Testing the Relationship Between Preferences for Infant-Directed Speech and Vocabulary Development: A Multi-Lab Study

Supplement 1: Sensitivity analysis
Following data collection, we conducted a sensitivity analysis to investigate the magnitude of effect that we would be able to detect accounting for the reliability of both CDI and infant looking time measures in this task using a different approach. Using the pwr package in R ( Champley, 2020), sensitivity analyses indicated that the current study had 80% power to detect an observed correlation of .15 in the NAE subsample (n = 333 observations) and an observed correlation of .29 in the UK subsample (n = 92 observations). However, due to the phenomenon of attenuation of correlation due to unreliability, the observed correlation will always be smaller than the true correlation unless measures are perfectly reliable (for a discussion of this issue in infancy research, see Byers-Heinlein et al., 2022). Thus, to determine the minimum magnitude of the true correlations we would be able to detect, we sought information about the reliability of both the CDI and the IDS preference task. Data from the Norwegian CDI suggests that at these ages, test-retest reliability of the CDI ranges from .86 to .90 (Simonsen et al., 2014), and a similar reliability range was found using a split-half approach with data from American English (Jahn-Samilo, 2000). Reliability of the infant IDS preference task was estimated using the complete MB1 dataset to maximize the precision of this estimate. Reliability across the 8 trial pairs was examined using the intra-class correlation (ICC) based on a mean-rating (k = 8), consistency, 2-way random-effects model (ICC3k) using the psych package in R (Revelle, 2021). The estimated consistency was .12, 95% CI = [.-.001, .239]. Overall, the reliability of the IDS preference task was low, and the 95% confidence interval contained zero. We combined this reliability information with the information from the power calculation using the spearman-brown prophecy formula, assuming using the more conservative estimate of CDI reliability (.86) and the point estimate for the IDS preference task reliability (.12). This indicated that we had 80% power to detect a true correlation of .46 or greater in the NAE sample and .89 in the UK sample. Thus, for the NAE sample we had statistical power to detect a moderately sized or greater true correlation between CDI score and IDS preference in this task, but for the UK sample we only had sufficient power to detect a strong correlation.

Supplement 2: Confirmatory analyses not included in the main manuscript
Our original registered report included confirmatory analyses that were later deemed unnecessary or poorly specified. We have therefore moved some of these analyses to supplementary materials, and/or described deviations here, to ensure that the main manuscript is readable while preserving the analytic plan as closely as possible. 
Simple Pearson Correlations
Two separate analyses were performed using the same analytic structure, one on the North American sample (NAE) using standardized scores, and one on the UK sample using raw scores. In both cases, we first ran a simple Pearson product-moment correlation to determine whether there is a simple relationship between infant preference for IDS and CDI score (see Figure 1 in the main text for two scatterplots of the correlations in the two samples). For the NAE sample, the Pearson product-moment correlation was not significant with a value of -0.05 [t(305) = -0.92, p = 0.359]. 
Because the UK sample contained raw scores (rather than percentiles), it was not appropriate to run a single correlation with the 18 and 24 month data included together. Therefore, two separate For the UK sample, the Pearson product-moment correlations were run. Neither was not significant with a values of -.0040.18 [t(4551) = -0.1.1903, p = 0.9824] for 18 months and 0.087 [t(337) = 0.453, p = 0.667] for 24 months 0.10 [t(117) = 1.03, p = 0.304]. 

Mixed Effect Model Deviations from Original Registered Plan
Deviation 1: We originally pre-registered that we would not include test_age and protocol as main effects as there were no theoretical reasons why these two factors would affect later vocabulary sizes. However, from a statistical perspective, it is necessary to include all lower-level main effects in the model if we include higher-order interaction terms in the model. Thus, we have included test_age and protocol as main effects in the final model. The original (now deleted) text from the preregistered manuscript is as follows: “On the other hand, there were no theoretical reasons why test_age or protocol should affect later vocabulary size, and these factors were not included as main effects.”
The original preregistered model was as follows:
CDI vocabulary ~ ids_pref:test_age + ids_pref:cdi_age + ids_pref:protocol + ids_pref +  cdi_age + gender + (1 + ids_pref:test_age + ids_pref:cdi_age + ids_pref:protocol + ids_pref +  cdi_age + gender | lab) 

Deviation 2: We originally pre-registered that we would test the effects of each predictor through the sequential decomposition of the model and likelihood ratio tests. Then we would use Bootstrap resampling (R = 1000) to generate 95% confidence intervals and p-values for all the model estimates. Original text from the preregistered manuscript is as follows: “The effects of each predictor were tested through the sequential  decomposition of the model and likelihood ratio tests. Bootstrap resampling (R = 1000) was also used to generate 95% confidence intervals and accurate p-values for all the model estimates.” This proposed method had several problems that we did not foresee. First, when we tested the effects of predictors through the sequential decomposition method, we ran the model using Type I error Sum of Square. Under this method, it is important to specify the order of entering variables into the model but we had not specified the order in the Stage 1 registered report, which further caused additional analytic flexibility. Second, we ran the analysis using both Type I and Type III (i.e., all variables entered into the model simultaneously and thus order does not matter) error Sum of Square, and we did not find any differences in the inferential statistics and both methods generated similar results. Therefore, we decided that it was safest to simply run the mode using Type III error Sum of Square. Finally, we decided to use lmerTest R package (Kuznetsova, Brockhoff, & Christensen, 2017) to run the model using Type III error Sum of Square for consistency with the original ManyBabies 1 study. 
Deviation 3: Our pre-registrated analysis indicated that we would use “age in days” (both for the original ManyBabies 1 test age and for the age at CDI collection). However, we entered this information into the model as age in months in order to make our model more easily interpreted and more directly comparable to the models in MB1 and MB1B. Since decimals were used when converting from age in days to age in months, this preserved the granularity of the original age in days information and therefore should not meaningfully alter the planned analysis. Age in months provides a more easily interpretable model estimate as the coefficient reflects the changes in average CDI scores in the model when age increases by a larger timescale (1 month rather than 1 day).

Confirmatory Bayesian Analyses
[bookmark: _3d4ysf7ocprf]Individual models for NAE and UK 
As indicated in our preregistration, we ran Bayesian analysis to examine the null effects in the NAE and UK models. We report Bayes factors as a measure of evidence for the null hypothesis (no effect) or that the evidence is not sufficiently sensitive to draw any conclusion. We consider a Bayes factor above 3 as substantial evidence for the alternative hypothesis and below 0.33 as substantial evidence for the null hypothesis (Lee & Wagenmakers, 2014, cf. Jeffreys, 1939). If the Bayes factor lies between 0.33 and 3, we consider the data to be insensitive to distinguish between the alternative and null hypotheses (see Dienes, 2014 for a review). As a non-preregistered robustness check, we also report robustness regions based on other values of scale parameters that yield qualitatively similar Bayes factors.
To calculate Bayes factors for the main mixed effects models specified above, we fit multi-level models using Bayesian methods via the brms package (Bürkner, 2017), which translates model specifications into Stan code (Carpenter et al., 2017) for parameter estimation. We assessed the Bayes factor for each of the three primary coefficients of interest by the following procedure: first, we fit the corresponding model to the appropriate dataset (full model); next, we fit a subset model with the particular parameter of interest removed (null model); finally, we computed a Bayes factor comparing the full model with the null model using the Bridge Sampling technique available through brms. Bridge sampling is a method for computing Bayes factors on complex models via comparison of marginal likelihoods (Gronau et al., 2017). For coefficients 1 and 2, we used this procedure on the main mixed effects model, fit separately to the North American (NAE) and UK data. 
In the NAE sample, we chose a normal distribution with a mean of 50 and SD of 10 for the intercept. This is based on an assumption that on average, an infant participant was at 50 percentile and the SD would be at about the 10 percentile. Following what we have pre-registered, we used Cauchy distributions to specify the priors of our fixed effects in the model. We used informative priors for the fixed effect of CDI age and gender. We set a Cauchy prior for the CDI age coefficient with mean of 5 and SD of 1 and a Cauchy prior for the gender coefficient (with female as the baseline level) with mean of  -15 and SD of 5. For other fixed coefficients and interaction coefficients, we used a weak prior and set the priors to be Cauchy priors with mean of 1 and SD of 1 as we did not have any expected effects of these coefficients. Finally, for the standard deviation of random effects, we set a Normal prior with mean of 0 and SD of 1. 
We calculated the Bayes factor of the coefficient 1 and 2 by comparing the full model with the null model. We found that the Bayes factor for the coefficient 1 in the NAE sample – the main effect of infants’ IDS preference on their CDI scores – is 1.04 (robustness region: scale parameter of .001 - 10 yields a BF range of 0.37 - 1.58), and the Bayes factor for the coefficient 2 in the NAE sample – the interaction effect between infants’ IDS test age and their IDS preference – is 0.90 (robustness region: scale parameter of .001 - 10 yields a BF range of 0.33 - 1.20). According to the criteria stated in the pre-registration, the Bayes factors for coefficients 1 and 2 indicated that the data were insensitive to distinguish between the alternative and null hypotheses. 
In the UK sample, we chose a normal distribution with a mean of 40 and an SD of 20 for the intercept. This is based on the percentile information in the Wordbank database (Frank et al., 2017), and the 50 percentile of the Oxford CDI score is around 41.6. Just like the NAE model,  we followed what we pre-registered and used Cauchy distributions to specify the priors of our fixed effects in the model. We also used informative priors for the fixed effect of CDI age and gender. We set a Cauchy prior for the CDI age coefficient with a mean of 15 and SD of 1 and a Cauchy prior for the gender coefficient (with female as the baseline level) with a mean of  -10 and SD of 5. For other fixed coefficients and interaction coefficients, we used a weak prior and set the priors to be Cauchy priors with a mean of 1 and SD of 1, as we did not have any expected effects of these coefficients. Finally, for the standard deviation of random effects, we set a Normal prior with mean of 0 and SD of 1. 
We also calculated the Bayes factor of the coefficient 1 and 2 by comparing the full model with the null model in the UK sample. We found that the Bayes factor for the coefficient 1 in the UK sample – the main effect of infants’ IDS preference on their CDI scores – is 1.01 (robustness region: scale parameter of .01 - 10 yields a BF range of 0.77-1.01) and the Bayes factor for the coefficient 2 in the UK sample – the interaction effect between infants’ IDS test age and their IDS preference – is 0.87 (robustness region: scale parameter of .01-10 yields a BF range of 0.48-1.14). Thus, the Bayes factors for coefficients 1 and 2 indicated that the data were insensitive to distinguish between the alternative and null hypotheses. 

Combined NAE/UK analysis
	As with the separate models, we ran a Bayesian analysis to evaluate the null findings of the interaction effect between dialect and infants’ IDS preference. In the model, we used a normal distribution with a mean of 0.1 and SD of 0.05 for the intercept. This is based on an assumption that, on average that infants in both NAE and UK samples are at the 50% percentile. For the NAE sample, the average score for the 50th percentile is 76.3, given that the total score of the NAE CDI is 680, which is about 0.11 in terms of proportion score. In contrast, for the UK sample, the average score for the 50th percentile is 41.6, given that the total score of the Oxford CDI is 416, it is about 0.1 in terms of proportion score. Thus, we set the mean to 0.1 for the intercept. 
Following what we have pre-registered, we used Cauchy distributions to specify the priors of our fixed effects in the model. We used informative priors for the fixed effect of CDI age and gender. We set a Cauchy prior for the CDI age coefficient with a mean of 0.03 and SD of 0.01 and a Cauchy prior for the gender coefficient (with female as the baseline level) with mean of  -0.03 and SD of 0.01. For other fixed coefficients and interaction coefficients, we used a weak prior and set the priors to be Cauchy priors with mean of 1 and SD of 0.01 as we did not have any expected effects of these coefficients. For the standard deviation of random effects, we set a Normal prior with mean of 0 and SD of 0.01.
As confirmation of the results from the NAE and UK models, we calculated Bayes factors for coefficients 1 and 2 by comparing the full model with the null model. We found that the Bayes factor for the coefficient 1 – the main effect of IDS preference – is 0.75 (robustness region: scale parameter of .001-.03 yields a BF range of .75-3.02). We found the Bayes factor for the coefficient 2 – the interaction between infants’ age at IDS test and IDS preference – is 0.35 (robustness region: scale parameter of .001-.05 yields a BF range of 0.35-2.71). 
We calculated the Bayes factor of the coefficient 3 by comparing the full model with the null model. We found that the Bayes factor for the coefficient 3 –  the interaction effect between dialect and infants’ IDS preference – is 0.37 (robustness region: scale parameter of .005 - .01 yields a BF range of 0.28-1.22). Again, the Bayes factors for coefficients 1-3 indicated that the data were insensitive to distinguish between the alternative and null hypotheses. 


