of individuals, and parameters for the Poisson process and the underlying HMM.

The reporting delay is now incorporated by assuming a maximum reporting delay of 4 periods.
For each occurrence at time t, the event can be reported at time ¢ + d, where d € {0,1,2,3,4}.
The reporting delay distribution depends on the covariate zo as follows:



e For individuals with x5 = A, the probabilities of reporting in each delay category are
uniform:

py=(0.2,02,0.2,02,0.2)

e For individuals with xo = C, the probabilities decrease with the delay:

5 4 3 2 1
==, —=,—, =, —= = (0. 2 .2 1 .
P <15, 5 15 5 15) (0.333,0.267,0.200,0.133,0.067)
e For individuals with 2o = B, the probabilities are the average of those for xo = A and
ro = C:
pp = (0.267,0.233,0.200,0.167,0.133)

For each individual i, given the total count at time ¢ (same counts obtained from the first
simulation), we simulate delayed counts for each delay category d € {0,1,2,3,4} from a multi-
nomial distribution, using the corresponding probabilities p 4, Pg, and p- based on the value of
xr9.

The regression function corresponding to the targeted p,, pg, and p. is given by:

p(d; x;)

d.> = Intercept+d;-1{xe = B}+d2-1{za = C}, d=1,2,3,4,
ijop(J;zi)

log(q(d; x;)) = log (

with coefficients:

Intercept 01 09 Delay
—0.69314718 —0.06899287 —0.11778304 d=1
—1.0986123  —0.1541507 —0.2876821 d =2
—1.3862944  —0.2623643 —0.5596158 d =3
—1.6094379  —0.4054651 —1.0986123 d=14

Initialization of Parameters

The initialization of 7, I', and 03-5 in this simulation follows a similar methodology to the
original simulation. However, the initialization for I', and 0}5 are based on a reduced dataset
that includes data only up to t < 96, ensuring that all information about the events and delays
is fully observed.

For the regression coefficients § associated with the delay probabilities g(d), the initialization is
as follows:

e Intercept Initialization: The intercept for each delay d is set to the logarithm of the
average qq, calculated as the ratio of the total counts observed at delay d to the cumulative
total counts across all delays j < d.



e Other Coefficients: All other regression coefficients in d are initialized to zero, reflecting
an uninformative prior before model fitting.

This initialization corresponds to assuming same delay probabilities across covariate groups
(pa = pp = Pc) with the delay probabilities initialized as (0.267,0.235,0.198,0.167,0.133).
These values align with the observed proportions in the reduced dataset.

Results

We fitted the model to the censored reported data using g = 2, 3,4, 5 hidden states and selected
the best model based on the BIC. The following table presents the BIC values for models with
different numbers of hidden states:

Number of Hidden States (g) BIC

2 122,088.0
3 122,122.8
4 122,158.4
5 122,210.6

Table 2: BIC values for the Multinomial model with varying g

Similar to the first simulation, the BIC suggested that the best model was with g = 2, which
aligns with the simulation setup. For g = 2, the estimated parameters were:

e Initial distribution:
7 = (1.00,0.00).

e Transition matrix:

p_ [0.73 027
~ 041 059

¢ Regression coefficients:

Intercept x1 Hzo=B} Hze=C} Hazz=Y}
State 1 0.21 0.00097 0.035 0.092 —0.046
State 2 0.40 0.0023 0.089 0.14 —0.050

e Delay coefficients:
Intercept 01 09 Delay
—-0.70  —0.058 —0.086 d=1
—1.11 —-0.15 —-0.29 d=2
—1.36 —-0.28 —-0.59 d=3
—1.61 —-040 —-1.11 d=4

These coefficients correspond to p, = (0.202,0.197,0.197,0.205, 0.199),
pp = (0.268,0.234,0.199,0.166,0.133), and p = (0.330,0.274,0.199,0.132,0.065, which
closely match the true probability vectors.




The results confirm that the fitting algorithm successfully recovered the model parameters.
As in the continuous-time model, larger datasets or longer time horizons improve estimation
accuracy.

1.3 Dirichlet-Multinomial Model
Simulation Setup

We retain the same portfolio characteristics, Poisson counts, and underlying assumptions as in
Simulation 1.1. The occurrence counts at each time point are generated identically. Additionally,
we assume the same maximum reporting delay of 4 as in Simulation 1.2. However, in this
simulation, the reporting delay probabilities are modeled using a Dirichlet distribution.

The reporting delay probabilities, p(x;) = (p(0;x;),p(1;x;),...,p(4;x;)), follow a Dirichlet
distribution, with the expected delay probabilities depending on x2 as follows:

E(p,) = (0.2,0.2,0.2,0.2,0.2),
E(pp) = (0.267,0.233,0.200,0.167,0.133),
E(po) = (0.333,0.267,0.200,0.133,0.067),

which align with the targeted delay probabilities from Simulation 1.2. For each individual ¢,
the delay probabilities p; are sampled from the corresponding Dirichlet distribution. Once p;
is sampled, the delayed counts for each delay category d are simulated using a multinomial
distribution with the sampled p;, as in Simulation 1.2.

Initialization of Parameters

The initialization of 7, I', and 6,’s in this simulation is exactly the same as the initialization in
Simulation 1.2. We choose weak priors for the Dirichlet-distributed delays, which correspond to
the mean probabilities E(p,) = E(pg) = E(ps) = (0.266,0.233,0.200,0.168,0.133), similar to
the initialization in Simulation 1.2. These values align with the observed proportions of delayed
counts in the reduced dataset.

Results

We fitted the model to the censored reported data using g = 2, 3,4, 5 hidden states and selected
the best model based on the BIC. The following table presents the BIC values for models with
different numbers of hidden states:

The BIC suggested that the best model was with g = 2, which aligns with the simulation setup.
For g = 2, the estimated parameters were:

e Initial distribution:
7 = (1.00,0.00).



Number of Hidden States (g) BIC

2 122,174.4
3 122,194.3
4 122,233.3
5 122,308.3

Table 3: BIC values for the Dirichlet-Multinomial model with varying ¢

e Transition matrix:
r— {0.73 0.27]

0.41 0.59

e Regression coefficients:

Intercept x] Hzo=B} Hze=C} H{z3=Y}
State 1 0.21 0.00097 0.035 0.092 —0.048
State 2 0.40 0.0023 0.092 0.14 —0.050

o Expected Delay Probabilities:

E(p,) = (0.203,0.202,0.201,0.195,0.198),
E(pg) = (0.258,0.232,0.199,0.173,0.139),
E(pe) = (0.318,0.257,0.195, 0.140, 0.090).

These values closely match the true values. It is important to note that the estimation of the
mean delay probabilities is highly dependent on the prior; our simulation is based on a weak
prior.

1.4 Comparison of Runtime Per Iteration

We compared the runtime per iteration for g = 2 across the three models to provide additional
insights into their computational performance in our simulation studies. The results are based
on runs conducted on a laptop with an Intel(R) Core(TM) i7-8550U CPU @ 1.80GHz 2.00 GHz
processor. The average runtimes were as follows:

e Continuous-Time Model: 0.491 seconds per iteration, with a total runtime of 0.982
seconds.

e Multinomial Model: 5.621 seconds per iteration, with a total runtime of 16.863 seconds.

e Dirichlet-Multinomial Model: 35.682 seconds per iteration, with a total runtime of 2
minutes and 23 seconds.

While the runtime per iteration for the Continuous-Time Model is considerably smaller, it is
important to note that this model does not explicitly incorporate the reporting delay compo-
nent within the EM algorithm. Instead, the reporting delay is addressed in a preprocessing



step. Before fitting the model, one must first fit a reporting delay model and compute the
integral:

d;
Pyg, (T —t)dt, Vi and .
di1

This additional preprocessing step can add substantial computational overhead. In contrast, the
Multinomial and Dirichlet-Multinomial models address the reporting delay component directly
within the EM framework, leading to a more integrated and streamlined estimation process at
the cost of increased runtime per iteration.



