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The signature being already defined in the paper, the purpose of this supplementary material
is to provide more insights on the signature thanks to examples and a brief overview of its main
properties.

Appendix A. Some examples

First, we present several examples that allow to better understand the signature and the log-
signature.

Example A.1. If X : [0, T ] → E is a linear path , i.e. Xt = X0 + (XT −X0)
t
T , then for any

n ≥ 0:
Xn =

1

n!
(XT −X0)

⊗n. (A.1)

Example A.2. If E is a vector space of dimension 2, the second order term of the signature is
given by:

X2 =

∫ T

0

∫ t

0
dXs ⊗ dXt =

(∫ T
0

∫ t
0 dX

(1)
s dX

(1)
t

∫ T
0

∫ t
0 dX

(1)
s dX

(2)
t∫ T

0

∫ t
0 dX

(2)
s dX

(1)
t

∫ T
0

∫ t
0 dX

(2)
s dX

(2)
t

)
. (A.2)

Note that the difference of the anti-diagonal coefficients of X2 corresponds, up to a factor 1/2,
to the Lévy area of the curve t 7→ (X1

t , X
2
t ) which is defined as:

ALevy =
1

2

(∫ T

0
(X1

t −X1
0 )dX

2
t −

∫ T

0
(X2

t −X2
0 )dX

1
t

)
. (A.3)

It is the signed area between the curve and the chord connecting the two endpoints (see Figure
1).

In Section 3.1.2., we mentioned that the lead-lag transformation allows to capture the
quadratic variation of a path in the signature. More precisely, the Levy area of the lead-lag
transformation is the quadratic variation up to a factor 1/2 as stated by the following proposi-
tion which is a direct consequence of the definition of the lead-lag transformation.
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Figure 1: Illustration of the Lévy area. The blue dashed area corresponds to the integral
∫ T

0
(X1

t −X1
0 )dX

2
t

while the red dashed area corresponds to the integral
∫ T

0
(X2

t − X2
0 )dX

1
t . Taking the difference between

these two areas yields the Levy area (represented in green transparent) up to a factor 2 because of a
double counting. The ’+’ (resp. ’−’) sign indicates that the surrounding area is counted positively (resp.
negatively).

Proposition A.1. Let t0 = 0 < t1 < · · · < tN = T be a partition of [0, T ] and (Xti)i=0,...,N

be the vector of observations of a real-valued process X on this partition. The Levy area of the
lead-lag transformation of (Xti)i=0,...,N is equal to the quadratic variation of X on the partition
(ti)i=0,...,N up to a factor 1/2, i.e.

1

2

(∫ T

0
(X lead

t −X lead
0 )dX lag

t −
∫ T

0
(X lag

t −X lag
0 )dX lead

t

)
=

1

2

N−1∑
i=0

(Xti+1 −Xti)
2. (A.4)

Remark A.1. We also mentioned in Section 3.1.2. that the cumulative lead-lag transformation
X̃ of a sequence of observations (Xti)i=0,...,N on [0, T ] can be related to the statistical moments
of X. Indeed, the term of order 1 of the signature of X̃ is given by:

X̃1 =

(
X̃T − X̃0

X̃T − X̃0

)
=

(∑N
i=0Xti∑N
i=0Xti

)
(A.5)

which is the empirical mean of X up to a factor 1/(N + 1). From Proposition A.1, we also
deduce that the Levy area of the cumulative lead-lag transformation is given by 1

2

∑N
i=0(X̃ti+1 −

X̃ti)
2 = 1

2

∑N
i=0X

2
ti which is the empirical second order (non-central) moment of X up to a

factor 1/(N +1). More generally, the n-th (non-central) moment of X can be obtained from the
term of order n of the signature of the cumulative lead-lag transformation.

We have seen in our numerical experiments in Section 3.2.2. that the lead-lag transformation
is not always sufficient to distinguish models that are too close from a statistical perspective.
In the following example, we show that, as the time step converges to 0, the first two terms of
the signature of the lead-lag transformation of a driftless Black-Scholes dynamics with constant
volatility have the same distributions as the first two terms of the signature of the lead-lag trans-
formation of a driftless Black-Scholes dynamics with a time-dependent deterministic volatility
if the total variances at time T of both models are the same.
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Example A.3. Consider X and Y the solutions of the following SDE’s

dXt = σXtdWt and dYt = γ(t)YtdWt (A.6)

with X0 = Y0 = 1 and where (Wt)t≥0 is a Brownian motion and γ is a deterministic function
satisfying

∫ T
0 γ(t)2dt = σ2T . The explicit formulas of X and Y write:

Xt = exp

(
σWt −

1

2
σ2t

)
, Yt = exp

(∫ t

0
γ(s)dWs −

1

2

∫ t

0
γ(s)2ds

)
. (A.7)

Let us denote by X̂N (resp. ŶN ) the lead-lag transformation of X (resp. Y ) on a partition
(ti)i=0,...,N of [0, T ] such that ti = iT/N . The constraint

∫ T
0 γ(t)2dt = σ2T implies that XT

d
= YT

so the first order terms of the signatures of X̂N and ŶN (which reduce to the increments of X
and Y over [0, T ]) have the same distribution for all N ≥ 1. The second order term of the
signature of ŶN is given by (see the proof of the above proposition):

Ŷ2
N =

(
1
2(YT − Y0)

2
∑N−1

i=0

[
(Yti+1 − Yti)

2 + (Yti − Y0)(Yti+1 − Yti)
]∑N−1

i=0 (Yti − Y0)(Yti+1 − Yti)
1
2(YT − Y0)

2

)
(A.8)

Now, given that Y is a square-integrable continuous martingale, the coefficient at position (1, 2)

of ŶN converges in probability as N → +∞ to ⟨Y ⟩T +
∫ T
0 (Yt− Y0)dYt =

1
2

[
(YT − Y0)

2 + ⟨Y ⟩T
]

where ⟨Y ⟩ denotes the quadratic variation process of Y and the equality is obtained using the
integration by parts formula. Similarly, the coefficient at position (2, 1) of ŶN converges in
probability as N → +∞ to

∫ T
0 (Yt − Y0)dYt =

1
2

[
(YT − Y0)

2 − ⟨Y ⟩T
]
. The same convergences

hold for X̂N . Now remark that the processes
(∫ t

0 γ(s)dWs

)
t≥0

and
(
W∫ t

0 γ(s)2ds

)
t≥0

are both

Gaussian processes with the same mean and the same covariance function, we deduce that they
have the same distribution. Analogously, (σWt)t≥0 has the same distribution as (Wσ2t). We
deduce that:

(Xt)t≥0
d
=

(
exp

(
Wσ2t −

1

2
σ2t

))
t≥0

and (Yt)t≥0
d
=

(
exp

(
W∫ t

0 γ(s)2ds −
1

2

∫ t

0
γ(s)2ds

))
t≥0

(A.9)
Setting φ(t) = 1

σ2

∫ t
0 γ(s)

2ds, we deduce that (Yt)0≤t≤T
d
= (Xφ(t))0≤t≤T . As a consequence,

(Yt, ⟨Y ⟩t)0≤t≤T has the same distribution as (Xφ(t), ⟨X⟩φ(t) − ⟨X⟩φ(0))0≤t≤T . Since φ(0) = 0

and φ(T ) = T , we conclude that the limit of ŶN has the same distribution as the limit of X̂N .

The log-signature
We now introduce more formally the log-signature. We recall that the space of formal series

of tensors is defined as:
T (E) =

{
(tn)n≥0 | ∀n ≥ 0, tn ∈ E⊗n

}
(A.10)

with the convention E⊗0 = R. This space can be equipped with the following operations: for t,
u ∈ T (E), λ ∈ R,

t+ u = (tn + un)n≥0

λt = (λtn)n≥0

t⊗ u =
(
vn =

∑n
k=0 t

k ⊗ un−k
)
n≥0

.
(A.11)

Since by convention the term of order 0 of the signature is set to 1, the signature takes its values
in the following affine subspace of T (E):

T1(E) =
{
t ∈ T (E) | t0 = 1

}
. (A.12)
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A closely related subspace of T (E) is the following:

T0(E) =
{
t ∈ T (E) | t0 = 0

}
. (A.13)

In fact, there is a bijection between T1(E) and T0(E) (Lemma 2.21 in Lyons et al., 2007):

Proposition A.2. Let us define respectively the exponential and logarithm mappings as:

exp : T0(E) → T1(E)

t 7→ exp(t) :=
∑
n≥0

t⊗n

n!
and

log : T1(E) → T0(E)

t 7→ log(t) :=
∑
n≥1

(−1)n−1

n
(t− 1)⊗n

(A.14)
with the convention t⊗0 = 1 and where 1 = (1, 0, . . . , 0, . . . ) ∈ T1(E). The exponential mapping
is bijective from T0(E) to T1(E) and its inverse is the logarithm mapping.

Example A.1 (continued). Using the exponential and the logarithm mappings, we can rewrite
the signature in Example A.1 in the following way:

S(X) = exp(XT −X0) (A.15)

where XT−X0 should be interpreted as the element (0, XT−X0, 0, . . . , 0, . . . ) of T0(E). Moreover,

log(S(X)) = XT −X0. (A.16)

Using the logarithm, it is therefore possible to define the log-signature of a path X as
log(S(X)). Although there is a one-to-one correspondence between the signature and the log-
signature, the log-signature is a more parsimonious representation of the path than the signature
in the sense that it removes the redundancies. This can be seen in Example A.1: the only non-
zero term of the log-signature of a linear path is the term of order 1 which contains the increments
of the path. In comparison to the signature, all the powers of the increments have disappeared.
However, no information is lost. More generally, it can be shown (see for example Liao et al.,
2019) that the log-signature has more zeros than the signature. As such, it represents a useful
object for applications as it allows to avoid the exponential increase of the size of the truncated
signature with the order. Indeed, if E is a vector space of dimension d, the term of order n of
the signature has dn elements.

Example A.4. Let us consider X ∈ C1([0, T ],R2). The second order term of the log-signature
writes:

lX2 = X2 − 1

2
X1 ⊗X1 (A.17)

where X2 comes from the first term (n = 1) of the log series in Equation (A.14) and X1 ⊗X1

comes from the second term (n = 2). We have:

X2 =

(
(X1

T−X1
0 )

2

2

∫ T
0 (X1

t −X1
0 )dX

2
t∫ T

0 (X2
t −X2

0 )dX
1
t

(X2
T−X2

0 )
2

2

)
(A.18)

and

X1 ⊗X1 =

(
(X1

T −X1
0 )

2 (X1
T −X1

0 )(X
2
T −X2

0 )
(X1

T −X1
0 )(X

2
T −X2

0 ) (X2
T −X2

0 )
2

)
. (A.19)

Using the integration by part formula, we obtain:

lX2 =
1

2

(∫ T

0
(X1

t −X1
0 )dX

2
t −

∫ T

0
(X2

t −X2
0 )dX

1
t

)
︸ ︷︷ ︸

Lévy area of X

(
0 1
−1 0

)
(A.20)

Hence, the second order term of the log-signature reduces to the Lévy area.
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Remark A.2. Note that only the N first terms of the logarithm series (A.14) contribute to the
N -th term of the log-signature. Indeed, for n > N , the contributions to E⊗N of (t−1)⊗n always
involve some product by (t− 1)0 = 0.

Appendix B. Properties

We have seen in the first subsection that the signature allows to capture some information about
the path. A natural question at this stage is how much information about X does the signature
of X contain. This subsection aims at answering this question.

Proposition B.1 (Invariance under time reparametrization). Let X ∈ C1([0, T ], E) and consider
φ : [0, T ]→ [0, T ] a non-decreasing surjection. If we set X̃t = Xφ(t), then:

S(X̃) = S(X). (B.1)

This first property (see Proposition 7.10 in Friz and Victoir, 2010 for a proof) means that
the speed at which the path is traversed is not captured by the signature. The signature is also
invariant by translation. Indeed, if we define X̄t = x + Xt, then dX̄t = dXt and by definition
of the signature we have S(X̄) = S(X). The next property we will outline is Chen’s identity.
Before introducing it, we need the following definition.

Definition B.1 (Concatenation). Let X ∈ C1([0, t], E) and Y ∈ C1([t, T ], E). The concatenation
of X and Y is the path in C1([0, T ], E) defined as:

(X ∗ Y )s =

{
Xs if s ∈ [0, t]
Xt + Ys − Yt if s ∈ [t, T ].

(B.2)

Theorem B.1 (Chen’s identity). Let X ∈ C1([0, t], E) and Y ∈ C1([t, T ], E). Then,

S[0,T ](X ∗ Y ) = S[0,t](X)⊗ S[t,T ](Y ). (B.3)

A proof can be found in Theorem 2.9 of Lyons et al. (2007). A useful application of Chen’s
identity is the computation of the signature of a piecewise linear path. Let (ti)0≤i≤n be a
subdivision of [0, T ] and X : [0, T ]→ E be a path such that for t ∈ [ti, ti+1] with 0 ≤ i ≤ n− 1,

Xt = Xti +
Xti+1 −Xti

ti+1 − ti
(t− ti). (B.4)

Then by Chen’s identity and by using that S[ti,ti+1](X) = exp(Xti+1 −Xti) (since X is linear on
each [ti, ti+1]),

S[0,T ](X) =

n−1⊗
i=0

S[ti,ti+1](X) =

n−1⊗
i=0

exp(Xti+1 −Xti). (B.5)

In general, the right hand side cannot be simplified to exp(XT −X0) because the tensor product
⊗ is not commutative. Another consequence of Chen’s identity is the following proposition
(Proposition 2.14 in Lyons et al., 2007).

Proposition B.2 (Time-reversal). Let X ∈ C1([0, T ], E). Define
←−
X as

←−
X t = X2T−t for t ∈

[T, 2T ]. Then,
S[0,2T ](X ∗

←−
X ) = S[0,T ](X)⊗ S[T,2T ](

←−
X ) = 1 (B.6)

where we recall that 1 = (1, 0, . . . , 0, . . . ) ∈ T1(E).
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Figure 2: Example of a tree like path.

Because constant paths also have 1 as signature, the above proposition implies that X ∗
←−
X

has the same signature as constant paths.

Due to the invariance by reparametrisation and by translation and the time-reversal property,
it is clear that if two paths have the same signature, then they are not necessarily equal. In
other words, the signature mapping is not injective. Fortunately, the presented invariances and
the time-reversal property are essentially the only cases when paths can differ but have the same
signature. To make this precise, we need the notion of tree-like paths.

Definition B.2 (Tree-like path). A path X : [0, T ]→ E is tree-like if there exists a continuous
function h : [0, T ]→ [0,+∞[ such that h(0) = h(T ) = 0 and for all s, t ∈ [0, T ] with s ≤ t:

∥Xt −Xs∥E ≤ h(s) + h(t)− 2 inf
u∈[s,t]

h(u). (B.7)

This function is called a height function for the path X.

Remark B.1. Note that a tree-like path necessarily satisfies X0 = XT . Indeed, by Definition
B.2:

∥XT −X0∥E ≤ h(0) + h(T )− 2 inf
u∈[0,T ]

h(u) = 0 (B.8)

because h(0) = h(T ) = 0 and h is non-negative. Therefore, one way to turn a tree-like path into
a path that is not tree-like is to consider the path t 7→ (t,Xt) obtained as the time transformation
of X.

As suggested by their name, tree-like paths are paths whose graph looks like a tree (see Figure
2), i.e. an acyclic and connected graph in graph theory and the height function h corresponds to
the depth of each node of the tree in a depth-first search. Another equivalent way to see tree-like
paths is to see them as paths that can be reduced to a constant path by removing pieces of the
form W ∗

←−
W . For example, if X and Y are non-constant paths, X ∗ Y ∗

←−
Y ∗
←−
X is an example of

tree-like path. This notion of tree-like paths is crucial to understand the information that is not
captured by the signature as Hambly and Lyons (2010) showed that the signature determines
the path up to tree-like equivalence, which we will now define.

Definition B.3 (Tree-like equivalence). For X and Y two paths, we say that X and Y are
tree-like equivalent if X ∗

←−
Y is a tree-like path. This relation is denoted by X ∼t Y .
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We can now state Hambly and Lyons’s theorem.

Theorem B.2. Let X ∈ C1([0, T ], E). Then S(X) = 1 if and only if X is a tree-like path.
Moreover, if Y ∈ C1([0, T ], E) is another bounded variation path, then S(X) = S(Y ) if and only
if X ∼t Y .

This theorem can be understood as follows: two paths will have the same signature if and
only if one can be obtained from the second by using translations, by changing the traversal
speeds and by removing parts of the form W ∗

←−
W . This uniqueness result has then been extended

to a more general class of paths (namely weakly geometric rough paths) by Boedihardjo et al.
(2016).

Remark B.2. The conclusion of Theorem B.2 still holds if the signature is replaced by the
log-signature since the log mapping is a bijection. Note however that the first statement of the
theorem should be modified as follows: log(S(X)) = 0 if and only if X is a tree-like path where
0 = (0, . . . , 0, . . . ) ∈ T0(E).

We have seen that in dimension 1, the signature only captures the path increment between
0 and T (see Example 2.1. in Section 2.2.) so that the signature will only allow to distinguish
paths X and Y such that XT − X0 ̸= YT − Y0. This result is actually a consequence of the
following proposition and of Theorem B.2.

Proposition B.3. If E is a one-dimensional real vector space and X, Y are E-valued paths
such that XT −X0 = YT − Y0, then X and Y are tree-like equivalent.

Proof. Since any one-dimensional real vector space is isometrically isomorph to R, we can assume
that E = R. Let X and Y be two paths from [0, T ] to R such that XT −X0 = YT −Y0. Let us set
Z = X ∗

←−
Y and h(t) = |Zt − Z0| for t ∈ [0, 2T ]. Using the definition of concatenation operator

and the fact that XT −X0 = YT − Y0, we have Z0 = X0 and Z2T = XT + Y0− YT = X0 so that
h(0) = h(2T ) = 0. The non-negativity of h results from the non-negativity of the absolute value.
Moreover, the continuity of X and Y imply the continuity of Z by definition of the concatenation
operator, so h is continuous as well. The only remaining property to show is inequality (B.7).
Let s, t ∈ [0, 2T ] with s ≤ t. Let us assume that Zs ≤ Zt (the proof in the case Zt ≤ Zs is
similar) so that |Zt − Zs| = Zt − Zs = Zt − Z0 − (Zs − Z0). We distinguish three cases:

• If Z0 ≤ Zs ≤ Zt, then h(t) = Zt − Z0 and h(s) = Zs − Z0. Thus,

|Zt − Zs| = h(t)− h(s) ≤ h(t)− inf
u∈[s,t]

h(u) ≤ h(t) + h(s)− 2 inf
u∈[s,t]

h(u). (B.9)

• If Zs ≤ Z0 ≤ Zt, then h(t) = Zt − Z0 and h(s) = Z0 − Zs. Thus,

|Zt − Zs| = h(t) + h(s) = h(t) + h(s)− 2 inf
u∈[s,t]

h(u) (B.10)

because by the intermediate value theorem, there exists v ∈ [s, t] such that Zv = Z0 which
implies infu∈[s,t] h(u) = 0.

• If Zs ≤ Zt ≤ Z0, then h(t) = Z0 − Zt and h(s) = Z0 − Zs. Thus,

|Zt − Zs| = h(s)− h(t) ≤ h(s)− inf
u∈[s,t]

h(u) ≤ h(t) + h(s)− 2 inf
u∈[s,t]

h(u). (B.11)

Hence, h is a height function of Z and Z is tree-like.
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Appendix C. Signature and stochastic processes

In the last two subsections, the signature has been presented in a deterministic setting. However,
it is clear that the stated results in the previous subsection remain true for stochastic processes
by defining the signature as a random variable. In view of the uniqueness theorem from Hambly
and Lyons, a natural question at this stage is whether the signature allows to characterize the
law of stochastic processes. A first positive answer has been provided by Chevyrev and Lyons
(2016). They succeeded to construct a characteristic function for the signature of stochastic
processes and they proved that it characterizes the law of stochastic processes in the same way
as the traditional characteristic function does for random variables. However, this construction
is quite abstract and as such is not suitable for applications so far. They also gave some techni-
cal conditions under which the expected signature (defined as E[S(X)] where X is a stochastic
process) characterizes the law.

These results have then been extended by Chevyrev and Oberhauser (2022). They showed
that by considering a normalization of the signature, the expected normalized signature charac-
terizes the law of stochastic processes under mild regularity assumptions. This result is stronger
than the one from Chevyrev and Lyons as it requires less assumptions. We now provide a brief
description of their main result.

Let us denote by T ∗
1 (E) the subset of T ∗(E) (see Equation (2.10) in Section 2.2.) defined

by:
T ∗
1 (E) :=

{
t ∈ T ∗(E) | t0 = 1

}
. (C.1)

We define a tensor normalization as follows:

Definition C.1 (Tensor normalization). A tensor normalization is a continuous injective map
of the form

Λ : T ∗
1 (E) → {t ∈ T ∗

1 (E) | ∥t∥ ≤ K}
t 7→ (t0, λ(t)t1, λ(t)2t2, . . . , λ(t)ntn, . . . ).

(C.2)

where K > 0 is a constant and λ : T ∗
1 (E)→ (0,+∞) is a positive function.

The existence of such object is discussed in Proposition 14 of Chevyrev and Oberhauser
(2022). We can now state a simplified version of Chevyrev and Oberhauser’s main theorem:

Theorem C.1. Let X = (Xt)t∈[0,T ] and Y = (Yt)t∈[0,T ] be two stochastic processes defined
on a probability space (Ω,A,P) such that X and Y are in P1([0, T ], E) almost surely where
P1([0, T ], E) = C1([0, T ], E)/ ∼t is the space of bounded variation paths quotiented by the tree-
like equivalence relation. Let Λ be a tensor normalization and define the normalized signature
as Φ = Λ ◦ S. Then,

E[Φ(X)] = E[Φ(Y )] iff X
d
= Y. (C.3)

Remark C.1. This theorem can be extended to a more general space of processes, namely
the space of geometric p-rough paths quotiented by the tree-like equivalence. This extension
corresponds to Theorem 26 in Chevyrev and Oberhauser (2022).

Remark C.2. The proof of this theorem does not work anymore if we replace the signature by
the log-signature. Indeed, one of the key ingredients of the proof is the shuffle product identity
(stated and proved in Theorem 2.15 of Lyons et al., 2007) which holds for the signature but not
for the log-signature.
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