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Appendix A: Proof of Proposition I

In order to compute

Pr,µ(t, s) = 1{τ(x)>t}EQ̃

[
exp

(
−
∫ s

t
ru du

)
exp

(
−
∫ s

t
µx+u du

)∣∣∣∣Gt] , (1)

we will proceed in three steps.

Step 1

Applying Ito’s lemma to the function rteλt provides us the following unique explicit solution of (3.2a)

rs = rte
−λ(s−t) + λe−λs

∫ s

t
rue

λudu+ ηe−λs
∫ s

t
eλudW̃ r

u . (2)

By integrating (2.17) between time t and time s, we can deduce∫ s

t
ru du =

rt
λ
− rs
λ

+

∫ s

t
ru du+

η

λ

∫ s

t
dW̃ r

u . (3)

If we insert (2) in (3), we obtain∫ s

t
ru du = rt

(
1− e−λ(s−t)

λ

)
+

∫ s

t
ru

(
1− e−λ(s−u)

λ

)
du+ η

∫ s

t

(
1− e−λ(s−u)

λ

)
dW̃ r

u , (4)

which in virtue of (2.24) can be rewritten∫ s

t
ru du = rtB(λ, t, s) +

∫ s

t
ruB(λ, u, s) du+ η

∫ s

t
B(λ, u, s)dW̃ r

u . (5)

Step 2

Applying Ito’s lemma to the function µxt eωt provides us the following unique explicit solution of (3.2b)

µx+s = µx+te
−ω(s−t)+ωe−ωs

∫ s

t
µx+ue

ωudu+ ερr,µe−ωs
∫ s

t
eωudW̃ r

u + ε
√
1− (ρr,µ)2e−ωs

∫ s

t
eωudW̃µ

u . (6)

By integrating (6) between time t and time s, we can deduce∫ s

t
µx+u du =

µx+t
ω
− µx+s

ω
+

∫ s

t
µx+u du+

ερr,µ

ω

∫ s

t
dW̃ r

u +
ε
√

1− (ρr,µ)2

ω

∫ s

t
dW̃µ

u . (7)
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If we insert (6) in (7), we obtain∫ s

t
µx+u du =µx+t

(
1− e−ω(s−t)

ω

)
+

∫ s

t
µx+u

(
1− e−ω(s−u)

ω

)
du+ ερr,µ

∫ s

t

(
1− e−ω(s−u)

ω

)
dW̃ r

u

+ ε
√

1− (ρr,µ)2
∫ s

t

(
1− e−ω(s−u)

ω

)
dW̃µ

u , (8)

which in virtue of (2.24) can be rewritten∫ s

t
µx+u du =µx+tB(ω, t, s) +

∫ s

t
µx+uB(ω, u, s)du+ ερr,µ

∫ s

t
B(ω, u, s)dW̃ r

u

+ ε
√

1− (ρr,µ)2
∫ s

t
B(ω, u, s)dW̃µ

u . (9)

Step 3

Let us define

I(t, s) =

∫ s

t
(ru + µx+u) du. (10)

Inserting (5) and (9) in (10) provides

I(t, s) =rtB(λ, t, s) +

∫ s

t
ruB(λ, u, s) du+ µx+tB(ω, t, s) +

∫ s

t
µx+uB(ω, u, s) du

+ η

∫ s

t
B(λ, u, s) dW̃ r

u + ερr,µ
∫ s

t
B(ω, u, s) dW̃ r

u + ε
√
1− (ρr,µ)2

∫ s

t
B(ω, u, s) dW̃µ

u . (11)

We can deduce that the distribution of I(t, s) conditionally to Ft is normal with the following conditional
moments:

• Conditional expectation of I(t,s):

EQ[I(t, s)|Ft] = rtB(λ, t, s) +

∫ s

t
ruB(λ, u, s) du+ µx+tB(ω, t, s) +

∫ s

t
µx+uB(ω, u, s) du. (12)

• Conditional variance of I(t,s):

VarQ[I(t, s)|Ft] =σ2r + σ2m + ρrm (13)

where 

σ2r =
η2

λ2
[(s− t)− λ

2
B2(λ, t, s)−B(λ, t, s)]

σ2m =
ε2

ω2
[(s− t)− ω

2
B2(ω, t, s)−B(ω, t, s)]

ρrm =
2ηερr,µ

λω
[(s− t)−B(λ, t, s)−B(ω, t, s) +B(λ+ ω, t, s)]

. (14)

Given (10), (1) takes the form

Pr,µ(t, s) = 1{τ(x)>t}EQ̃ [exp (−I(t, s))| Gt] . (15)

Using the formula of the expected value of a lognormal distribution, we can conclude that the price of the
zero-coupon survival bond is given by Proposition I.
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Appendix B: Analysis on the direction of the impact of the price of cor-
relation

The price of correlation takes the form

Pρr,µ(t, s) = exp

(
ηερr,µ

λω

[
T +

(
1− e−(λ+ω)T

λ+ ω

)
−
(
1− e−λT

λ

)
−
(
1− e−ωT

ω

)])
. (16)

As η , ε , λ and ω are strictly positive constants, the direction of impact of the price of correlation, namely
upwards when Pρr,µ(t, s) > 1 and downwards when Pρr,µ(t, s) < 1 , is directly determined by the sign of the
correlation coefficient ρr,µ and the sign of the function

f(T ) =T +

(
1− e−(λ+ω)T

λ+ ω

)
−
(
1− e−λT

λ

)
−
(
1− e−ωT

ω

)
. (17)

The latter is always positive since f(0)=0 and function f is increasing. Indeed,

f ′(T ) =1 + e−(λ+ω)T − e−λT − e−ωT ≥ 0 ∀ (λ, ω, T ) ∈ R3
+, (18)

given that
1− e−λT ≥ e−ωT − e−(λ+ω)T ∀ (λ, ω, T ) ∈ R3

+ (19)
since the negative exponential is a convex function. Besides, it is interesting to note that function f is
convex since

f ′′(T ) =− (λ+ ω)e−(λ+ω)T + λe−λT + ωe−ωT

⇔ f ′′(T ) =λ (e−λT − e−(λ+ω)T )︸ ︷︷ ︸
≥0

+ω (e−ωT − e−(λ+ω)T )︸ ︷︷ ︸
≥0

≥ 0 ∀ (λ, ω, T ) ∈ R3
+. (20)

Hence, as f(T ) ≥ 0, the direction of the impact of the price of of correlation is entirely driven by the sign
of the correlation coefficient ρr,µ.

Appendix C: Proof of Proposition II

The aim is to compute the following quantity

Dr,µ(t, u) = 1{τ(x)>t}EQ̃

[
exp

(
−
∫ u

t
rv dv

)
· exp

(
−
∫ u

t
µx+v dv

)
µx+u|Gt

]
. (21)

Let us switch from the measure Q̃ to a measure Q̃u,µ ∼ Q̃ defined by the following Radon–Nikodym
derivative of Q̃u,µ with respect to Q̃:

dQ̃u,µ

dQ̃
=

N(u)︷ ︸︸ ︷
exp

(
−
∫ u

0
(rv + µx+v) dv

)
EQ̃

[
exp

(
−
∫ u

0
(rv + µx+v) dv

)]
︸ ︷︷ ︸

M(u)

. (22)

Let us compute N(u) and M(u) using (10) and (11).

• Calculation of N(u):

N(u) =exp
(
−
∫ u

0
(rv + µx+v) dv

)
⇔ N(u) =exp (−I(0, u))

⇔ N(u) =exp
(
−r0B(λ, 0, u)−

∫ u

0
rvB(λ, v, u) dv − µxB(ω, 0, u)−

∫ u

0
µx+vB(ω, v, u) dv

−
∫ u

0
(ηB(λ, v, u) + ερr,µB(ω, v, u)) dW̃ r

v − ε
√

1− (ρr,µ)2
∫ u

0
B(ω, v, u) dW̃µ

v

)
. (23)
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• Calculation of M(u):

M(u) = EQ̃

[
exp

(
−
∫ u

0
(rv + µx+v) dv

)]
⇔M(u) = EQ̃ [exp (−I(0, u))]

⇔M(u) = exp

(
EQ̃ [−I(0, u)] +

VarQ̃ [I(0, u)]

2

)

⇔M(u) = exp
(
−r0B(λ, 0, u)−

∫ u

0
rvB(λ, v, u) dv − µxB(ω, 0, u)−

∫ u

0
µx+vB(ω, v, u) dv

+
1

2

∫ u

0
(ηB(λ, v, u) + ερr,µB(ω, v, u))2 dv +

(ε
√
1− (ρr,µ)2)2

2

∫ u

0
B2(ω, v, u) dv

)
.

(24)

Inserting (23) and (24) in (22) provides

dQ̃u,µ

dQ̃
=
N(u)

M(u)

⇔dQ̃u,µ

dQ̃
= exp

(
−
∫ u

0
[ηB(λ, v, u) + ερr,µB(ω, v, u)] dW̃ r

v −
∫ u

0

[
ε
√
1− (ρr,µ)2B(ω, v, u)

]
dW̃µ

v

−1

2

∫ u

0
[ηB(λ, v, u) + ερr,µB(ω, v, u)]2 dv − 1

2

∫ u

0

[
ε
√

1− (ρr,µ)2B(ω, v, u)
]2
dv

)
. (25)

The change of measure defined by the Radon–Nikodym derivative (25) allows to rewrite (21) as

Dr,µ(t, u) = 1{τ(x)>t}Pr,µ(t, u)EQ̃u,µ [µx+u|Ft] . (26)

The form of (25) implies, according to the multidimensional Girsanov theorem, that the Brownian motions
Ŵ r
t and Ŵµ

t , defined as 
Ŵ r
t = W̃ r

t +
∫ t
0 [ηB(λ, v, u) + ερr,µB(ω, v, u)] dv

Ŵµ
t = W̃µ

t + ε
√
1− (ρr,µ)2

∫ t
0 B(ω, v, u) dv

, (27)

are standard Brownian motions under Q̃u,µ.

Inserting (27) in (3.3b) provides the following expression of µx+u under measure Q̃u,µ:

µx+u =µx+te
−ω(u−t) + ωe−ωu

∫ u

t
µx+ve

ωvdv + ερr,µe−ωu
∫ u

t
eωvdŴ r

v −

∗︷ ︸︸ ︷
ηερr,µe−ωu

∫ u

t
eωvB(λ, v, u) dv

+ ε
√

1− (ρr,µ)2e−ωu
∫ u

t
eωvdŴµ

v − ε2e−ωu
∫ u

t
eωvB(ω, v, u) dv︸ ︷︷ ︸
∗∗

. (28)

After some calculations, we obtain:

∗ = ηερr,µ

λ
B(ω, t, u)− ηερr,µ

λ
B(λ+ ω, t, u) (29)

and

∗ ∗ = ε2

2
B2(ω, t, u). (30)
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Inserting (29) and (30) into (28) gives

µx+u =µx+te
−ω(u−t) + ωe−ωu

∫ u

t
µx+ve

ωvdv + ερr,µe−ωu
∫ u

t
eωvdŴ r

v −
ηερr,µ

λ
B(ω, t, u)

+
ηερr,µ

λ
B(λ+ ω, t, u) + ε

√
1− (ρr,µ)2e−ωu

∫ u

t
eωvdŴµ

v −
ε2

2
B2(ω, t, u), (31)

which implies

EQ̃u,µ [µx+u|Ft] =µx+te
−ω(u−t) + ωe−ωu

∫ u

t
µx+ve

ωvdv − ηερr,µ

λ
B(ω, t, u) +

ηερr,µ

λ
B(λ+ ω, t, u)

− ε2

2
B2(ω, t, u). (32)

Inserting the expression (32) into (26) yields

Dr,µ(t, s) = 1{τ(x)>t}Pr,µ(t, s) ·Mr,µ(t, s) (33)

where Pr,µ(t, s) is given by (3.10) and Mr,µ(t, s) is defined by

Mr;µ(t, s) :=µx+te
−ω(u−t) + ωe−ωu

∫ u

t
µx+ve

ωvdv − ηερr,µ

λ
B(ω, t, u) +

ηερr,µ

λ
B(λ+ ω, t, u)− ε2

2
B2(ω, t, u).

(34)

This proves Proposition II.

Appendix D: Inclusion of jumps

In this appendix, we illustrate in details that the results and analysis made using a traditional affine contin-
uous diffusion setup can be generalized to affine jump diffusions by computing the price of the zero-coupon
survival bond in the presence of jumps. For completeness, we incorporate the motivation and text of section
6 within this appendix.

Let us recall that the Hull and White model2 (2.16) can be written as a state vector Xt = (rt µx+t)
T ,

which follows the stochastic differential form:

dXt = µ(t,Xt) dt+ σ(t,Xt) dW̃t, (35)

where 
µ(t,Xt) =

(
λ (rt − rt)

ω (µx+t − µx+t)

)
,

σ(t,Xt)σ(t,Xt)
T =

(
η2 ηερr,µ

ηερr,µ ε2

)
.

(36)

We propose to improve the modelling of the interest rate and mortality intensity processes by including
three jump components respectively denoted Zrt , Z

µ
t and Zr,µt . The model (35) hence becomes

dXt = µ(t,Xt) dt+ σ(t,Xt) dW̃t + dZrt + dZµt + dZr,µt . (37)

Let us describe each of the three jump components.
Firstly, an univariate jump component in rt with its own rhythm and intensity, accounting for shocks only
affecting the interest rates. It is defined as

Zrt :=


Mt∑
i=1

Jr1,i

0

 , (38)
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where (Mt)t∈[0 S] is a Poisson process with arrival intensity δr > 0 and where {Jri = (Jr1,i, 0)}i∈N is a se-
quence of independent and identically distributed (i.i.d.) bivariate random vectors representing the jump
sizes. Since the second jump component is zero, these can be considered as univariate jumps concerning rt.

Secondly, an univariate jump component in µx+t with its own rhythm and intensity, accounting for shocks
only affecting the mortality rates. It is defined as

Zµt :=


0

Nt∑
i=1

Jµ2,i

 , (39)

where (Nt)t∈[0 S] is a Poisson process with arrival intensity δµ > 0 and where {Jµi = (0, Jµ2,i)}i∈N is a se-
quence of i.i.d. bivariate random vectors representing the jump sizes. Since the first jump component is
zero, these are indeed only jumps on µx+t.

Thirdly, a bivariate jump component with its own rhythm and intensities of marginals, accounting for
simultaneous correlated shocks in rt and µx+t. It is defined as

Zr,µt :=


Ot∑
i=1

Jr,µ1,i

Ot∑
i=1

Jr,µ2,i

 , (40)

where (Ot)t∈[0 S] is a Poisson process with arrival intensity δr,µ > 0 and where {Jµi = (Jr,µ1,i , J
r,µ
2,i )}i∈N is a

sequence of i.i.d. bivariate random vectors. This bivariate jump size distribution setup in case of simulate-
nous shocks allows for different jump magnitudes distribution for each process (marginals) while allowing
a correlation between the two jumps sizes through a correlation coefficient ρj .

Each of the Poisson processes mentioned above is supposed to be independent of the other Poisson processes
and of the different jump size processes. The jump sizes Jr, Jµ and Jr,µ respectively defined in (38), (39)
and (40) are assumed to be independent of the Brownian process W̃t. The choice of both univariate and
the bivariate jump size distributions will be discussed below.

Before the inclusion of jumps, the only tool available to introduce dependence between the interest rates
and the mortality rates was through the introduction of correlation between the two Brownian motions
captured by the linear correlation coefficient ρr,µ. In the model including jumps, we have on top of that,
the concomitance of jumps, and the jump correlation coefficient ρj .

According to (Duffie, Pan and Singleton, 2000)), a process Xt obeying a stochastic differential equation of
form (37) belongs to the affine jump diffusion (AJD) class if the drift term µ(t,Xt), the variance-covariance
matrix σ(t,Xt)σ(t,Xt)

T , the arrival intensities of the jumps Zrt , Zrt and Zr,µt respectively denoted ξ1(t,Xt),
ξ2(t,Xt) and ξ3(t,Xt), and finally the discounting component R(t,Xt) can be written in affine form. In
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our case, we can write

µ(t,Xt) =

(
λ rt
ω µx+t

)
+

(
−λ 0
0 −ω

)
Xt,

σ(t,Xt)σ(t,Xt)
T =

(
η2 ηερr,µ

ηερr,µ ε2

)
+XT

t


(
0 0
0 0

)
(
0 0
0 0

)
 ,

ξ1(t,Xt) = δr +XT
t

(
0
0

)
, ξ2(t,Xt) = δµ +XT

t

(
0
0

)
and ξ3(t,Xt) = δr,µ +XT

t

(
0
0

)
,

R(t,Xt) = 0 +XT
t

(
1
1

)
,

, (41)

which shows that the process Xt belongs to the affine jump diffusion class.
(Duffie, Pan and Singleton, 2000) have shown that for processes in that class, under technical regularity
conditions, a closed form solution of the discounted characteristic function defined as

φ(Xt, t, s,u) := EQ̃

[
exp

(
−
∫ s

t
R(Xv) dv

)
exp (iuXT ) |Gt

]
, (42)

where u ∈ R2, exists and is given by

φ(Xt, t, s,u) = exp
(
A(t, s,u) +B(t, s,u)TXt

)
, (43)

where the coefficients A(t, s,u) and B(t, s,u) satisfy the following system of ODEs

d

dt
A(t, s,u) = ρ0 −KT

0 B(t, s,u)− 1

2
BT (t, s,u)H0B(t, s,u)−

3∑
i=1

li0 EQ̃
[
eJi·B(t,s,u) − 1

]
,

A(s, s,u) = 0,

d

dt
B(t, s,u) = ρ1 −KT

1 B(t, s,u)− 1

2
BT (t, s,u)H1B(t, s,u)−

3∑
i=1

li1 EQ̃
[
eJi·B(t,s,u) − 1

]
,

B(s, s,u) = u,

(44)

where

K0 =

(
λ rt
ω µx+t

)
, K1 =

(
−λ 0
0 −ω

)
,

H0 =

(
η2 ηερr,µ

ηερr,µ ε2

)
, H1 =


(
0 0
0 0

)
(
0 0
0 0

)
 ,

l10 = δr , l11 =

(
0
0

)
, l20 = δµ , l21 =

(
0
0

)
, l30 = δr,µ , l31 =

(
0
0

)
,

ρ0 = 0 , ρ1 =

(
1
1

)

(45)

and where the expectations EQ̃ [.] in (44) are taken conditionnally on Gt, which will not be mentioned in
this section for notational convenience. After injecting (45) into (44) and choosing u = (0, 0) and denoting
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A(t, s,0) =: A(t, s) and B(t, s,0) =: B(t, s), we obtain

d

dt
A(t, s) = −λ rtB1(t, s)− ω µx+tB2(t, s)−

1

2
η2B2

1(t, s)−
1

2
ε2B2

2(t, s)− ηερB1(t, s)B2(t, s)

−δr EQ̃
[
eJ

r·B(t,s) − 1
]
− δµ EQ̃

[
eJ

µ·B(t,s) − 1
]
− δr,µ EQ̃

[
eJ

r,µ·B(t,s) − 1
]
,

A(s, s) = 0,

d

dt
B1(t, s) = 1 + λB1(t, s)

B1(s, s) = 0

B1(t, s) =

(
e−λ(s−t) − 1

λ

)
= −B(λ, t, s) by (2.24),

d

dt
B2(t, s) = 1 + ωB2(t, s)

B2(s, s) = 0

B2(t, s) =

(
e−ω(s−t) − 1

ω

)
= −B(ω, t, s) by (2.24).

(46)

If we remove the terms that account for the jumps, i.e. −δr EQ̃
[
eJ

r·B(t,s) − 1
]
, −δµ EQ̃

[
eJ

µ·B(t,s) − 1
]
and

−δr,µ EQ̃
[
eJ

r,µ·B(t,s) − 1
]
, the system (46) is identical to the one that would have been obtained in a context

without jumps. Therefore, all we have to do is solve the equation

A(t, s) :=δr
∫ s

t
EQ̃

[
eJ

r·B(q,s) − 1
]
dq + δµ

∫ s

t
EQ̃

[
eJ

µ·B(q,s) − 1
]
dq + δr,µ

∫ s

t
EQ̃

[
eJ

r,µ·B(q,s) − 1
]
dq

and from this deduce a result generalising Proposition I to the case with jumps. It gives

Pr,µ(t, s) = 1{τ(x)>t} · Pr(t, s) · Pµ(t, s) · Pρr,µ(t, s) · PJr(t, s) · PJµ(t, s) · PJr,µ(t, s), (47)

where Pr(t, s), Pµ(t, s) and Pρr,µ(t, s) are identical to Proposition I and
PJr(t, s) := exp

(
δr
∫ s
t EQ̃

[
eJ

r·B(q,s)
]
dq − δr(s− t)

)
,

PJµ(t, s) := exp
(
δµ
∫ s
t EQ̃

[
eJ

µ·B(q,s)
]
dq − δµ(s− t)

)
,

PJr,µ(t, s) := exp
(
δr,µ

∫ s
t EQ̃

[
eJ

r,µ·B(q,s)
]
dq − δr,µ(s− t)

)
.

(48)

The terms PJr(t, s), PJµ(t, s) and PJr,µ(t, s) defined in (48) depend on the choice of the distributions of Jr,
Jµ and Jr,µ. According to these choices, they may or may not be explicitly calculable.

In the literature, when a jump component is added to the Black and Scholes option-pricing framework,
two popular choices of jump size distributions are either a normal distribution, as introduced by Merton in
(Merton, 1976), or a double exponential distribution, as introduced by Kou in (Kou, 2002). In (Wu and al.,
2018), the authors consider mixed-exponential jumps whereas in (Li and al., 2023), in the bivariate context
of an affine jump-diffusion model to describe the joint dynamics of interest rate and excess mortality, they
employ a bivariate normal distribution for the jump sizes. Inspired by (Li and al., 2023), let us consider that:

• Jr follows a bivariate normal distribution with marginal means mj
r and 0, standard deviations σjr and 0,

denoted by
Jr ∼ N (mj

r, 0;σ
j
r , 0); (49)

• Jµ follows a bivariate normal distribution with marginal means 0 and mj
µ, standard deviations 0 and σjµ,

denoted by
Jµ ∼ N (0,mj

µ; 0, σ
j
µ); (50)

• Jr,µ follows a bivariate normal distribution with marginal means mj
r;µ and mj

µ;r, standard deviations σjr;µ
and σjµ;r, and jump size correlation coefficient ρj , denoted by

Jr,µ ∼ N(mj
r;µ,m

j
µ;r;σ

j
r;µ, σ

j
µ;r; ρ

j). (51)
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Using the moment generating function of a bivariate normal distribution, we can write
EQ̃
[
eJ

r·B(t,s)
]
= exp

(
−B(λ, t, s)mj

r +
B2(λ, t, s)(σjr)2

2

)
,

EQ̃
[
eJ

µ·B(t,s)
]
= exp

(
−B(ω, t, s)mj

µ +
B2(ω, t, s)(σjµ)2

2

)
,

EQ̃
[
eJ

r,µ·B(t,s)
]
= exp (I(t, s)) ,

(52)

with

I(t, s) =−B(λ, t, s)mj
r;µ −B(ω, t, s)mj

µ;r +
B2(λ, t, s)(σjr;µ)2

2
+
B2(ω, t, s)(σjµ;r)2

2

+ ρjB(λ, t, s)B(ω, t, s)σjr;µσ
j
µ;r. (53)

By injecting (52) in (48), we obtain

PJr(t, s) = exp

(
δr
∫ s

t
exp

(
−B(λ, q, s)mj

r +
B2(λ, q, s)(σjr)2

2

)
dq − δr(s− t)

)
,

PJµ(t, s) = exp

(
δµ
∫ s

t
exp

(
−B(ω, q, s)mj

µ +
B2(ω, q, s)(σjµ)2

2

)
dq − δµ(s− t)

)
,

PJr,µ(t, s) = exp
(
δr,µ

∫ s

t
exp (I(q, s)) dq − δr,µ(s− t)

)
.

(54a)

(54b)

(54c)

The expressions PJr(t, s), PJµ(t, s) and PJr,µ(t, s) cannot be calculated explicitly, but can be easily found
numerically, for example by a Runge-Kutta method.

After injecting expressions (54) in (47), we can rearrange (47) to arrive at a multiplicative structure which
contains the following terms.

• A term denoted Pr′(t, s) which accounts for the diffusion related factor (Pr(t, s)) and the jump effects
(PJr(t, s) and PJr,µr

(t, s)) of the interest rate process.

Let us define
Pr′(t, s) := Pr(t, s) · PJr(t, s) · PJr,µr

(t, s), (55)

where Pr(t, s) is given by (2.22) and (2.23), PJr(t, s) by (54a) and

PJr,µr
(t, s) = exp

(
δr,µ

∫ s

t
exp

(
−B(λ, q, s)mj

r;µ +
B2(λ, q, s)(σjr;µ)2

2

)
dq − δr,µ(s− t)

)
. (56)

• A term denoted Pµ′(t, s) which accounts for the diffusion effects (Pµ(t, s)) and the jump effects (PJµ(t, s)
and PJr,µµ

(t, s)) of the mortality intensity process.

We define
Pµ′(t, s) := Pµ(t, s) · PJµ(t, s) · PJr,µµ

(t, s), (57)

where Pµ(t, s) is given by (2.30) and (2.31), PJµ(t, s) by (54b) and

PJr,µµ
(t, s) = exp

(
δr,µ

∫ s

t
exp

(
−B(ω, q, s)mj

µ;r +
B2(ω, q, s)(σjµ;r)2

2

)
dq − δr,µ(s− t)

)
. (58)

• A term denoted Pρr,µ(t, s), which is identical to (3.11) in Proposition I, which accounts for the correlation
impact generated by the interest rate and the mortality intensity Brownian motions.
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• A term denoted Pρj (t, s) which accounts for the part of the correlation induced by the presence of
jumps attributable to the correlation between the interest rate jump size and the mortality intensity jump
size.

Let us define
Pρj (t, s) :=

PJr,µ(t, s)

PJr,µ0
(t, s)

, (59)

where PJr,µ(t, s) is given by (54c) and

PJ
r,µ
0

(t, s) := exp

(
δr,µ

∫ s

t
exp

(
−B(λ, q, s)mjr;µ −B(ω, q, s)mjµ;r +

B2(λ, q, s)(σjr;µ)
2

2
+
B2(ω, q, s)(σjµ;r)

2

2

)
dq − δr,µ(s− t)

)
, (60)

which has been obtained by putting ρj = 0 in (54c).
Echoing the three scenarios on the value of ρr,µ studied above, we can analyse the following three scenarios
depending on the value of ρj . When the jump size correlation coefficient ρj is zero, as expected we have
Pρj (t, s) = 1. In case of strictly positive correlation between the two jump sizes (ρj > 0), the term Pρj (t, s)
is strictly higher than 1, which implies that the price of the zero-coupon survival bond is higher than when
assuming independence between the jump sizes (ρj = 0). This confirms the fact already observed in the
diffusion model without jumps (section 3) where the introduction of a positive correlation between interest
rates and mortality rates generates an increase in terms of price of the zero-coupon survival bond . The
same effect appears here in case of positive correlation between the jump sizes on interest rates and mor-
tality rates. Ignoring these correlations when positive, leads once again to an underestimation of prices.
In case of strictly negative correlation between the two jump sizes (ρj < 0), the term Pρj (t, s) is strictly
lower than 1, which implies that the price of the zero-coupon survival bond is lower than when assuming
independence between the jump sizes (ρj = 0).

• A term denoted Pcon(t, s) which accounts for the part of the correlation induced by the presence of
jumps attributable to the concomitance of the interest rate jumps and the mortality intensity jumps.

Let us define

Pcon(t, s) :=
PJr,µ0

(t, s)

PJr,µr
(t, s)PJr,µµ

(t, s)
, (61)

where PJr,µ0
(t, s), PJr,µr

(t, s) and PJr,µµ
(t, s) are respectively given (60), (56) and (58).

Proposition III

Considering the Hull and White2 model with jumps (37) with explicit expressions of the moving
targets (2.18) and (2.27) and the jump size distributions (49), (50) and (51), the price at time t of a
zero-coupon survival bond of maturity time s, for an individual initially aged x at time 0, is given
by

Pr,µ(t, s) = 1{τ(x)>t} · Pr′(t, s) · Pµ′(t, s) · Pρ′(t, s), (62)

where

• Pr′(t, s) is a term encompassing all purely interest rate impacts:

Pr′(t, s) = Pr(t, s) · PJr(t, s) · PJr,µr
(t, s), (63)

where
. Pr(t, s) accounts for the diffusion part. It is given by (2.22) and (2.23).
. PJr(t, s) accounts for the pure interest rates jumps. It is given by (54a).
. PJr,µr

(t, s) accounts for the interest rate component of the common jumps. It is given by (56).
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• Pµ′(t, s) is a term encompassing all purely mortality intensity impacts:

Pµ′(t, s) = Pµ(t, s) · PJµ(t, s) · PJr,µµ
(t, s), (64)

where
. Pµ(t, s) accounts for the diffusion part. It is given by (2.30) and (2.31).
. PJµ(t, s) accounts for the pure mortality intensity jumps. It is given by (54b).
. PJr,µµ

(t, s) accounts for the mortality intensity component of the common jumps. It is given
by (58).

• Pρ′(t, s) is a term encompassing all the correlation impacts:

Pρ′(t, s) = Pρr,µ(t, s) · Pρj (t, s) · Pcon(t, s), (65)

where
. Pρr,µ(t, s) accounts for the diffusion correlation. It is given by (3.11).
. Pρj (t, s) accounts for the jump size correlation of common jumps. It is given by (59), (54c)
and (60).
. Pcon(t, s) accounts for the concomitance of the common jumps. It is given by (61), (60), (56)
and (58).
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