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A. GLMMNet Implementation

Below we outline a few practical considerations that arise from the implementation of GLMMNet.

A.1. Fixed Prior

The random effects layer of GLMMNet (Section 2.3.2) requires the specification of a prior distribution.
We mentioned that we would use a Gaussian prior as per common practice with GLMMs, but we did
not specify the exact parameters for it. With GLMMNet, it is possible to have a trainable prior whose
parameters can be found by gradient descent with respect to the loss function in (2.12); this approach of
estimating the prior from the data is known as empirical Bayes (Casella, 1985). We experimented with both
fixed and trainable priors in our implementation. We found that having a trainable prior leads to worse
performance in general. Blundell et al. (2015) also reached the same conclusion from their experiments with
Bayesian neural networks and they speculated that the algorithm would be more tempted to update the
prior parameters than the posterior when the prior were trainable. We choose to work with fixed priors.

As to what values to use for the fixed prior, we reference the Stan documentation by Gelman (2020),
which recommends the use of weakly informative priors, i.e. priors that will give way to the likelihood in
the presence of sufficient data but will dominate in the absence of data. The exact prior parameters to use
will depend on the data and the task at hand.

A.2. Reparametrisation of variational parameters

We use the softplus bijector function, defined as σ(λ) = log(1 + exp(λ)), λ ∈ R, to reparametrise the
scale parameters (σj , j = 1, · · · , q) in the diagonal Gaussian distribution (i.e. the surrogate posterior). This
ensures that the surrogate scale parameters always stay within their support (i.e. in the positive region).

Furthermore, we found that it is important to shrink the value of the σj ’s at the start of the learning
process to help guide the algorithm in the right direction. In our implementation, this is achieved by adding
a constant multiplier (e.g. 0.01) to the parametrisation of σj ’s. In the absence of such a constraint, the
algorithm tends to return unreasonably large σj values, which significantly deteriorates the performance of
GLMMNet. It appears that the unguided GLMMNet converges to strange local minima where the model
attributes all the variation to the noise.

We note that, in theory, adding a constant multiplier as we did does not modify the solution space and
thus should return the same results regardless. We were able to empirically verify that if we gave the model
enough training time, it was able to figure out the right range of values for the parameters at the end.
The tweak we made, however, helps the algorithm immediately converge to a better local minimum. One
possible explanation is that by reducing the size of the gradients on the scale parameters, it helps the model
focus on learning the more important location (mean parameters) of the posterior random effects.
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A.3. Initialisation of trainable parameters

The network weights and biases in GLMMNet are initialised by Tensorflow’s default Glorot uniform
initialiser (Glorot and Bengio, 2010). The dispersion parameter for the ED family, which is also learned
as part of GLMMNet, is initialised with a fixed estimate roughly calibrated to the data at hand. It does
not seem to have a major impact on GLMMNet’s performance, but we still consider it good practice to run
some small scale experiments with this choice of initial value.

B. Notes on Numerical Experiments

B.1. GLMM Encoding

GLMM encoding can be regarded as an easier and more flexible alternative to the machine learning mixed
models—e.g. GPBoost (Sigrist, 2021, 2022) or GLMMNet, which often present a convoluted estimation
procedure. While simple enough, Pargent et al. (2022) found that this encoding scheme performed very well
across a range of prediction tasks and a variety of datasets.

In the numerical experiments, we implemented a cross-validated version of GLMM encoding, as presented
in Algorithm 1. The encoded values z′ then take the place of the original categorical feature to enter any
subsequent ML model, e.g. a gradient boosting machine.

Algorithm 1: GLMM Encoding, adapted from Pargent et al. (2022)

Data: D = (yi, zi)
n
i=1

Result: z′ = ψ(z) ∈ Rn, a numeric representation of the categorical feature z
1 Randomly partition D into K subsets of equal size D = {D1,D2, · · · ,DK};
2 for k = 1 to K do
3 Fit a random intercept model η = β01+ Zu with u ∼ N (0, σ2

uI) on Dtrain
k = D\Dk;

4 for {yi, zi} ∈ Dk do
5 if category of the i-th observation j[i] is in Dtrain

k then
6 Predict z′i = ŷi = g−1(β0 + uj[i]);
7 else
8 Predict z′i = ŷi = g−1(β0);
9 end

10 end

11 end

B.2. Neural Networks

Training a network involves making many specific choices. Below we briefly describe the specifications
we use for the two network models in the main document, NN ee and GLMMNet. To allow a fair comparison,
where possible, we keep those choices consistent across both networks.

— Architecture for the hidden layers. We choose to use three hidden layers and [64, 32, 16] hidden units
(neurons) in each layer. This choice was made following the recommendation of Ferrario et al. (2020),
where the authors suggested that the first hidden layer should be large enough to allow new features to
be constructed from the raw input covariates and that successive layers should compress information.
Some quick experimentation confirms that this choice of the hidden units works relatively well.

— Activation functions. We use the ReLU function defined by f(x) = max(x, 0) for hidden layer activations
and the inverse of the link function for final layer activation (see Section 2.3.3).

— Optimiser. For both networks we use Tensorflow’s default Adam optimiser with learning rate 0.001
(Kingma and Ba, 2014), which is a state-of-the-art optimisation algorithm with demonstrated superior
performance for a range of predictive tasks. This has also been used in many actuarial applications,
e.g. Richman and Wüthrich (2021).
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— Early stopping. In fitting the networks, we further split the training data into an inner-training set and
a validation set. We decide the number of epochs to train the networks based on when the validation
performance (as captured by the validation loss) stops improving for a fixed number of epochs.

— Loss function. Section 2.4 discusses in detail the loss function we use to optimise GLMMNet. For NN ee,
we follow standard practice and use the squared error loss function to optimise the network. While it
is possible to design a likelihood-based loss function for NN ee, this involves further complications (such
as reparametrisation of the dispersion parameters) above the scope of this project.

— Embedding dimension (for NN ee only). The dimension d of the embedding space is a network hyperpa-
rameter that should be chosen through experimentation. Lakshmanan et al. (2020) suggest to use “the
fourth root of the total number of unique categorical elements” (p.48), which we used as a reference.

B.3. Learning Pipeline

As per common practice, the data are split into training and testing sets. The training set is used for
learning (i.e. fitting of the models) and the testing set is used for assessing and comparing the performance
of the optimised candidate models.

In this work, we only perform a minimal search for hyperparameters, as hyperparameter tuning is not the
main purpose of this study. We use the validation set approach. For models that involve hyperparameters,
we split the training set into an inner-training set and a validation set. Models are fitted on the inner-training
set, and hyperparameters are selected based on their performance on the validation set. This approach is
less systematic than cross validation, but from experience, it usually yields reasonably similar results at a
much more sustainable computational cost.

B.4. Simulation Environments

We set up the desired simulation environments in Section 3 by adjusting the following parameters:

— n categories: number of categories; fixed at 100.

— signal to noise: a three-dimensional vector that captures the relative ratio of signal strength (as
measured by µf , the mean of f(x)), random effects variance (σ2

u), and variability of the response
(σ2

ϵ ; noise, or equivalently the irreducible error, as this component captures the unexplained inherent
randomness in the response). The vector will be normalised to sum to 1, e.g. when signal to noise =
[3, 1, 1]⊤, the vector is first normalised to [0.6, 0.2, 0.2]⊤. Data points are generated as follows:

1. Generate a sample u ∈ Rq from uj
iid∼ N (0, σ2

u = 0.22).

2. Rescale f(X), which has been pre-calculated from a deterministic formula (e.g. the Friedman func-
tion in (3.2)), such that f(X) = µf = 0.6 where x denotes the sample mean across all observations
i = 1, · · · , n.

3. Set the conditional mean as µ = E(y|u) = g−1(f(X) + Z⊤u) and ϕ = σ2
ϵ = 0.22, where ϕ is the

dispersion parameter for the ED family, such that Var(y|u) = ϕV (µ) where V (·) is the variance
function for the family.

4. Generate samples y|u from the conditional mean µ and conditional variance Var(y|u).
— y dist: distributional assumption for the response, e.g. Gaussian, gamma, or any other member of the

ED family.

— inverse link: inverse of the link function, i.e. g−1(·).
— cat dist: to use balanced or skewed distribution for the allocation of categories. A “balanced” distri-

bution allocates approximately equal number of observations to each category; a “skewed” distribution
generates categories from a (scaled) beta distribution; see Figure B.1.

B.5. Model Evaluation Criteria

For all experiments presented in this paper, we randomly split the data into a training and a test set. The
training set is used to select hyperparameters (by further splitting into an inner-training and a validation
set) and fit the pool of candidate models. The different models are then evaluated and compared based on
their test performance. Specifically, to quantify the predictive performance, we consider the metrics listed
below:
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Figure B.1: Number of observations by category for balanced versus skewed distribution of categories

— Accuracy of point predictions. We report the root mean squared error (RMSE) and the mean absolute
error (MAE), which are respectively given by

RMSE =

√√√√ 1

n∗

n∗∑
i=1

(y∗i − ŷ∗i )
2
, MAE =

1

n∗

n∗∑
i=1

|y∗i − ŷ∗i | ,

where n∗ is the number of test observations, y∗ is the target output and ŷ∗ is the (point) prediction of
the mean response.

— Average accuracy of point predictions per category. In order to gain insights into the category-specific
accuracy of point predictions, we consider the RMSE of average prediction for each category:

RMSE avg =

√√√√1

q

q∑
j=1

(y∗j − ŷ
∗
j )

2, y∗j =
1

n∗j

n∗∑
i:j[i]=j

y∗i , ŷ
∗
j =

1

n∗j

n∗∑
i:j[i]=j

ŷ∗i ,

where q is the number of categories, n∗j is the number of test observations in the j-th category, j[i]

indicates the category to which the i-the observation belongs, y∗j and ŷ
∗
j respectively denote the average

of the response variable y and its prediction ŷ for all observations in the j-th category. This metric
serves to measure and compare how well a model is able to capture the between-category differences.
This can be interpreted as, for example, the average accuracy of loss predictions on each sub-portfolio,
which has practical significance.

— Accuracy of probabilistic predictions. The quantification of probabilistic accuracy is especially relevant
to actuarial applications (Embrechts and Wüthrich, 2022). In this work, we consider two proper scoring
rules, the continuous ranked probability score (“CRPS”) and the negative log-likelihood (“NLL”), both
of which are commonly used for assessing probabilistic forecasts (Gneiting and Raftery, 2007; Al-Mudafer
et al., 2022; Delong et al., 2021). The CRPS is defined as

CRPS =
1

n∗

n∗∑
i=1

CRPS(F̂i, yi), where CRPS(F̂i, yi) =

∫ ∞

−∞
(F̂i(z)− 1{z≥yi})

2dz, (B.1)

and where F̂i(·) represents the distribution function (df) of a probabilistic forecaster for the i-th response
value and yi represents its observed value. The CRPS is a quadratic measure of the difference between
the forecast predictive df and the empirical df of the observation. Hence, the smaller it is the better.
The integral in (B.1) has been evaluated analytically and implemented in R for many distributions; we
refer to Jordan et al. (2019) for details.
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Computation of the NLL is more straightforward:

NLL =
1

n∗

n∗∑
i=1

NLL(F̂i, yi), where NLL(F̂i, yi) = − log f̂i(yi). (B.2)

and where f̂i(·) is the density of the probabilistic forecaster.
For models that do not produce a distributional forecast, we construct an artificial predictive distribu-
tion by using the point forecast as the mean and estimating a dispersion parameter for the assumed
distribution (see Section 4.6 of Denuit et al., 2019).

B.6. Description of the SME Building Insurance Data

B.6.1. Variable List

Variable Description

anzsic4_desc ANZSIC occupation code description that describes the business’s economic activity
(at the Class level).

year_incurred Calendar year of the accident associated with the claim; value between 2010 and
2015.

peril Cause of the claim, e.g. impact by third party, malicious damage, or fire.
years_insured Tenure of the policy.
state_risk State of the insured’s business premises.
occupancy Type of occupancy of the insured’s business premises, e.g. property owner or tenant.
locality Location of the insured’s business premises, e.g. industrial or retail.
roof_type Primary roof material of the insured’s business premises; re-processed into a binary

indicator of whether the material is fire resistant or not.
wall_type Primary wall material of the insured’s business premises.
floor_type Primary floor material of the insured’s business premises.
log_si Log of total sum insured for building and contents.
firep_detect A binary indicator of whether the insured’s business premises have any fire detection

equipment, e.g. a fire alarm.
firep_stop A binary indicator of whether the insured’s business premises have any fire suppres-

sion equipment, e.g. a fire extinguisher.

Table B.1: (Engineered) input features used in modelling

C. Supplementary Results

C.1. Experiment Settings

Table C.1 gives a full list of the simulation environments considered in our experiment. Note that we
excluded experiments 3 and 4 from the main document for the sake of brevity. The results from experiments
3–4, along with additional results for the four experiments presented in the main document, are discussed
below in Sections C.2–C.3.

Exp ID Signal-to-noise Response distribution Inverse link Distribution of categories

1 (base) [4, 1, 1] (high) Gaussian Identity Balanced
2 [4, 1, 1] (high) Gamma Exponential Balanced
3 [4, 1, 1] (high) Gaussian Identity Skewed
4 [4,1,2] (medium) Gaussian Identity Balanced
5 [8,1,4] (low) Gaussian Identity Balanced
6 [8,1,4] (low) Gamma Exponential Skewed

Table C.1: Parameters used for the different simulation environments.
Bold face indicates changes from the base scenario (i.e. experiment 1).
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— Experiment 1 simulates the base scenario that adheres to the assumptions of a Gaussian GLMMNet.

— Experiment 2 simulates a gamma-distributed response, which is often used to model claim severity in
lines of business (LoB) such as auto insurance or general liability.

— Experiment 3 simulates a skewed distribution of categories, which is a common characteristic of high-
cardinality categorical features (e.g. car make, injury code).

— Experiments 4–5 incrementally increase the level of noise in the data and simulate LoBs that are difficult
to model by covariates, such as commercial building insurance, catastrophic events and cyber risks.

— Experiment 6 represents the most challenging scenario, incorporating the complexities of all the other
experiments.

C.2. Experiments 2–3: Increasing Complexity within a Low Noise Environment

Figure C.1 displays the out-of-sample performance metrics of the candidate models from experiments
2 and 3, which respectively consider a gamma-distributed response variable and a skewed distribution of
categories (see Table 3.2). Note that we chose not to show in Figure C.1 the MAE or RMSE plots for brevity
of presentation; the results from the two metrics are in perfect alignment with the CRPS results.
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Figure C.1: Boxplots of out-of-sample performance metrics of the different models in experiment 2 (top;
gamma-distributed response) and experiment 3 (bottom; skewed distribution of categories); GLMMNet
highlighted in blue. Each experiment is repeated 50 times, with 5,000 training observations and 2,500

testing observations each.
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C.3. Experiments 4–6: Dialling up the Noise

In the remaining three experiments, we test the stability of GLMMNet under increasing noise in the
environment, where “noise” refers to the unmodellable inherent uncertainty in the response due to its
stochastic nature. Experiments 5–6 share the same signal-to-noise ratio of [8, 1, 4] which is derived from the
estimated parameters in the real data case study in Section 4. Experiment 4 has a signal-to-noise ratio of
[4, 1, 2], such that the signal strength relative to the random noise is also at 2 : 1 but the random effects are
stronger (more variable) than in the case of experiments 5–6.

Figure C.2 plots the out-of-sample metrics for each of the three experiments. The results are discussed
in Section 3.3. In general, as the noise level increases, the predictive advantage of the GLMMNet starts to
fade away. Figure C.3 contrasts the random effects predictions under experiments 1 and 6: the GLMMNet is
able to recover the random effects very well under low noise (experiments 1–3, plots for 2 and 3 are omitted),
but the high level of noise in experiment 6 creates more difficulties for the model to accurately predict the
random effects.

C.4. Application to Real Insurance Data

Tables C.2 and C.3 present the in-sample and out-of-sample metrics for the lognormal and loggamma
models, respectively. The results for the top performing models are included in Table 4.2 of Section 4.

Training Test (out-of-sample)
MedAE CRPS NLL MedAE CRPS NLL

GLM ignore cat 4349 0.7934 9.643 4323 0.8010 9.635
GLM one hot 4174 0.7791 9.623 4108 0.7931 9.623
GLM GLMM enc 4332 0.7919 9.642 4304 0.7982 9.632
GBM ignore cat 3893 0.7676 9.607 3952 0.7707 9.589
GBM one hot 3846 0.7653 9.604 3903 0.7682 9.586
GBM GLMM enc 3838 0.7644 9.603 3870 0.7666 9.584
NN ee 3776 0.7571 9.595 3802 0.7624 9.578
GBM ee 3825 0.7646 9.604 3828 0.7665 9.584
GLMM 3835 0.7650 9.604 3864 0.7666 9.584
GPBoost 3834 0.764 9.603 3978 0.7691 9.587
GLMMNet 3587 0.7535 9.589 3736 0.7681 9.587
GLMMNet l2 3555 0.7617 9.600 3545 0.7626 9.579

Table C.2: Comparison of lognormal model performance (median absolute error, CRPS, negative
log-likelihood) on training and test sets. The best values for each out-of-sample metric are bolded.
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Figure C.2: Boxplots of out-of-sample performance metrics of the different models in experiment 4 (top;
medium noise Gaussian), experiment 5 (middle; high noise Gaussian) and experiment 6 (bottom; high

noise, skewed categorical distribution, Gamma response); GLMMNet highlighted in blue. Each experiment
is repeated 50 times, with 5,000 training observations and 2,500 testing observations each.
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(a) Experiment 1 (b) Experiment 6

Figure C.3: Random effects predictions by GLMMNet (posterior mode) against the ground truth under
(a) experiment 1, i.e. base scenario, (b) experiment 6, i.e. high complexity, high noise scenario

Training Test (out-of-sample)
MedAE CRPS NLL MedAE CRPS NLL

GLM ignore cat 2036 0.8612 9.787 2000 0.8733 9.792
GLM one hot 1942 0.8334 9.730 1946 0.8557 9.751
GLM GLMM enc 2043 0.8606 9.787 2011 0.8722 9.792
GBM ignore cat 1591 0.7641 9.606 1568 0.7668 9.583
GBM one hot 1578 0.7619 9.603 1545 0.7643 9.580
GBM GLMM enc 1594 0.7610 9.602 1536 0.7626 9.578
NN ee 1573 0.7517 9.591 1566 0.7600 9.575
GBM ee 1589 0.7607 9.602 1549 0.7629 9.579
GLMM 1598 0.7618 9.602 1570 0.7629 9.577
GPBoost 1618 0.7631 9.604 1615 0.7666 9.583
GLMMNet 1549 0.7548 9.593 1537 0.7706 9.588
GLMMNet l2 1583 0.7550 9.594 1551 0.7600 9.574

Table C.3: Comparison of loggamma model performance (median absolute error, CRPS, negative
log-likelihood) on training and test sets. The best values for each out-of-sample metric are bolded.

Figure C.4 supplements the discussion in Section 4.3. It shows that, as expected, occupations with a
larger number of observations generally have smaller posterior standard deviations for the random effects,
indicating higher confidence in the estimates.
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