Appendix A Proof in section 5
A.1 Proof of Proposition 5.1

k
Proof. (i). To compare og and (n — k)ox+1 + Y 0, we first rewrite 0% as
i=1

0% = Var[S] = Var

ZC+ZC

i=k+1
Z C;| +2Cov [ch, > c] (A1)
1=k+1

1=k-+1

= Var + Var

In the following, we shall augment each of the three terms in (Al). Specifically,
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ZQ‘] < (Zm) ) (A2)

and
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Var Z Cz‘| = Z 0124-2 Z PijO0i0;
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<> 2 Y e
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<k (k4 Doty 0%y = (n— Kofar, (A

where the last inequality follows from the condition (5.2).
Furthermore, note that (5.2) implies that JEH > pyo? and thus oy > pyo, due
to ok41 < op. It follows that

2Cov [ZCZ’ Z C’] =2 Z PijCi0;
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n
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< 2p, X (Z O’Z> <2(n—k)ogy1 X (Z 01> . (A4)

Plugging (A2), (A3), and (A4) into (A1), we get

2 k
0% < (Z a,) —k)?opi 1 +2(n — K)o ¥ <Z O'Z> (A5)

2
= ((n —k)ogq1 + Z%) . (A6)

This completes the proof of part (i).
(ii) First suppose (5.3) holds. Following a similar argument as in (i), we decompose
0% into three components.

k+1

Zcz, Z Ci

i=k+2

k+1

ZC’ + Var +2Cov

Zc

1=k+4+2

0% = Var

The three terms can be minified as follows
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where the last inequality follows from condition (5.3),
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and

k+1 n k+1
2Cov ZC,;, Z Ci| >2p(n—k—1)oksa <Zai>
i=1  i=k+2 i=1
k+1
2 2pl(n —k— 1)0k+1 <Z O’i>
i=1
k+1 k+1
=2n—k—1)ok11 (Z O'i> —2n—k—=1)(1—p)ok+1 <Z cr7;>
i=1 i=1
k1
>2(n—k—1)ok41 (Z Ui> —2(1—p)(n—k—=1)(k+1)op,,.
i=1

Combining these three inequalities together yield
0% 2 (n—k—1)%05 +1-p) ((0* —k=1) = (n—k - 1)*) 0},
k1 0\ 2
+ (z ) (kG Do
i=1
k+1

+2(n —k— 1)Uk+1 <Z Ui) — 2(1 — pl)(ﬂ — k- 1)(l€ + 1)0']%+1

i=1

k1 2 k+1
(n—k—1)P200, + (Z ai> +2(n—k—1)ok41 (Z Ui>

i=1 i=1

kt1 2
= ((n —k— 1)Uk+1 + ZO’Z> .

=1

This is the desired inequality in (ii).
Now we prove that (5.4) also implies the desired inequality

k
os = (n—k)opy1 + Zm-

i=1

Note that

o%Z(l—pl)ZU?—i—pl (Zm) > pl <ZUZ'>
i=1 i=1 i=1

32



It suffices to show that

n k
\/;71207; > (n—k)oks1 Jchr,;
i=1 i=1

which can be rearranged as
n k
VALY oz (n—k— /p)oke + (L= /p) Y o

i=k+2 1=1
This can be implied by
Vo =k =1)oki2 2 (n— (k+ 1)\/pr) ok,
which is equivalent to condition (5.4). O

A.2 Proof of Theorem 5.3

In order to prove Theorem 5.3, we first establish two properties of the optimal solution.
Lemma A.1. Let (ay,...,an) be the solution to Problem (3.10). If there exists k €

1 h that a2 = &, then a? = % =1, k1
{1,...,n} suc at ay = 7%, enai—gfor(myz— o k—1.
2
Proof. By induction, it suffices to show that a?_, = U(’f_gl . Assume this does not hold,
S
2 2
ie ai_, # U(’;;l. Since a?_, < U{’f_;l due to the variance reduction constraint, it must
S S
2
hold that ai_l < U(’;gl.
Construct sharing ratios {ay,...,a,} with a; = a; for all i # k — 1, k, and

Ap—1 = Ap—1 + x, ap = ap — .

We shall prove that there exists = such that the risk sharing strategy (ai,...,a,)

belongs to A, [)A), and it results in a total variance smaller than (a1, ..., a,), which
contradicts the fact that (ag, ..., ay,) is the optimal solution and thus proves the desired
equality.

Note that (ai,...,a,) differs from (a1, ...,a,) only in the positions of k — 1 and
k, it suffices to verify the following conditions:

2 2
N 52 Tk—1 ~2 T .
(1) az_, < = and a; < =
ss ai,z Ei—l Ei ai+1
(11) o2 < 27 < 27 < g
k—2 k—1 k k+1
(iil) aj_y +a; <ap_y +ai
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Note that aj_1 is a continuous function of x. Since Zii_l =0 = ai_l < e there
exists d; > 0 such that

2
Tk—1
ag

o
~2 k-1
a/k71 S 0_727 fOI' any x c [0761) (A7>
s
2 2
Note that a?_, < g:;gl < Z—g = aj, we have a;_; < ag. Thus, there exists §y €

(7]

[0, 61) such that for any = € [0, d2), it holds that

ap—1 < Ek—l < 'dk < ag. (A8)

The last inequality immediately implies that ap < ag < %7 which together with (A7)
indicates that the strategy (as,...,a,) satisfies Condition (i) for any = € [0, d3).
Noting that ax_1+ag = ar_1+ax, (A8) implies that (ay_1,ay) is strictly majorized
by (ak—1,ax), and thus a2_,+a3: < a?_,+aj according to Proposition B.1 of Marshall
et al. (2011). Thus, (ay,...,ay) satisfies Condition (iii).
(A8) also implies that

~9 2 2 ~9 2 2
A1 a1 ap_o aj ay Akt
it > > and —- < =< . (A9)
v 2y 2y 7 2y 27 2y
Og—1 k-1 Ok—2 O O Ok+t1

2 _ o

2
Ik—1
T 0 Ok = —ag, and oj_1 < o, we have

Recalling that a} | <

~9 2 2(1—7) 2(1—7) 2 ~2

Ag—1 I T ) Oy _ e O (A10)
2 - 2y 0_2 — 0.2 2y T 2y

Ok—1]g4—g Tk—1 s s Tk % |p=o

Since a2 _, and a@; are both continuous in z, there exists ;5 € (0,d2) such that for

~2 ~2
any x € [0,03), it holds that 5% < k. This, together with (A9), implies Condition

k—1 k
(i). O
Lemma A.2. Let (ay,...,a,) be the solution to Problem (3.10). If there exists k €
2
{1,...,n} such that a? < % for some 1 < k <n, then
S
a? az
= i=k+1,...,n.
ol o)

Proof. Tt can be proved using a similar argument as in the proof of Lemma A.1. [

Proof of Theorem 3.10: Let (aq,...,a,) be the solution to Problem (3.10). Define
k* =sup{i € {1,...,n}|a; = Z-} with the convention of sup@) = 0.
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If k* = 0, then a; < , . Accordlng to Lemma A.2, we have
. o=, which together with the condltlon of a; + -+ + a, = 1 implies that

q
SN

L/ T T (A11)
a; = =n 5 =1,...,n
2]1‘7
If k* = k for some k € {1,...,n}, then a; = Z- fori =1,.. S kand 2L =... = 2,

k+1
This, together with the condition of condition of a; + - -+ + a, = 1 implies that

k
0'] .
avzi( —), fori=k+1,...,n. (A12)
' Y imkr10] ; s
Since k* must take value in {0, 1,...,n}, the solution to Problem (3.10) must take one

of the n + 1 forms specified by (A11) and (A12). It is easy to verify that these forms
are respectively taken when (C1,...,Cy,) falls into Uy, Uy, . . . ,Uy,. This completes the
proof.

A.3 Proof of Proposition 5.6
Proof. According to Proposition 5.4

Var|L] = ( i > o(S)2, Var[L;] = (7:;) 7(S)2.

To prove Var[L;] > Var[L,], it suffices to show that
o8 a®)?

(o Uk)2 (Zk 1 0k>2- (A13)

Note that

O\ 2
U(S) :U(S)2+JT2L+1 +2 Z Pin+10:0n1t1,

1<i<n

n+1 2 n 2
(Z Uk) = ( Uk) + O.EH-l +2 Z 0;0n+1-
k=1 k=1

1<i<n

It is easy to verify that




for any d > b > 0. Applying this result, we have (A13) is equivalent to

o(5)* > U’QLH + 20041 iy Pin+10i
(22;1 cr,»)Q B JrZL+1 + 20m41 2?21 o;

(A14)

Further note that
n n 2
0% > (1—,01)202-2-%/01 <Zm‘>
i=1 i=1
L 2 n 2 11 ( 0 n 2
+(n—1)p;
> 1 —_ — 4 i = - . ,

i=1
and

n n
072L+1 + 20541 Z Pin+10i < 0721+1 + 2Ph0n 41 Z 05
i=1 i=1
Therefore, a sufficient condition for (A14) is
14+(n—1)p n ) 2 R
(%) (Zi:1 Uz) S U,%H + 2pn0n+1 Z?:l 04
- n
(Z?:l Ui)Q 0121—1-1 + 20041 21:1 o;
— <1+(n— 1)Pl> s b1+ 20 30, 0
n Ont1+2> . 0

which is easily verified to be equivalent to condition (5.14). O

Appendix B Proof in Section 6

B.1 Proof of Proposition 6.1
Proof. Suppose (C1,...,Cp) € Uy, i.e,
k—1 k
(n—k+1op+Y oi<0os<(n—klog+» o (B1)

i=1 =1

According to Theorem 3.1, the solution to Problem (2.3) admits the form specified
by (3.1), thus Problem (2.3) reduces to

n
min E a?.
(a1seeyan) €Ay =1
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Note that

Za? = Za? -+ Z az2
i=1 =1 i=k+1
k n 2
>3 a2+ 1 ( > ai> (B2)
i=1 n—k i=k+1
1 E
_§a$+n_k<l_;a1> ég(alv"wgk)a

where (B2) follows from Cauchy-Schwarz inequality with equality holds if any only if
ak+1 == Q-

Recall that a; < 0‘7—; for i = 1,...,n due to the variance reduction constraint
(a1,...,a,) € Ayp. Forany j=1,...,k and a; < %, we have

) 2 [
@g(al’...’ak) = 2aj+7n_k (;ai—l>

k
20’j 2 ag;
— — -1
05+nk<;c75 )

9 k
m <(nk)0j+20ias> <0

i=1

A

where the last inequality is due to (B1). This implies g(a,...,gx) decreases in a,
on [0, Z—;) for all j = 1,...,k. Thus, g(a,...,ax) attains its minimum over A,, at
ap = ZL,...,ar = Z&. Following (B2), S, a? attains its minimum over A, at

k
* 01 * Ok * * US—Zi:lai
alzi..~7ak:77 ak+1:"':a :W

B3
z o ; (B3)

This solution is the same as the solution to Problem (2.5), as specified by (5.5) with
v =0. O

B.2 Proof of Proposition 6.2
Proof. According to Theorem 3.1, Problem (2.3) reduces to

n
min E a?.
(a17~~~aan)e-’4}~c i=1
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Rewrite the objective function as 31 a2 = 37 a2+ (1— 37" a;)? and denote
it as g(a1,...,an—1). Note that for any j =1,...,k — 1,

n—1
aczjg(al, ceyOn—1) = 2a; — 2 <1 — ; ai> =2(a; — an).
For any (ay,...,a,) € AL, we have % <. < g—z Since it is assumed that o1 <
... < 0Op, then a; < a, for any j =1,...,n — 1, which implies that g(a1,...,a,—1) is
decreasing in each a; on A}.. Furthermore, combining the constraints of a<e< Z—Z
and a1+ --+a, = 1, we can solve that a; < ﬁim forany j = 1,...,n—1. Therefore,
the optimal sharing ratios that minimize the objective function g(ay,...,a,—_1) over

1
A, are
01 ~ Op—1

*
.-, Q ey
n 9 y Yn—1 n )
D i1 O > i1 O
el

which implies that a;, = g~=—-. This solution is the same as the solution to Problem

2.5), as specified by (5.5 x;llthl =1. O
( y v

a; =

B.3 Proof of Proposition 6.3
Proof. Suppose (C1,...,Cp) € Uy, i.e,
k—1 n k n
ZJiJrU,i*’YXZJﬂ§05<Zai+0i;¥>< Z o] (B4)
i=1 i=k i=1 i=k+1
According to Theorem 3.1, Problem (2.3) reduces to
2

n
. a;
min E -
: g,
=1

(a17---;an)6Avr i

Note that

o,
=1 O';Y
i=k+1
b 2
k 0,2 <1 - Z az)
i =1 A
= E ?4—7” = g(ay,...,a),
=1 i O';Y
i=k+1
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where the inequality follows from Cauchy-Schwarz inequality with the equality holds

if and only if
Gkl _ O (B5)

P =5
k41 n
Further note that, for any j =1,...,k and a; < %, it holds that

g
k
0 a; 2
By 91 a8) = 2oy (Z“i‘l>
> o \i

753 g\
i=k+1
9 n k
= - <O_;_,y Z 03+Zai—03>§0
os o i=k+1 i=1
i=k+1
where the last inequality is due to (B4). This implies g(a1,...,gx) decreases in a;
on [O,Z—;) for all j = 1,...,k. Thus, g(a;,...,ax) attains its minimum over A,, at
a; = Z-,...,a; = 2= Following (B5), i, af attains its minimum over A,, at
k k
J,Z_H <0’S -> O’i) o) (05 -> O'i>
« __ 01 « _ Ok« i=1 x i=1
a1*£a-~~»ak*£aak+1* — ey = .
os > o] os Y. o]
i=k+1 i=k+1
This is the same as the solution to Problem (2.4) as specified by (5.5). O
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