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A. Continuous distributions

Most elements within the set of reduced random variables (see Section 4.3) are nonnegative, i.e., they
have a support R+ or Z+. The underlying models are thus calibrated with respective scaling factors 𝑒𝑐
(see exponential linking in (5.4)). The incurred lag 𝜏𝐼

𝑜,𝑖
can, however, be positive or negative, i.e., it has

a support R, and the underlying model is calibrated with a translate parameter 𝑐 (linear linking). There
are also random variables, e.g., the number of payments per year, with a support 0, . . . , 𝑛 implying a
logistic linking for a probability parameter 𝑝 ∈ [0, 1].

Continuous distributions can also be used to calibrate discrete processes (see Figure 6.1). An expo-
nential linking is used in combination with the logN family and a linear linking is used in combination
with the N family.

A.1. logN– and N–based scale and location calibration

All occurrence years 𝑜 ∈ {−𝑇, . . . ,−1} are calibrated with a scalar 𝑐, i.e., 𝑐𝑜 = 𝑐 for all 𝑜. A
logN(𝜇𝑜 (𝑐), 𝜎𝑜) approximation is used to calibrate distributions 𝑓𝑜 (𝑥 | 𝑐) that need to be scaled
(exponential linking), and a N(𝜇𝑜 (𝑐), 𝜎𝑜) approximation is used to calibrate distributions 𝑓𝑜 (𝑥 | 𝑐)
that need to be translated (linear linking). The conditional model parameters 𝜇𝑜 (𝑐) are obtained as
𝜇𝑜 (𝑐) = 𝜇0

𝑜 + 𝑐 in both cases. Plugging the pdfs (probability density functions) into (5.5), (5.6), and
(5.7), and using normal priors 𝑐 ∼ N(0, 𝜎𝑐) yields following solutions for the MAP estimate on a claim,
an annual, and a period level, respectively:
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where:

𝑦𝑜,𝑖 , 𝑦𝑜 , 𝑦 :=
{
𝑌𝑜,𝑖 , 𝑌𝑜 , 𝑌 if 𝑓𝑜 = N
ln(𝑌𝑜,𝑖) , ln(𝑌𝑜) , ln(𝑌 ) if 𝑓𝑜 = logN (A.1)

A.2. logN– and N–based linear-trend calibration

The calibration of a linear trend is performed by replacing the calibration parameters 𝑐𝑜 = 𝑐 with
𝑐𝑜 = 𝑎 + 𝑏 · (𝑜 − 𝑜0), i.e., the scalar calibration parameter 𝑐 is replaced with the vector 𝒄 = (𝑎, 𝑏) (see
Figure 6.1). The conditional model parameters 𝜇𝑜 (𝒄) are obtained as 𝜇𝑜 (𝒄) = 𝜇0

𝑜 + 𝑎 + 𝑏 · (𝑜 − 𝑜0)
in both cases. Plugging the pdfs into (5.8) and (5.9), and using normal priors 𝑎 ∼ N(0, 𝜎𝑎) and
𝑏 ∼ N(0, 𝜎𝑏) yields following equations to be fulfilled by the MAP estimates on a claim and an
annual level, respectively:
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where 𝑦𝑜,𝑖 and 𝑦𝑜 are defined in (A.1).
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A.3. Continuous modeling of discrete processes

A robust calibration of discrete processes is only possible if the annual frequencies 𝜆𝑜 = E[𝑁𝑜]
are sufficiently large, i.e., if Pr(𝑁𝑜 = 0) ≪ 1 for all 𝑜. The first two moments E[𝑁𝑜] and V[𝑁𝑜]
are determined by the highest density region(s) of a probability distribution (see 𝐻𝐷R definition in
Section 4.1), and most of the observed random variables 𝑁𝑜 are expected to be found within the 𝐻𝐷𝑅.
The calibration is derived from the logarithm of the pmf (or pdf, respectively), and it thus only depends
on potentials, i.e., relative probabilities that characterize the shape of the distributions.

A discrete model can thus be calibrated by fitting an ’easy to manage’ continuous distribution family
to the simulated discrete distributions. The following approach is used to convert a continuous pdf 𝑓𝑋 (𝑥)
with support R+ into a respective discrete pmf 𝑓𝑁 (𝑘) ∝ 𝜙𝑁 (𝑘) with support Z+ where the potential
𝜙𝑁 (𝑘) is defined as follows:

𝜙𝑁 (𝑘) ≜
∫ 𝑘+ 1

2
𝑘− 1

2
𝑓𝑋 (𝑥) · 𝑑𝑥 ≈

{
𝑓𝑋 ( 1

4 ) ·
1
2 if 𝑘 = 0

𝑓𝑋 (𝑘) · 1 if 𝑘 > 0
= 𝑓𝑋 (𝑘 + 1𝑘=0

4 ) · 1+1𝑘>0
2

≈ 𝑓𝑋 (𝑘) if 𝑓𝑋 ( 1
4 ) ≪ 1
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B. Discrete: The Panjer class

B.1. Exponential linking

The three distribution families within the Panjer class are suitable to fit a broad variety of simulated
discrete random variables. The class comprises the Poisson family P, the negative binomial family NB,
and the binomial family B. The variance-over-mean ratio (Panjer factor) 𝑓𝑃 = V[𝑁]/E[𝑁] is used to
discriminate between the three families: 𝑓𝑃 = 1 for P, 𝑓𝑃 > 1 for NB, and 𝑓𝑃 < 1 for B.

A specific solution for the scale calibration is derived for each of the three families, and a generic
solution—applicable to all three families—is derived with an approximation. Solutions for the calibration
of features that require a logistic linking are derived for the NB and the B families.

The calibration for the families in the Panjer class is summarized in Table B.1: P for Poisson, NB
for negative binomial, B for binomial, and Ga for the gamma approximation.

The first column indicates the family, and the respective conditional probability mass function (pmf)
𝑓𝑁 (𝑘 | 𝑐) is shown in the second column. The third column indicates the linking, and the fourth
column contains the equation to be fulfilled by the root 𝑐𝑀𝐴𝑃 as obtained with (5.6) and the prior
𝜋(𝑐) = N(𝑐; 0, 𝜎2

𝑐 ). The calibration of the probability parameter 𝑝𝑜 (𝑐) via a logistic linking for fixed
parameters 𝑟𝑜 (in the NB case) and 𝑛𝑜 (in the B case), respectively, is shown in the two bottom rows.

Remark B.1. The root 𝑐𝑀𝐴𝑃 corresponds to the intersection of the two graphs defined by the functions
𝑐 ↦→ 𝐿 (𝑐) and 𝑐 ↦→ 𝑅(𝑐) as shown in Figure 6.4.

B.2. The Poisson family P

A P process is postulated by assuming that the simulated random variables 𝑁𝑜 are mutually independent
and that the simulated variance-over-mean ratios 𝑓𝑃,𝑜 = V[𝑁𝑜]/E[𝑁𝑜] are characterized by 𝑓𝑃,𝑜 ≈ 1
for all 𝑜. Another assumption is that all frequencies 𝜆𝑜 (𝑐) scale with 𝑒𝑐 and that the prior distribution
of the calibration parameter 𝑐 is given by 𝜋(𝑐) = N(𝑐; 0, 𝜎2

𝑐 ).
The equation to be fulfilled by the root 𝑐 = 𝑐𝑀𝐴𝑃 is obtained by feeding the derivatives into (5.6).

The resulting equation is expressed in the form 𝐿 (𝑐) !
= 𝑅(𝑐) where the expression on the left side is set

to 𝐿 (𝑐) = 𝑐/𝑒𝑐 and the expression 𝑅(𝑐) on the right side is shown in Table B.1.
The solution obtained for the P case depends on the sufficient statistics

∑
𝑁𝑜, the aggregate frequency∑

𝜆0
𝑜 and on the prior parameter 𝜎2

𝑐 . The calibration parameter 𝑐𝑎
𝑀𝐴𝑃

derived from the annual obser-
vations 𝑁𝑜 is thus identical to the calibration parameter 𝑐𝑝

𝑀𝐴𝑃
derived from aggregate period statistics

𝑁 (see Table 6.3 and Figure 6.4).

B.3. The negative binomial family NB

A NB process is characterized by a variance-over-mean ratio 𝑓𝑃 = 1/𝑝 > 1. The implicit factors might
vary from year to year and change with the scaling of the frequencies via 𝑓𝑃,𝑜 (𝑐) = 1 + ( 𝑓𝑃0

,𝑜 − 1) · 𝑒𝑐.
It is, however, difficult to derive robust estimates for annual factors 𝑓𝑃,𝑜, and these factors have only a
minor impact on the calibration (see Table 6.3 and Figure 6.4). The annual Panjer factors 𝑓𝑃,𝑜 (𝑐) are thus
assumed to be equal to 𝑓𝑃 =

∑
V[𝑁𝑜]/

∑
E[𝑁𝑜] and 𝑓𝑃 is assumed to be unaffected by the scaling. The

model parameters {(𝑟0
𝑜, 𝑝

0
𝑜)}−𝑇≤𝑜≤−1 are thus fully determined via 𝑝0

𝑜 = 1/ 𝑓𝑃 and 𝑟0
𝑜 = 𝜇0

𝑜/( 𝑓𝑃 − 1).
The partial derivatives 𝜕/𝜕𝑐 are evaluated with the Stirling approximation

ln(Γ(𝑥)) ≈ (𝑥 − 1) · ln(𝑥 − 1) − (𝑥 − 1) + 1
2 · ln(

√
2𝜋 · (𝑥 − 1))

𝜕
𝜕𝑥

ln(Γ(𝑥)) ≈ ln(𝑥 − 1) + 1
2 · 1

𝑥−1

leading to the function 𝑅(𝑐) for the NB case shown in Table B.1. The statistics entering 𝑅(𝑐) depends
on 𝑐, and the calibration parameter 𝑐𝑝

𝑀𝐴𝑃
derived from aggregated period data thus varies from the

parameter 𝑐𝑎
𝑀𝐴𝑃

derived from annual data.
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The condition 𝑟0
𝑜 · 𝑒𝑐 > 1 for all 𝑜 leads to a lower bound 𝑐 > 𝑐𝑙𝑜 = − ln

(
min{𝑟0

𝑜}−𝑇≤𝑜≤−1
)

for the
calibration parameter 𝑐. An upper bound 𝑐ℎ𝑖 for the solution can also be identified since 𝐿 (𝑐) > 0 and
𝑅(𝑐) < 0 for large 𝑐. The equation 𝐿 (𝑐) !

= 𝑅(𝑐) has two roots 𝑐𝑙𝑜 < 𝑐1 < 𝑐2 < 𝑐ℎ𝑖 . The solution 𝑐1 is
found near 𝑐𝑙𝑜 (where the Stirling approximation is no longer valid) and corresponds to a minimum of
𝐿 (𝑐). The relevant solution 𝑐2 is easily found near the P solution (see Table 6.3 and Figure 6.4) with
the Newton-Raphson method.

B.4. The binomial family B

The solution for the B case is like the solution derived for the NB case. The Panjer factor is constrained
by 0 < 𝑓𝑃 = (1 − 𝑝) < 1, and the maximum number of observations 𝑛0

𝑜 = 𝜇0
𝑜/(1 − 𝑓𝑃) ∈ Z+ must be

a positive integer. The simulated mean 𝜇0
𝑜 and the variance 𝜇0

𝑜 · 𝑓𝑃 can thus not be exactly preserved
when fitting a B distribution to a simulated distribution with 𝑓𝑃 < 1.

This constraint can be neglected when evaluating the root of the equation 𝐿 (𝑐) !
= 𝑅(𝑐) for the B

case (see Table B.1). Depending on the process implemented in the generative model, this constraint
must be considered when adjusting the model. This is done by first setting 𝑛𝑜 = ⌈𝜇𝑜/(1 − 𝑓𝑃)⌉, and
then setting 𝑝𝑜 = 𝜇𝑜/𝑛𝑜.

The equation 𝐿 (𝑐) !
= 𝑅(𝑐) for the B case has a single root near the P solution (see Table 6.3 and

Figure 6.4) with a lower bound 𝑐 > 𝑐𝑙𝑜 = ln(max{𝑁𝑜/𝑛0
𝑜}−𝑇≤𝑜≤−1). The statistics entering the right-

side term 𝑅(𝑐) depends on 𝑐, and the calibration parameter 𝑐𝑝
𝑀𝐴𝑃

derived from aggregated period data
will thus be different from the parameter 𝑐𝑎

𝑀𝐴𝑃
derived from annual data.

B.5. The gamma family Ga

Discrete probability distributions can also be calibrated with continuous approximations (see
Section A.3), and the Ga(𝛼, 𝛽) family with support R+ is used as an approximation for the Panjer class.
The parameters (𝛼, 𝛽) are easily derived from the first two moments E[𝑋] = 𝛼/𝛽 and V[𝑋] = E[𝑋]/𝛽.

An exponential coupling E[𝑋𝑜 | 𝑐] = 𝛼𝑜 (𝑐)/𝛽𝑜 ∝ 𝑒𝑐 is postulated by assuming that the variance-
over-mean ratios 1/𝛽𝑜 do not depend on the calibration parameter 𝑐. The scaling behavior is thus the
same as for the discrete distributions in the Panjer class. These ratios are assumed to be identical for
all years, i.e., 1/𝛽𝑜 = 𝑓𝑃 for all 𝑜. The resulting equations to be fulfilled by the root 𝑐 = 𝑐𝑀𝐴𝑃 are listed
in Table B.1.

The Ga family can thus be used as an approximation for the Panjer class without differentiating
between the cases 𝑓𝑃 < 1, 𝑓𝑃 = 1, and 𝑓𝑃 > 1 (see Table 6.3 and Figure 6.4). Another advantage of
the Ga family (as, e.g., compared to the logN family) is that the pdf has its finite maximum at 𝑥 = 0
for 1 < 𝛼 < 2. The Ga family can thus also be used to approximate discrete distributions in a lower
frequency regime.

B.6. Logistic linking

The NB and B families
The above calibration is obtained by scaling the parameters 𝑟𝑜 (in the NB case) and 𝑛𝑜 (in the B case)
while keeping parameters 𝑝𝑜 fixed. There are, however, also situations where the parameters 𝑟𝑜 or 𝑛𝑜
are fixed. The respective solutions for the calibration of the parameters 𝑝𝑜 (𝑐) via the logistic linking (as
defined in (5.4)) are listed at the bottom of Table B.1.
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C. Description of the examples

C.1. Example 1: Claims count process

C.1.1. Model characteristics
This example describes the framework with the help of the claims count process 𝑁𝑜 (see Section C.1.2,
Table C.1, and Example 6.1 in the printed document):

1. Annual claims count process:
(a) The frequencies 𝜆𝑜 = 𝜇𝑜 are specified for the occurrence years 𝑜 = −𝑇 and 𝑜 = −1 (with

𝑇 = 12).
(b) A geometric series is used to specify the frequencies for the occurrence years 𝑜 ∈ {−𝑇 +

1, . . . ,−2} and to extrapolate to the cover year 𝑜 = +1.
(c) A single Panjer factor 𝑓𝑃 = V[𝑁]/E[𝑁] is specified for all occurrence years 𝑜.
(d) Annual claims count: 𝑁𝑜 ∼ 𝑓𝑁 (𝜆𝑜, 𝑓𝑃) where 𝑓𝑁 is a distribution family in the Panjer class

with 𝑓𝑁 = B if 𝑓𝑃 < 1, 𝑓𝑁 = P if 𝑓𝑃 = 1, and 𝑓𝑁 = NB if 𝑓𝑃 > 1
(e) The expected average frequency for the period is 𝜇̂ =

∑
𝜇𝑜/𝑇

2. Bayesian inference: The Bayesian calibration is performed with normal priors for the scale
calibration scalar 𝑐 and the linear-trend calibration vector 𝒄 = (𝑎, 𝑏): 𝜋𝑐 (𝑐) = N(𝑐; 0, 𝜙𝑐),
𝜋𝑎 (𝑎) = N(𝑎; 0, 𝜙𝑎), and 𝜋𝑏 (𝑏) = N(𝑏; 0, 𝜙𝑏) where 𝜙 = 𝜎2 is the respective variance. The
reference year 𝑜0 = −(𝑇 + 1)/2 is set to the middle of the observation period.

3. Generative process: A NB process ( 𝑓𝑃 = 1.25) is imposed, and the frequency is specified to
increase by a factor of 3 during the observation period. A single random variable 𝑁𝑜 (see ’Statistics’
and Table C.1) is drawn for each observation year 𝑜.

4. Prior model: A P process ( 𝑓𝑃 = 1) is postulated for the generative model. The average frequency
is overstated, and the trend is understated. The simulated annual frequencies 𝜇0

𝑜 are derived from
the simulated pmfs defined by the 𝐾 ≫ 1 random variables drawn for each year 𝑜. The simulated
Panjer factor is derived from the random variables aggregated on a period level. The extrapolation
of the prior models leads to a projected frequency 𝜇1 for the observation year 𝑜 = +1.

5. Scale calibration: The calibration parameters 𝑐 are derived from the respective mean frequencies
and combined with the prior assumption in the Bayesian case (see Remark C.1). The overstated
scale assumption in the prior model is adjusted but the understated trend assumption remains
unaffected by the calibration. Thus, the projected estimates 𝜇1 are too low.

6. Linear trend calibration: The calibration parameters (𝑎, 𝑏) are derived from the respective linear
regression parameters (see ’Statistics’) and combined with prior assumptions in the Bayesian case
(see Remark C.1). The observations are used to adjust the overstated scale assumption and the
understated trend assumption. The projected estimate 𝜇1 is, however, quite sensitive to the trend
parameter 𝑏 which is derived from the volatile slope of the observations 𝑌𝑜.

7. Random variables: The annual random variable 𝑁𝑜 are drawn from the respective NB processes
used to characterize the generative process. The annual random variable 𝜇0

𝑜 are the means from
the 𝐾 ≫ 1 random variables drawn from the respective P distributions used to characterize the
Prior model.

C.1.2. Statistics
The upper part of following summary (see also Table C.1) contains the specified frequencies, the
simulated observations (𝐾 = 1) for the generative process, and the simulated frequencies (𝐾 ≫ 1) for
the generative model (𝑜 ∈ {−𝑇, . . . ,−1} and mu_o≡ 𝜇𝑜, Y_o≡ 𝑌𝑜, and o_0≡ 𝑜0). The mean (mean≡ 𝜇̂)
of the series, the logarithms (ln≡ ln(.)) of the series, the mean of the logarithms (mean≡ l̂n(𝜇)), and
the linear regression (LR) of the logarithms (with the intersection evaluated at 𝑜0) are listed.

The lower part of the summary contains the projections to 𝑜 = +1 (mu_1≡ 𝜇1) derived from the
model specifications, the calibration parameters 𝑐 and (𝑎, 𝑏), and the calibrated projections to 𝑜 = +1
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derived: from the model parameters (’model’), from the simulated series via a frequentist approach
(’freq’), and from the simulated series via a Bayesian approach (’Bayes’):
o: [-12, -11, -10, -9, -8, -7, -6, -5, -4, -3, -2, -1]
Generative process:
- Specified mu_o:

[5.0, 5.53, 6.11, 6.75, 7.46, 8.24, 9.1, 10.06, 11.12, 12.28, 13.57, 15.0]
mean = 9.184

ln: [1.61, 1.71, 1.81, 1.91, 2.01, 2.11, 2.21, 2.31, 2.41, 2.51, 2.61, 2.71]
mean = 2.159
LR (o_0 = -6.5): slope = 0.100 / intersection = 2.159

- Observed Y_o (K=1):
[3, 4, 6, 7, 10, 10, 7, 8, 12, 8, 18, 13]
mean = 8.833

ln: [1.1, 1.39, 1.79, 1.95, 2.3, 2.3, 1.95, 2.08, 2.48, 2.08, 2.89, 2.56]
mean = 2.073
LR (o_0 = -6.5): slope = 0.117 / intersection = 2.073

Generative model:
- Specified mu_o:

[10.0, 10.65, 11.34, 12.08, 12.87, 13.7, 14.59, 15.54, 16.56, 17.63, 18.78, 20.0]
mean = 14.479

ln: [2.3, 2.37, 2.43, 2.49, 2.55, 2.62, 2.68, 2.74, 2.81, 2.87, 2.93, 3.0]
mean = 2.649
LR (o_0 = -6.5): slope = 0.063 / intersection = 2.649

- Simulated mu_o (K=100):
[10.46, 10.53, 11.71, 11.87, 12.77, 14.2, 14.8, 15.21, 16.18, 16.9, 18.81, 19.91]
mean = 14.446

ln: [2.35, 2.35, 2.46, 2.47, 2.55, 2.65, 2.69, 2.72, 2.78, 2.83, 2.93, 2.99]
mean = 2.649
LR (o_0 = -6.5): slope = 0.059 / intersection = 2.649

Generative process and prior model:
- gen process: mu_1 = 18.316
- gen model : mu_1 = 22.686
Scale calibration and projection:
- model: c = ln(9.184 / 14.479) = -0.455 / mu_1 = 14.390
- freq : c = ln(8.833 / 14.446) = -0.492 / mu_1 = 13.872
- Bayes: c = -0.486 / mu_1 = 13.957
Linear-trend calibration and projection (o_0 = -6.5):
- model: a = 2.159 - 2.649 = -0.490 / b = 0.0999 - 0.0630 = 0.0369 / mu_1 = 18.316
- freq : a = 2.073 - 2.649 = -0.576 / b = 0.1166 - 0.0594 = 0.0572 / mu_1 = 19.579
- Bayes: a = -0.537 / b = 0.0569 / mu_1 = 20.317

Remark C.1. The corrections implied by the calibration parameters 𝑐 and (𝑎, 𝑏) are small compared
to the width 𝜎 =

√
𝜙 of the respective prior distributions. A low credibility is thus given to priors and

the MAP estimates are found near the ’frequentist’ estimates.

C.2. Example 2: Sensitivity analysis

This example analyzes the sensitivity of the calibration parameters 𝑐𝑎
𝑀𝐴𝑃

and 𝑐𝑝
𝑀𝐴𝑃

on the distribution
family used to emulate the claims-count generative process (Table C.2) and on the selection of the
distribution family fitted to the simulated pmfs. The random annual frequencies Λ𝑜 ∼ Ga are used as
parameters in the claims-count processes 𝑁𝑜 ∼ 𝑓𝑁 (Λ𝑜, 𝑓𝑃).

1. Annual loss count processes:
(a) Reference frequencies 𝜆𝑟𝑒 𝑓−𝑇 and 𝜆

𝑟𝑒 𝑓

−1 are specified for the beginning and the end of the
observation period, and a geometric series is used to specify the reference frequencies 𝜆𝑟𝑒 𝑓𝑜

for the intermediate years 𝑜 ∈ {−𝑇 + 1, . . . ,−2}.
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Table C.1: Parameters and statistics for the generative process and the generative models shown in Figure 6.1

Calibration Annual Average Projected

Model 𝑎 or 𝑐 𝑏 𝑜0 𝜇−12 𝜇−1 𝑓𝑃 𝑁̂ 𝜇̂ 𝜇1

Generative process 5.0 15.0 1.25 9.2 18.3
Actual pmf 5.0 15.0 1.25 8.8 9.2 18.3

Prior model 10.0 20.0 1.00 14.5 22.7
Simulated pmf 10.5 19.9 1.08 14.4 20.8

Level calibration -0.49 6.2 12.3 1.00 8.9 14.0
Simulated pmf 6.3 12.9 0.99 9.0 14.1

Linear-trend cal. -0.54 0.057 -6.5 4.3 16.0 1.00 9.0 20.3
Simulated pmf 4.3 16.2 1.02 9.0 20.0

Random variables used 𝑁𝑜 ( 3 , 4 , 6 , 7 , 10 , 10 , 7 , 8 , 12 , 8 , 18 , 13 )
for the ’toy model’ 𝜇0

𝑜 (10.5, 10.5, 11.7, 11.9, 12.8, 14.2, 14.8, 15.2, 16.2, 16.9, 18.8, 19.9)

(b) Annual Ga(𝛼𝑜, 𝛽 distributions are used to draw the random annual frequencies Λ𝑜. The joint
parameter 𝛽 = E[Λ]/V[Λ] is specified, and the annual parameters 𝛼𝑜 = 𝜆

𝑟𝑒 𝑓
𝑜 · 𝛽 are derived

from E[Λ𝑜] = 𝜆𝑟𝑒 𝑓𝑜 = 𝛼𝑜/𝛽.
(c) The annual random frequencies Λ𝑜 and the selected Panjer factor 𝑓𝑃 define the generative

process and the generative model, respectively (i.e., NB in the case 𝑓𝑃 = 𝑓𝑃
NB , P in the

case 𝑓𝑃 = 𝑓𝑃
P , and B in the case 𝑓𝑃 = 𝑓𝑃

B).
2. Generative process and generative model: Different scale and trend assumptions (see Table C.2) are

specified via the respective reference frequencies 𝜆𝑟𝑒 𝑓𝑜 for the generative process and the generative
model. A single parameter 𝛽 = 5 is used in all models and the same case-dependent parameter 𝑓𝑃
is used in the generative process and in the generative model.

3. Scale calibration: The calibration of the three generative process cases (defined by 𝑓𝑃) is performed
with the help of NB (if applicable), P, B (if applicable), Ga, and logN distributions fitted to
the simulated pmfs (where 𝐾 = 50), respectively. The calibration is performed five times for each
case, and the resulting calibration parameters 𝑐𝑎

𝑀𝐴𝑃
and 𝑐𝑝

𝑀𝐴𝑃
are shown in Table C.3.

Table C.2: Parameters used for the model comparison

Model 𝑇 𝜆
𝑟𝑒 𝑓

−𝑇 𝜆
𝑟𝑒 𝑓

−1
�ln𝜆𝑟𝑒 𝑓𝑜 𝛽 𝐾 𝑓 NB

𝑃
𝑓 P
𝑃

𝑓 B
𝑃

Generative process 10 10.0 12.5 2.414 5.0 1 1.5 1.0 0.6

Generative model 10 5.0 10.0 1.956 5.0 50 1.5 1.0 0.6

C.3. Example 3: Multi-feature calibration

This example is used to demonstrate the calibration of multiple partly interdependent reduced variables
(see Table C.4) with the help of a simplified claims generator.
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1. Claims representation: Claims are represented by the nine reduced random variables 𝑁 𝑖𝑛𝑐
𝑜,𝑖

, 𝑁𝑐𝑙𝑜
𝑜,𝑖

,
𝐼𝑜,𝑖 , 𝑃𝑜,𝑖 , 𝜏𝑟𝑒𝑝𝑜,𝑖

, 𝜏𝐼
𝑜,𝑖

, 𝜏𝑃
𝑜,𝑖

, 𝑁 𝐼
𝑜,𝑖

, and 𝑁𝑃
𝑜,𝑖

. The count of closed claims 𝑁𝑐𝑙𝑜
𝑜,𝑖

and the cumulative paid
amounts 𝑃𝑜,𝑖 (𝑜 = 0) at the submission time are determined by the other variables. They are thus
evaluated and monitored but not independently calibrated.

2. Claims generator:
(a) Different scale and trend assumptions are imposed via the parameters. The imposed deviations

of the generative model from the generative process are supposed to be adjusted by the
calibration procedure.

(b) Specification: The mean values at 𝑜 = −𝑇 and 𝑜 = −1 are specified for the seven variables to
be calibrated and geometric series are used to specify the respective means for the intermediate
years 𝑜 ∈ {−𝑇 + 1, . . . ,−2}.

(c) Stochastic model: A parametric distribution family is assigned to each of the seven model
features. The distributions are initialized with the respective mean (default values are assigned
to all other parameters).

3. Prior model:
(a) The calibration of the seven model features ℓ is performed on an annual level.
(b) Independent normal priors N(0, 𝜙) are specified for all calibration parameters 𝑎ℓ 𝑎, 𝑏ℓ 𝑎, (and

𝑐ℓ
𝑎).

(c) The initial All prior values for the calibration parameters are set equal to 0 and the variances
are defined in Table C.4

4. Iterative calibration:
0𝑡ℎ step: Initialize the models by setting the current parameters equal to the a priori model

parameters (Table C.4), derive a simulated set of ’observed’ claims 𝑌ℓ,𝑜, 𝑗 from the
generative process and aggregate to 𝑌ℓ,𝑜 on an annual level, specify the number of
iterations 𝑛 and initialize the iteration count by setting 𝑖 = 0, and draw 𝐾 sets with
simulated claims 𝑋ℓ,𝑜, 𝑗,𝑘 (0) from the generative model and aggregate to 𝑋ℓ,𝑜,𝑘 (0) on
an annual level.

1𝑠𝑡 step: Fit parametric probability distributions 𝑓 𝑎
ℓ,𝑜

(𝑖) to the simulated distributions

𝑔

({
𝑋ℓ,𝑜,𝑘

(𝑖)}
𝑘∈{1,...,𝐾

)
.

2𝑛𝑑 step: Use Bayesian inference to evaluate the calibration parameters 𝑎ℓ
𝑎
,𝑀𝐴𝑃

(𝑖+1) ,
𝑏ℓ
𝑎
,𝑀𝐴𝑃

(𝑖+1) , and 𝑐ℓ 𝑎,𝑀𝐴𝑃
(𝑖+1) for each model feature ℓ to be calibrated.

3𝑟𝑑 step: Update the model parameters 𝜗 (𝑖+1)
ℓ,𝑜

by applying the respective calibration parameters
𝑐ℓ,𝑜

(𝑖+1) , where 𝑐ℓ,𝑜 (𝑖+1) = 𝑐ℓ
𝑎
,𝑀𝐴𝑃

(𝑖+1) in the case of a scale-only calibration, and
𝑐ℓ,𝑜

(𝑖+1) = 𝑎ℓ 𝑎,𝑀𝐴𝑃
(𝑖+1) +𝑏ℓ 𝑎,𝑀𝐴𝑃

(𝑖+1) · (𝑜−𝑜0) in the case of a linear-trend calibration.
4𝑡ℎ step: Draw𝐾 sets with simulated claims 𝑋ℓ,𝑜, 𝑗,𝑘 (𝑖+1) from the generative model and aggregate

to 𝑋ℓ,𝑜,𝑘 (𝑖+1) on an annual level.
5𝑡ℎ step: Increase the iteration count 𝑖 → 𝑖 + 1 and shrink the prior parameters 𝜙.
6𝑡ℎ step: If 𝑖 < 𝑛 repeat steps 1–5 else proceed.

5. Analyze: Compare the simulated distributions 𝑔
({
𝑋ℓ,𝑜,𝑘

(𝑖)}
𝑘∈{1,...,𝐾 }

)
and the fitted distributions

𝑓 𝑎
ℓ,𝑜

(𝑖) with the respective distributions specified for the generative process.
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Table D.1: GIRF library with python code and dependencies.

Python module ID 1 2 3 4 5 6 7 8 9

GIRF_main.py 1 o + + +

GIRF_reduced.py 2 o + +
GIRF_calibrate.py 3 o + + + + + +
GIRF_plot.py 4 o + + + +
GIRF_claim.py 5 o +
GIRF_Bayes.py 6 o +

GIRF_models.py 7 o
GIRF_stats.py 8 o
Transscript.py 9 o

External libraries: sys, numpy, scipy, datetime, matplotlib

D. Python library GIRF

The GIRF (Generic Integrated Rating Framework) python library comprises the modules listed in
Table D.1 (dependencies are indicated by a ’+’ symbol). The library is used to generate most figures
and tables in the printed document and in the online supplementary material.

D.1. Access to GIRF

The GIRF library can be downloaded from GitHub: https://github.com/Steivan/GIRF

D.2. Modules

The most relevant modules for a user are the main module GIRF_main.py used to run the various
top-level routines and the module GIRF_models.py containing the parameters for the various example
models.

𝐺𝐼𝑅𝐹_𝑚𝑎𝑖𝑛.𝑝𝑦
Following code extract from the GIRF_main.py module provides an overview of the routines used to
generate the figures and tables:
if __name__ == "__main__":

# Generic Integrated Rating Framework (GIRF):
# *******************************************
# - Input : the parameters for the various models are defined in:
# - GIRF_models.py
# - Output: the output file names (figures and tables) are defined in:
# - GIRF_models.py / GIRF_fn_dict
#

selection = [1, 2, 3, 4, 5, 6, 7]

# Plots ’claims representation and reduced variables’
# and ’patterns and lags’ (Figures 4.1 and 4.2)
if 1 in selection: patterns_and_red_var()
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# Create default parameters: copy / paste from console to
# module GIRF_models.py
if 2 in selection: get_new_default_param(K_sim=100)

# Four plots ’calibration of the annual observations’ and print
# parameters (Figure 6.1 (a)-(d), Table 6.1 = C.1, and stats file for App. C.1)
if 3 in selection: calibrate_claims_count()

# Plots ’conditional’ and ’unconditional calibration statistics
# (Figures 6.2 and 6.3)
if 4 in selection: claims_count_stats(N_run=100, K_sim=200, use_default=True)

# Plot ’fitting comparison’ (Figure 6.4)
if 5 in selection: calibration_comparison()

# Print model and calibration parameters (Tables 6.2 = C.2 and 6.3 = C.3)
if 6 in selection: model_comparison(N_run=5, K_sim=50, f_P_list=[1.5, 1.0, 0.6])

# Run full calibration model (Figures 6.5 and 6.6 and Table C.4)
if 7 in selection: full_calibration(Nr_iter=5, K_sim=200)

𝐺𝐼𝑅𝐹_𝑟𝑒𝑑𝑢𝑐𝑒𝑑.𝑝𝑦
This module is used to generate the chart depicting the reduced variables and the chart depicting the
claims development patterns and the temporal evolution of the lags.

𝐺𝐼𝑅𝐹_𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑒.𝑝𝑦
This module contains the routines used to calibrate the example models.

𝐺𝐼𝑅𝐹_𝑝𝑙𝑜𝑡.𝑝𝑦
This module contains the routines used to generate the figures with the results of the simulations and
the figures containing analytical results. The module is also used to generate the tables containing the
respective parameters.

𝐺𝐼𝑅𝐹_𝑐𝑙𝑎𝑖𝑚.𝑝𝑦
This module contains the classes used to represent the reduced variables on a claim, an annual, and a
period level. It also contains a routine used to generate reduced claims.

𝐺𝐼𝑅𝐹_𝐵𝑎𝑦𝑒𝑠.𝑝𝑦
This module contains the routines used to evaluate the calibration parameters with the help of various
parametric distributions fitted to the simulated distributions.

𝐺𝐼𝑅𝐹_𝑚𝑜𝑑𝑒𝑙𝑠.𝑝𝑦
This module contains the global parameters and the specific parameters used in the sample models. The
dictionary Red_Fields is used to assign a parametric distribution family to each reduced variable. The
dictionary GIRF_fn_dict is used to specify the names and the formats of the output files (Figures and
LATEX tables).

𝐺𝐼𝑅𝐹_𝑠𝑡𝑎𝑡𝑠.𝑝𝑦
This module contains some classes which are used as wrappers for the scipy library.

𝑇𝑟𝑎𝑛𝑠𝑠𝑐𝑟𝑖𝑝𝑡.𝑝𝑦

Module used to redirect the output from the console to a text file (and the console).


