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This document presents additional details about statistical and machine learning methods, a bias
analysis of the CRCM and more extensive tables for the portfolio applications of Section 5.

1. Statistical and machine learning methods
This section briefly describes Generalized Linear Models (GLM), Generalized Additive Models
(GAM) and Random Forests (RF). We then provide more details about the implementation of these
methods as well as summarized outputs for two occurrence models.

1.1 Introduction
Let Y be a random variable whose behavior we wish to explain with a set of p predictors denoted by
X = [X1,X2, ...,Xp]. When Y ∈ R, then we can use what is known as a multiple (linear) regression
to explain Y as

Y = β0 + β1X1 + β2X2 + ... + βpXp + ϵ

where ϵ is normally distributed with zero mean and the βs are coefficients of the regression. We get
that

E[Y |X] = β0 + β1X1 + β2X2 + ... + βpXp

and the conditional (on predictors) expectation of Y is a linear and additive function of X.
Whenever Y ∈ {0, 1, 2, 3, ...} (count response) or simply Y ∈ {0, 1} (binary response), then

multiple regression will not work and we need an alternative approach. For flood occurrences, we
need a "regression" model that handles binary responses for classification problems. GLM provide
such model for count or binary responses for example.

Now let Y ∈ {0, 1}. In a GLM, we represent the conditional expectation of Y as a transformation
of a linear function of the predictors. Mathematically, we have

E[Y |X] = g–1 (β0 + β1X1 + β2X2 + ... + βpXp
)

where g is known as the link function. With Y ∈ {0, 1}, then E[Y |X] ∈ [0, 1] is simply a probability.
Therefore g–1 transforms a real value into [0, 1]. Popular functions include the logit function

g(x) = log
( x

1 – x

)
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and the probit function
g(x) = Φ–1(x)

where Φ–1 is the quantile function of a standard normal distribution and x ∈ [0, 1]. A GLM on
binary responses using the logit link function is known as a logistic regression.

A GAM extends the GLM and introduces non-linear functions of the predictors. That is we have

E[Y |X] = g–1 (α + f1(X1) + f2(X2) + ... + fp(Xp)
)

with f functions to be estimated (for a predetermined functional form). We typically use splines for
one or many predictors to allow for a flexible representation of non-linearities.

RF is a machine learning method based on regression or decision trees and can be used in
regression or classification problems. In a process called bagging, RF combine decision trees by
randomly sampling subsets of observations and predictors. The result is a multidimensional and
empirical relationship between the response and the predictors. In the case of classification problems,
RF outputs the predicted probability as the average probability across all underlying decision trees.

1.2 Implementation
GLM were fitted using the glm function included in the stats package loaded by default in R. The
family, which refers to the error distribution, was set to binomial since we are working with binary
responses. The link function was then set to logit to use a logistic regression. By default the glm
function uses the iteratively reweighted least squares method to find parameters.

GAM were fitted using the bam function included in the mgcv package in R (Wood 2017). Just
like the GLM, the family was also set to binomial with the logit link function to work with an
extended logistic regression. Parameters were found using restricted maximum likelihood to avoid
undersmoothing which is the default setting. We used cubic regression splines (using the s function
of the mgcv package) for non-factorial variables.

RF were fitted using the ranger function of the ranger package in R (Wright, Wager, and
Probst 2020). The number of trees was set to 500 to limit the computation time and still obtain a
good prediction. The depth of each tree was set to 0, which indicates unlimited depth. Typically, the
number of predictors available at each split for a classification problem is set to the rounded down
square root of the number of predictors, which is equal to 3 for this work. The split rule was set to
the Gini index since this is a classification problem. Long computation times (see below) prevented
us from running a more systematic test of hyperparameters. Different hyperparameter sets were
randomly tested with no significant change to the results.

Calibration/training of each GLM or GAM model can be achieved within seconds but training
of RF models takes much longer and depends on sample size. Training a RF with the entire dataset
typically takes more than an hour, but when we undersample zeroes the sample size is much smaller
and the time to train a RF drops to a few minutes. For all models, predictions can be accomplished
within seconds. Computation times are based on a desktop computer with a single 8-core CPU with
32 GB of RAM. Training of RF models is fully parallelized with the ranger package.

1.3 Summarized outputs
We provide in this section summarized outputs for key variables in the GLM and GAM models
fitted with the smaller set of covariates, with undersampling (90-10) and logged population. Table 1
shows the estimate and the z-value for these variables under the GLM model (first two columns)
whereas for the GAM model, we provide statistics for the smooth terms, that is the effective degrees
of freedom (EDF) and the chi-square (Chi sq) value (last two columns). The z-value measures
the statistical significance of a coefficient in a GLM (whether it is different from zero), the EDF
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Table 1. Summarized outputs for key variables in the GLM and GAM models with the smaller set of covariates, undersampling
and logged population

GLM GAM
Estimate z value EDF Chi sq

Monthly maximum 24h precipitation 0.042 216.91 8.34 51861.9
Monthly average daily maximum temperature 0.019 11.46 7.45 1367.5

Log10 population density 0.679 118.66 7.68 10889.8

Wetland -3.227 -49.53 5.58 2273.8
Cropland 0.021 0.86 8.80 200.9

Barren Lands 1.577 10.55 6.68 255.5
Water -0.932 -10.27 5.94 293.4

Grassland and Forests -0.010 -0.37 8.62 219.6

proxies the non-linearity of the fitted spline (a value close to 1 means approximately linear) while the
chi-square statistic in a GAM measures the significance of the predictor and the smooth terms.

It is difficult to directly interpret the value of each coefficient in a logistic regression since it is
tied to the logit link function. However, we observe that coefficients for precipitation, temperature
and population are all positive, with precipitation and population being the two most statistically
significant covariates. Therefore, pluvial flood probabilities increase with these three variables. For
the five land use variables, the proportion of wetland is also very significant, third overall, whereas
the proportion of cropland, grassland and forests is each not statistically significant.

The complete model also includes a factorial variable for the Köppen-Geiger climate classification
(20), a variable for the year and dummy variables (11) for the month of the year. The Zenodo
repository includes a txt file for the complete output of the GLM (and GAM) model. Looking into
the complete output, we find that about half of the Köppen-Geiger climate classes are statistically
significant, with an average absolute z value of about 4. We find for example there are more pluvial
floods over the months of May, June, July and August, showing an average z value of nearly 20.

For the GAM, we find that the significance of the smooth terms is more important for precipitation,
population, proportion of wetland and temperature respectively. In the Zenodo repository, we find
similar results for the Köppen-Geiger climate classification and dummies for months.

Figure 1 shows the GAM spline functions for precipitation, temperature and population, along
with 95% confidence bands (the high resolution plots are each provided on the Zenodo repository).
We observe that the spline function for the monthly maximum 24h precipitation is increasing
nonlinearly and plateauing for larger precipitation values. The confidence bands are very tight until
the spline reaches some maximum. The reason why the spline reaches a plateau is that for very high
precipitation values, there is not much of a difference between a flood occurrence probability of 99%
or 99.9%. As for the temperature spline function, it is increasing only on certain intervals: below 0
degrees (Celsius) and above 30 degrees. Otherwise it is somewhat flat. Finally, population density as
a proxy for urbanization clearly increases the likelihood of pluvial flooding but the relationship is
very uncertain for areas with very small population density.

2. Bias analysis
To determine if the CRCM5 generates important biases in flood probabilities, one can compare
simulated flood probabilities (with predictors computed from the CRCM5) with predicted flood
probabilities (with predictors computed from observations). We have done such an exercise with the
GLM, GAM and RF models over the common time period of 2007-2020.

Table 2 provides the distribution (over grid cells) of that difference in probabilities across the
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Figure 1. GAM spline functions for precipitation (top left), temperature (top right) and population (bottom) for the GAM
model fitted over the United States, with the smaller set of covariates, undersampling and logged population.

Table 2. Quantiles of the difference between simulated (from the CRCM) and historical flood probabilities using the GLM,
GAM and RF models over the United States and Canada

GLM GAM RF
Quantiles USA CAN USA CAN USA CAN

0.1% -0.4132% -1.2933% -0.2331% -0.2821% -1.7778% -0.0838%
1% -0.0114% -0.1713% -0.0186% -0.1026% -0.2936% -0.0055%

10% 0.0638% 0.0085% 0.0476% 0.0024% 0.0710% 0.0515%
25% 0.1557% 0.0224% 0.1244% 0.0210% 0.1673% 0.0769%
50% 0.4723% 0.0835% 0.3460% 0.0805% 0.3426% 0.1450%
75% 1.1368% 0.2168% 0.7756% 0.2277% 0.7077% 0.2973%
90% 1.9030% 0.4640% 1.5379% 0.4448% 1.1056% 0.5470%
99% 3.8756% 1.6976% 5.0825% 2.0039% 2.0511% 1.3404%

99.9% 6.1483% 6.1560% 11.8372% 6.0690% 3.0322% 2.4598%
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United States and Canada, and over the three models. We observe that about 1% of grid cells yield
negative differences, meaning about 99% of grid cells are overestimated with the CRCM5. However,
the size of the overestimation remains manageable, since for the random forests, 99% of the area
in the U.S. yields errors smaller than 2% (1.3% in Canada). The random forest method appears to
yield smaller errors, which is consistent with its predictive capability in the test and validation sets
(Sections 3.4.1 and 3.4.2). Note that there are few NAs (white cells, close to no population) in the
U.S. and significantly more in Canada, which could explain why errors appear smaller in Canada.

Panel A : USA 

 

Panel B : Canada 

 

Figure 2. Difference between simulated (from the CRCM) and predicted (from observations) flood probabilities using the RF
model over the United States (Panel A, top) and Canada (Panel B, bottom) and over 2007-2020. Similar plots for GLM and
GAM available in the SM.

We would like to determine where errors are the smallest or the largest over Canada and the
U.S. As such, Figure 2 shows the difference between the simulated flood occurrence probability
(from the CRCM5) and predicted flood occurrence probability (from observations), for each grid
cell, averaged over months, for the United States (Panel A, top) and Canada (Panel B, bottom) for the
random forests. Similar plots for the GLM and GAM are provided in the SM. We see that errors are
in general small almost everywhere, being the largest in the greater New York and Vancouver areas.
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In the U.S. for example, errors are still within 1% in most key areas, that is the entire West Coast,
Southern and North Eastern U.S., and within 0.3% elsewhere, namely Central U.S. In Canada,
errors are the largest in South Western BC, and Southern Ontario and Quebec, in addition to New
Brunswick and Nova Scotia. Overall in both countries, errors are larger in urbanized areas because
their flood probabilities are larger as well.

3. Portfolio applications
This section presents the equivalent of Table 3 for the 10 Canadian provinces (Table 3) and the 10
most populous U.S. states (Table 4).

Table 3. Portfolio loss statistics for Canadian provinces and three scenarios for changes in hazard and exposure (in millions
of 2020 dollars). Relative difference in % shown between parentheses (compared to the baseline scenario).

Hazard Exposure Average Std. dev. 90th perc. 95th perc. 99th perc.

2020 2020 26 41 64 96 199
NB 2050 2020 38 (46%) 48 (18%) 89 (39%) 127 (33%) 237 (19%)

2050 2050 43 (68%) 47 (14%) 97 (53%) 134 (40%) 223 (12%)

2020 2020 3 12 7 17 60
PEI 2050 2020 5 (59%) 16 (24%) 13 (78%) 26 (54%) 73 (23%)

2050 2050 6 (88%) 17 (33%) 17 (125%) 31 (83%) 79 (33%)

2020 2020 43 84 94 163 456
NS 2050 2020 61 (42%) 97 (15%) 135 (43%) 216 (32%) 525 (15%)

2050 2050 68 (59%) 93 (11%) 144 (52%) 218 (33%) 507 (11%)

2020 2020 11 26 24 46 136
NL 2050 2020 16 (47%) 30 (17%) 35 (49%) 61 (32%) 156 (15%)

2050 2050 19 (74%) 33 (27%) 42 (79%) 72 (57%) 170 (26%)

2020 2020 26 41 64 96 199
MB 2050 2020 38 (46%) 48 (18%) 89 (39%) 127 (33%) 237 (19%)

2050 2050 46 (78%) 49 (21%) 103 (61%) 142 (48%) 236 (18%)

2020 2020 21 52 48 92 289
SK 2050 2020 31 (48%) 62 (18%) 75 (54%) 127 (38%) 316 (9%)

2050 2050 38 (80%) 67 (28%) 94 (95%) 162 (75%) 341 (18%)

2020 2020 141 273 354 581 1340
AB 2050 2020 199 (41%) 316 (16%) 493 (39%) 768 (32%) 1576 (18%)

2050 2050 246 (75%) 352 (29%) 617 (75%) 905 (56%) 1734 (29%)

2020 2020 389 610 998 1498 2979
BC 2050 2020 477 (23%) 648 (6%) 1143 (15%) 1737 (16%) 3376 (13%)

2050 2050 573 (47%) 656 (8%) 1292 (30%) 1853 (24%) 3431 (15%)

2020 2020 471 653 1154 1707 3291
QC 2050 2020 692 (47%) 767 (18%) 1601 (39%) 2234 (31%) 3872 (18%)

2050 2050 913 (94%) 995 (53%) 2067 (79%) 2947 (73%) 5070 (54%)

2020 2020 693 827 1613 2291 4281
ON 2050 2020 1029 (49%) 987 (19%) 2243 (39%) 3059 (34%) 4827 (13%)

2050 2050 1285 (85%) 1175 (42%) 2713 (68%) 3701 (62%) 5842 (36%)

References
Wood, S.N. 2017. Generalized Additive Models: An Introduction with R. 2nd ed. Chapman / Hall/CRC.
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Table 4. Portfolio loss statistics for the 10 most populous U.S. states and three scenarios for changes in hazard and exposure
(in millions of 2020 dollars). Relative difference in % shown between parentheses (compared to the baseline scenario).

Hazard Exposure Average Std. dev. 90th perc. 95th perc. 99th perc.

2020 2020 2530 1968 5175 6469 9577
CA 2050 2020 3329 (32%) 2162 (10%) 6200 (20%) 7541 (17%) 10491 (10%)

2050 2050 4116 (63%) 2858 (45%) 7873 (52%) 9709 (50%) 13664 (43%)

2020 2020 3208 1556 5261 6130 7825
TX 2050 2020 3886 (21%) 1703 (9%) 6140 (17%) 7004 (14%) 8870 (13%)

2050 2050 4639 (45%) 2035 (31%) 7271 (38%) 8359 (36%) 10502 (34%)

2020 2020 2003 1185 3581 4263 5717
FL 2050 2020 2297 (15%) 1232 (4%) 3920 (9%) 4567 (7%) 6069 (6%)

2050 2050 2845 (42%) 1614 (36%) 4927 (38%) 5868 (38%) 8122 (42%)

2020 2020 1815 2155 4178 5992 10896
NY 2050 2020 2142 (18%) 2240 (4%) 4616 (10%) 6514 (9%) 11306 (4%)

2050 2050 2619 (44%) 2682 (24%) 5719 (37%) 7852 (31%) 13367 (23%)

2020 2020 1110 677 1998 2428 3362
PA 2050 2020 1435 (29%) 740 (9%) 2422 (21%) 2894 (19%) 3877 (15%)

2050 2050 1718 (55%) 930 (37%) 2952 (48%) 3545 (46%) 4911 (46%)

2020 2020 1017 943 2138 2873 4615
IL 2050 2020 1341 (32%) 1064 (13%) 2673 (25%) 3404 (19%) 5119 (11%)

2050 2050 1637 (61%) 1427 (51%) 3356 (57%) 4369 (52%) 6833 (48%)

2020 2020 801 519 1470 1816 2555
OH 2050 2020 1098 (37%) 592 (14%) 1879 (28%) 2242 (23%) 2997 (17%)

2050 2050 1319 (65%) 726 (40%) 2287 (56%) 2724 (50%) 3680 (44%)

2020 2020 1066 728 1994 2454 3609
GA 2050 2020 1314 (23%) 792 (9%) 2396 (20%) 2904 (18%) 4254 (18%)

2050 2050 1557 (46%) 971 (33%) 2881 (45%) 3521 (43%) 5281 (46%)

2020 2020 915 534 1657 1954 2569
NC 2050 2020 1236 (35%) 616 (15%) 2062 (24%) 2402 (23%) 3112 (21%)

2050 2050 1417 (55%) 672 (26%) 2312 (40%) 2689 (38%) 3392 (32%)

2020 2020 405 439 917 1251 2015
MI 2050 2020 596 (47%) 523 (19%) 1240 (35%) 1624 (30%) 2487 (23%)

2050 2050 753 (86%) 714 (63%) 1618 (76%) 2145 (71%) 3371 (67%)
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