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Abstract

In this supplementary material designed for “Optimal reinsurance design under dis-
tortion risk measures and reinsurer’s default risk with partial recovery”, we furnish proofs
regarding the main results and illustrative examples with shifted Exponential distribution.
We refer to the main paper for context, notation, and definitions.
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1 Proofs of main results

1.1 Proof of Theorem 3.3

Proof. By the assumption that Y is independent of X, we notice that

πr(Y I(X)) = (1 + θ)[p+ (1− p)γ]E[I(X)] = πr(Y Id(X)).

Using Lemma 3.2, regarding Y = 1 and Y = γ, we have

X − I(X) ≥cx X − (X − d)+, X − γI(X) ≥cx X − γ(X − d)+.

Therefore, for any convex function u(·), one has

E[u(X − Y I(X))] = pE[u(X − I(X))] + (1− p)E[u(X − γI(X))]

≥ pE[u(X − (X − d)+)] + (1− p)E[u(X − γ(X − d)+)]

= E[u(X − Y (X − d)+)],

which immediately yields
X − Y I(X) ≥cx X − Y (X − d)+.

It then follows from Theorem 5.2.1 of Dhaene et al. (2006) that for all (increasing) concave
distortion functions gi ∈ Gcv,

ρgi(X − Y I(X)) ≥ ρgi(X − Y Id(X)).

As ρgi is translative invariant, we arrive at

ρgi(X − Y I(X) + πr(Y I(X))) ≥ ρgi(X − Y Id(X) + πr(Y Id(X))),

which completes the proof.

1.2 Proof of Proposition 3.5

Proof. We note that Rd(X, Y ) has the following expression:

Rd(X, Y ) = X − Y Id(X) =

{
min{X, d}, Y = 1;

X − γ(X − d)+, Y = γ.

For any x ∈ R+, the distribution function of Rd(X, Y ) is given by

FRd(X,Y )(x) = pP(min{X, d} ≤ x) + (1− p)P(X − γ(X − d)+ ≤ x).

Note that

P(min{X, d} ≤ x) =

{
P(X ≤ d,X ≤ x) = FX(x), x < d;

P(X ≤ d,X ≤ x) + P(X > d, d ≤ x) = 1, x ≥ d.

Besides, since

P(X − γ(X − d)+ ≤ x) = P(X ≤ d,X ≤ x) + P (X > d, (1− γ)X + γd ≤ x)

= P(X ≤ d,X ≤ x) + P
(
X > d,X ≤ x− γd

1− γ

)
,
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we have

P(X − γ(X − d)+ ≤ x)

=

P(X ≤ x) = FX(x), x < d;

P(X ≤ d) + P
(
d < X ≤ x− γd

1− γ

)
= FX

(
x− γd

1− γ

)
, x ≥ d.

To summarize, the distribution function of Rd(X, Y ) is given by

FRd(X,Y )(x) =

FX(x), x < d;

p+ (1− p)FX

(
x− γd

1− γ

)
, x ≥ d,

(1)

from which the survival function of Rd(X, Y ) immediately follows.

1.3 Proof of Theorem 3.8

Proof. In light of the form of gi(·) for the TVaR measure, the discussion depends on the relative
size of F̄X(0) and α:

Case 1: If F̄X(0) ≤ α, we know (1− p)F̄X(d) < α for d ∈ R+ and p ∈ (0, 1]. In this case,
we have

ϕ′(d) = (p+ (1− p)γ)

(
1

α
− (1 + θ)

)
F̄X(d).

(a) If 1/α > (1 + θ), ϕ′(d) > 0 and ϕ(d) is increasing on d ∈ R+, and so ϕ(d) attains its
minimum at 0, that is, d∗ = 0.

(b) If 1/α < (1 + θ), then ϕ(d) is decreasing on d ∈ R+, which implies that d∗ = ∞.
In the special case where 1/α = 1 + θ, we have ϕ(d) = 1/αE[X]. As F̄X(0) ≤ α, it can

be calculated that ϕ(∞) = TVaRα(X) = 1/αE[X]. In this case, it is favorable to buy full
reinsurance, that is, d∗ = 0.

Case 2: Now we consider the case where F̄X(0) > α.
(a) If p ≥ 1−α/F̄X(0), which is equivalent to F̄X(0) ≤ α/(1−p), we determine the optimal

value of d∗ by considering possible relations between κ, α, and p.

(i) If α < κ < F̄X(0), when d ∈ [0, F̄−1
X (α)), we have

ϕ′(d) = 1− F̄X(d)

κ
.

Setting the above equation equal to zero yields d = F̄−1
X (κ). It is straightforward to see

that d∗ = F̄−1
X (κ).

(ii) If α < F̄X(0) ≤ κ, when d ∈
[
0, F̄−1

X (α)
)
, α < F̄X(d) ≤ F̄X(0), we have

ϕ′(d) = 1− F̄X(d)

κ
> 0,

so ϕ(d) is increasing on that interval. Moreover, note that α < κ implies 1/α > 1 + θ,
and vice versa. When d ∈

[
F̄−1
X (α),∞

)
, 0 < F̄X(d) ≤ α, we have

ϕ′(d) = (p+ (1− p)γ)

(
1

α
− (1 + θ)

)
F̄X(d) ≥ 0.

Hence, ϕ(d) is increasing on R+. Consequently, d∗ = 0.
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(iii) If κ = α, which is equivalent to 1/α = 1 + θ, we see that d is decreasing on the interval[
0, F̄−1

X (α)
)
. On the other hand, for d ∈

[
F̄−1
X (α),∞

)
, ϕ′(d) = 0 and ϕ(d) = TVaRα(X).

In this special case, d∗ can be any number that is equal to or greater than F̄−1
X (α). The

insurer is indifferent between any two different d∗1, d∗2 ∈
[
F̄−1
X (α),∞

)
.

(iv) If κ < α, that is, 1/α < 1 + θ, we infer that ϕ(d) is decreasing on
[
F̄−1
X (α),∞

)
. Besides,

when d ∈
[
0, F̄−1

X (α)
)
, α < F̄X(d), hence we have

ϕ′(d) = 1− F̄X(d)

κ
< 0.

Therefore, ϕ(d) decreases on R+, and it must hold that d∗ = ∞.

The proof of Case 2(b) is similar and is thus omitted.

1.4 Proof of Proposition 4.1

Proof. For any x ∈ R+,

FId(X,Y )(x) = pP((X − d)+ ≤ x) + (1− p)P(γ(X − d)+ ≤ x).

Note that

P((X − d)+ ≤ x) =

{
P((X − d)+ ≤ 0) = FX(d), x = 0;

P((X − d)+ ≤ x) = FX(x+ d), x > 0.

Besides, we have

P(γ(X − d)+ ≤ x) =

{
P(γ(X − d)+ ≤ 0) = FX(d), x = 0;

P(γ(X − d)+ ≤ x) = FX(x/γ + d), x > 0.

Putting these together, we obtain the distribution function of Id(X, Y ) as

FId(X,Y )(x) = pFX(x+ d) + (1− p)FX(x/γ + d), x ≥ 0.

The survival function of Id(X, Y ) stated in (10) then follows immediately.

2 Supplement numerical examples
We assume the aggregate loss X follows a shifted Exponential distribution, given by

FX(x) =

{
F0, x = 0;

1− (1− F0)e
−λx, x > 0.

For illustration purposes, we let F0 = 0.3 and λ = 0.002.
We first conduct sensitivity analysis on the insurer’s optimal deductible level. To address

the value of d∗ under the effect between the performance probability p and the recovery rate γ,
we present Figure 1 with a fixed loading. When γ increases, the insurer cares more about the
loading compared to the default risk. It, again, shows that the optimal deductible decreases in
general.

Subject to a fixed recovery rate γ, we examine how the performance probability p and safety
loading θ affect d∗ in Figure 2. The optimal deductible increases as θ increases, showing that
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(a) TVaR with α = 0.05. (b) Gini with r = 0.6.

(c) PH with k = 1/3.

Figure 1: Effect of p and γ on d∗ with θ = 0.1.
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(a) TVaR with α = 0.05. (b) Gini with r = 0.6.

(c) PH with k = 1/3.

Figure 2: Effect of p and θ on d∗ with γ = 0.3.

Figure 3: Effect of p and α on d∗ for the TVaR measure with θ = 0.1 and γ = 0.3.
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the insurer’s insurance demand is lowered. It is reasonable because the insurer becomes less
willing to buy insurance as the contract premium becomes more expensive. Moreover, for the
TVaR measure, we present Figure 3. When the default risk exists, a higher α reflects a less
prudent attitude of the insurer, resulting in a decreasing trend of d∗. The insurer will be willing
to cede more risk to the reinsurer.

We now pay attention to the scenario analysis on the Bowley solution. A discretization
method on θ is applied. For brevity, we only present Bowley solutions for the TVaR-TVaR
case. Other cases can be similarly discussed.

Example 2.1 (TVaR-TVaR Case). Suppose both the insurer and the reinsurer adopt the
TVaR risk measure. The former sets a confidence level of 1−α, while the latter sets a confidence
level 1− β where β > α. We take α = 0.05, β = 0.1, and c = 0.35.

(i) Suppose that γ = 0.1 and p = 0.2 < 0.929. For those θ such that κθ ≤ α/(1−p) = 0.0625,
d∗ > 0 and φ = 4.7143 > 0. The optimal safety loading must belong to A∗

1,φ. As ψ(θ) is
increasing, θ∗1,φ = 1/α − 1 = 19. On the other hand, for those θ such that κθ > 0.0625,
we have νθ < F̄X(0), so d∗ > 0. However, as ξ = −0.4898 < 0, the optimal safety loading
must belong to A∗

2,ξ,φ. In this case, θ∗ does not exist. To sum up, the optimal safety
loading is θ∗ = θ∗1,φ = 19 and the Bowley solution is (θ∗, d∗(θ∗)) = (19, 1319.53).

(ii) Suppose that γ = 0.35 and p = 0.2 < 0.929. For those θ such that κθ ≤ 0.0625, d∗ > 0
and φ = 10.6667 > 0. The optimal safety loading must belong to A∗

1,φ. As ψ(θ) is
increasing, we obtain θ∗1,φ = 1/α − 1 = 19. On the other hand, for those θ such that
κθ > 0.0625 and νθ < F̄X(0), d∗ > 0. Since ξ = 0.0417 > 0, the optimal safety loading
must belong to A∗

1,ξ,φ. Furthermore, for those θ such that κθ > 0.0625 and νθ ≥ F̄X(0),
d∗ = 0. In this case, the optimal safety loading is θ∗ξ = 0.0417. To sum up, as ψ(θ) is
an increasing function, the optimal safety loading is θ∗1,φ = 19, and the Bowley solution
equals (θ∗, d∗(θ∗)) = (19, 1319.53).

(iii) Suppose that γ = 0.35 and p = 0.95 > a, ι = −0.1953 < 0. The optimal deductible is
always positive, so the optimal safety loading must belong to admissible set A∗

2,ι. As ψ(θ)
is an increasing function, θ∗ = 1/α − 1 = 19. The Bowley solution in this case is given
by (θ∗, d∗(θ∗)) = (19, 1319.53).

(iv) Suppose that p = 1. In this case, there is no default risk, and ι = 0.4286. For those
d∗ > 0, the optimal safety loading must belong to admissible set A∗

1,ι. In this case,
we obtain θ∗1,ι = 1/α − 1 = 19. For those d∗ = 0, the maximum of ψ(θ) is given by
θι = 0.4286. Putting all these together, θ∗ = θ∗1,ι, hence the Bowley solution is given by
(θ∗, d∗(θ∗)) = (19, 1319.53).

We again note that the same strategy (θ∗, d∗(θ∗)) = (19, 1319.53) occurs under different
parameter settings. This is due to the assumption of the insurer’s indifferent attitude when
1+θ = 1/α and the insurer would purchase a stop-loss treaty with F̄−1

X (α) being the deductible.
As the reinsurer is monopolistic and profit-seeking, the reinsurer would choose the largest
loading θ∗ = 19 in the above cases.
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