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I. Proofs of Theorems in Sections 2—4

This section provides the technical details for the results presented in Sections 2 to
4. Employing the standard transformation as detailed in Hamilton (1994) and by

Assumption 2.1, for any k£ > 0, we derive the expansion:
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where Il is a p-dimensional vector with ||II;i| = O(ch™), and || - || denotes the

Euclidean norm in RP.

Let k; = [n\] Vp fori € {0,1,--- ,m+ 1}. Forany t € {k;—1 +1,--- ,k;}, by

selecting k =t — k;_1 — 1 in equation (S.1), we obtain
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where we utilize the equality from equation (2.7). Furthermore, we have
Yrn = Yir(t/n) + Ay, + Hi_ki_lYki,l,m (S.3)

where y; () is defined in equation (2.6), and A,,, is given by
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We now present two useful lemmas.

Lemma S.1. Suppose that Assumptions 2.1-2.4 hold. Then, we have

ki

S Win — yiat/n)[* = Op(n' =),

t=k;_1+1

as n — oo, where k; = [n\;] fori € {1,--- ,;m+ 1} and ky = p for i = 0, and the

constant ag is given in Assumption 2.3.

Proof of Lemma S.1. By the definition of A;, in (S.4) and using Assumptions

2.1-2.4, it is straightforward to prove that for any ¢t € {k;_y + 1,--- , k;}, we have

t—k;i_1—1
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(S.5)
where we utilize the fact that the distribution of ¢;,(x) is independent of ¢ and the
constant C' depends solely on g(x), ¢o(x), Cy, and E[|n|*°]. Given that ap < 1 and

co € (0,1), (S.5) indicates that
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where C” is a constant independent of n. Therefore, we have shown that

ki
ST 1B = Opn! ). (3.6)
t=k;_1+1
On the other hand, for Yy, » = (Y, n, Yki—1ms - * s Yk;—p+1.n) » Dased on Assumptions

2.1-2.3 and (S.2), it is straightforward to deduce that

ki

SupE( Z Yt — H;*k‘z‘71Yki—1’n|a0> < 0. (5.7)
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Given that aqg € (0, 1], the following fact holds:
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(S.8)
Thus, based on (5.7)—(5.8) and the fact that ||Y,,| = O,(1), by using induction on

1, we can directly show that

Yeinll = Op(1), (5.9)

where ¢ = 0,1,--- ,m + 1. Finally, notice that (S.9) indicates that

k’i ki
S Y™ < (X I ) Yl = O(1). (S:10)
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Then, the conclusion is derived from (S.3), (S.6), and (S.10). O
Lemma S.2. Suppose that J(zo, 1, -+ ,x,) is a bounded and on-Holder continuous

function on [0,1] x RP. Then, under Assumptions 2.1-2.4, we have

m—+1

1 Z (v, Z/ J(5, Y], 1 (s)))ds, (5.11)
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where Yii-1(8) = (Yir-1(8), -+, Yir—p(5))'. Moreover, if Assumption 2.6 also holds,

then we have

1 Zn: J( Y, 1n>ftn _)Wf:l/ [J (s, Y]1-1(8)) fi,£(0; 5)]ds, (S.12)

t=p+1

where fi,(+) is the conditional density of ., given Fi_.

Proof of Lemma S.2. First, let us prove equation (S.11). Since J(-) is bounded, it

suffices to show that, for any 7 € {1,--- ,m + 1},

=D DI (0 v / E[J(s, o1 (5))]ds,
n n ’ N ’
t=k;—1+p+1 i—1

where the lower bound k;_; 4+ p+1 is chosen to ensure that all the elements in Y;_; ,
fall within the i-th segmentation, {yx, , 41, , Yk }. Given the continuity of J(-) and

the fact that ag € (0, 1], we have
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for some constant C'. Based on Assumptions 2.1-2.4 and the definition of y; ;(x) given
in equation (2.6), we can easily show that
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Then, equations (S.13) through (S.14) and Lemma S.1 together imply that
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For any € € (0, \; — \;_1), there exists a sequence {sk}ﬁgzo such that
Aic1 =80 <5851 <:---<8,.1<8, =X\ and s —sp_1 <e,

where [, only relies on €. Let S = {t : t/n € (sg_1, sg]}. Then it follows that

k;
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<& 3 (s —t/ny < O, (5.16)

where C’ is a constant independent of e. Meanwhile, based on the definition of
Yiu(z) in (2.6), for a fixed sy, {J(sk, Y, 1(sk))} is a measurable function of the i.i.d.
sequence {7;1,7M—2,- -+ }. Consequently, {J(sg, Y/, 1(sx))} is both stationary and

ergodic. Then we have

—ZZ{ (50 Vs (50) ) = [ (51 Y11 (50)) | } = 00(1), (S.17)

k=1 teSy

Thus, based on equations (S.16) through (S.17) and the arbitrariness of €, we have

actually shown that

1 ki t y 1 k: - .
ro, Get) =5 B EVCYQ) e 619

From the derivation of equation (S.16), it is evident that E[J(s, Y], ;(s))] is contin-

uous in s. Then, it follows that

1 kz E[J(%,njt_l<%))}—> /Ai E[J(s, Y}, 4(s))]ds. (S.19)

n )
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By (S.15) and (S.18)—(S.19), the conclusion in (S.11) holds.

For (S.12), notice that f;,(0) = fi:(0;t/n) = f,(0)/0;(t/n, Fi—1). Thus, by As-

sumption 2.6 and (S.13)-(S.14) and Lemma S.1, it is easy to get that

ki ki
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(S.20)

In addition, by Assumption 2.6 and the dominated convergence theorem, it is not

hard to prove that, for any e > 0, there exists § € (0, ¢), such that
Eﬂfz,t((),xl) — fzyt<o,x2)’] < €, v,l'l — .1'2‘ < 0. (821)

Based on equation (S.21), and utilizing the boundedness of J(-) and f;(-), we can
derive results analogous to those presented in equations (5.16) through (S.19). Con-

sequently, equation (S.12) holds. ]

Proof of Theorem 2.1. By the definition of 6,, given in equation (2.4), it is evident
that @, = /n(6, —0p) is the minimizer of the objective function L, (u), which is given

by

n

L) = 3 [ (len - %Z;nu\ ~ el (5.22)

t=p+1

Utilizing the identity:
y
|z —y| — |z| = —y x sgn(z) +2/ [I(z <s)—1I(x <0)]ds,
0
we can derive the decomposition of L, (u) as follows:

) =—u Z e + 2 Z [Cen (W) | Fe1] + 200, (w), (5.23)

t=p+1 t=p+1



where oy (u) = Y01, {Gin (0) = E[G0(w) | Fia]} and

1
ft,n = ﬁZt,nwt,n Sgn(ét,n)a (8'24)

u' Zt,n
Con(w) = Wi /0 T e < 5) = I(eun < 0)]ds. (S.25)

According to Assumption 2.5 and Assumption 2.7, we establish two key facts: (i)
{w& .} is a martingale difference sequence; (ii) max; {|u'¢ .|} < C/y/n for some
constant C. Furthermore, by Assumptions 2.1-2.4 and Assumption 2.7, Lemma S.2

indicates that

> Bl Fo) = x (23wt z,,) <

t=p+1 t=p+1

s u'Yu. (S.26)

Then, applying the martingale central limit theorem as presented in Billingsley (1999),

we obtain

Toi= Y &5 N(0,5). (S.27)

t=p+1
On the other hand, based on Assumption 2.7 and Fubini’s theorem, it is straight-

forward to show that

> Bl Fia] = 0% [ 3 whnZenZi o)

t=p+1 t=p+1

+ Z wtn/ﬂ " S[fen(stn) = fen(0)]ds (S.28)

t=p+1

where |s;,| < |u'Z;n|/+/n. Lemma S.2 further implies that

1 n
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For the second term on the right-hand side of equation (S.28), based on Assumptions

2.6 and 2.7, we find that

%u’Zt,n C’
wt,n /Of S[ft,n(st,n) - ft,n(o)]ds S — X sup |fn(y/00) - fn(0)|a

<l Zenll

(S.30)

where C” is a constant that depends solely on w(-), oy and u.

Note that, by (S.2) and Assumptions 2.1-2.3, there exists C” > 0 such that

1Zeall < C"[Z0+ D Vel + 1], (S.31)
i=0
where Z, = L (e S sup, |eir—jr(2)]])} is stationary. Utilizing the

result from equation (S.9), for any 6 > 0, we can find some M’ > 0 such that

PO o Yainll +1 > M') < 6. By (5.30)—(S.31), we further have

£{ Z e | T i) - fenlO1ts |} (532

< C'0 x sup || f,(y) — f,(0)]] + C" x E{ sup |fn(y/o0) = f(0)]}.

1" =
yeR lyl< G llull(Ze+-M)

By Assumption 2.6 and the dominated convergence theorem, it is clear that

E{  sup | fa(y/o0) = f(0)[} — 0, (S.33)
ly1< G llull(Ze+M7)

as n — 0o0. Therefore, based on equations (5.32) through (S.33) and the arbitrariness

of §, we have in fact demonstrated that

n %U’Zt,n
IE{ S ‘wm /0 T S fon(sin) — fm(O)]ds’} o (S.34)
t=p+1



Then, (S.28)-(5.29) and (S.34) imply that

n

> ElGn(u)[ Fia] = w'Sou/2. (S.35)

t=p+1

Thus, based on equations (5.23), (S.27), and (S.35), along with Lemma S.3, for every

fixed u, we find that
Ly (u) = —u'T, + u'Squ + 0,(1). (S.36)

Moreover, as demonstrated in equation (S.22), the objective function L, (u) is convex
with respect to u. Consequently, by the convexity argument presented in Theorem 2

of Kato (2009), it follows that
i = V(B — 0) = 271551 x T, + 0,(1) =5 N(0, 555,551 /4). (S.37)
This completes the whole proof. O]

Proof of Theorem 3.1. To facilitate understanding of the proof procedures, in this
section, we denote the random vector X determined by {v:,} as X ({y:n}), and that
determined by both {b;} and {v:,} as X({b;}, {vn}). Then, for the theorem, we

need to prove that

P

Gn({ytn}) == sup =0,

vERPHT

P (Valls ({0 (i }) = B{gen D)) < v) = @(0)

(S.38)
as n — 0o, where P* is the conditional probability given {y: ,}, ®(-) is the distribution
function of A(0, ¥5'2;35"/4), and the inequality for the vector v means coordinate-

wise inequality.



Notice that @%({0:}, {yin}) = vAl0E({b}, {ytn}) — o] is the minimizer of the
following objective function:

Ly (u; {67}, {yen}) = —u' Z [(0F = D&n{yen})] +2 Z (07 — )Gen(us {yen})]

t=p+1 t=p+1

+ Lo (u; {Yen}), (S.39)

where Ly, (u; {ytn}), &n({yen}) and Cn(u; {yen}) are defined in (S.23)—(S.25). For any
fixed u € RP*", employing Fubini’s theorem and Assumptions 2.6-2.7, it is straight-

forward to demonstrate that

n

> ElG (s {yea})] = O(n™ ). (S.40)

t=p+1

Let (€2, A, P) be the underlying probability space for the sequence {v;,,}. Accord-
ing to (S.26)—(S.27), (S.35), Lemma S.3 and (S.40), and by applying Dudley’s almost
sure representation theorem (see Theorem 9.4 in Pollard (1990) or Theorem 1.10.4 in
van der Vaart and Wellner (1996)) in the product space R>, we can demonstrate the
existence of an extended probability space (Q, A, P) and a sequence of measurable

and perfect mappings ¢, :  — Q such that:
(i): P(A) = P(¢;1(A)) for any A € A, namely, P = Po ¢ 1;

(ii): There exist a measurable set Ay € A with P(Ap) = 1 and a measurable

mapping Ty : Q — RP*" with PoT; ! ~ N(0, 253,55 /4) such that for any @ € Ay,

10



the following convergence results hold simultaneously:

Z Etn({Yen (00(@))}) — To(@); Z ft,n<{yt,n(¢n<@))})gz,n({yt,n(ﬁbn(@))}) — Xi;

t=p+1 t=p+1
D Gt {yen(@n(@)}) = w'S5u/2 and Y 7 [Gon (i {yin(6n(@))})]F = 0, Vu € QP
t=p+1 t=p+1

(S.41)
According to Assumption 3.1 and invoking Lindeberg’s central limit theorem, for any

fixed @w, we establish the following convergences:

n

370 — Dén({yn(da(@) 1] -2 N (0, 21); (5.42)
S 10F = 1)t {yn(0(@) 1] 2 0,Yu € Q7. (S.43)

It is important to note that QP*" constitutes a countable dense subset within RP*".
Subsequently, utilizing equations (S.41)—(S.43), in conjunction with Lemma 3 and

Theorem 2 from Kato (2009), for any fixed @ € Ay, we deduce

Vil ({Yen(@n(@)1) = 00] = 27155 Y En{yen(@n(@))}) + 0(1), (S.44)

t=p+1

V[0 ({0} {yn(0a(@))}) = 60] = 27551 Y 56 ({yen(0a(@))}) + 0j(1). (S-45)

t=p+1

From equations (S.42), (S.44), and (S.45), we infer that

VRl ({7} Ay (60(@))}) = u({yen(@n(@) 1] <= N0, 55151551 /4). (S.46)

Given that the distribution function ®(-) is continuous, by the multivariate version

of Pélya’s theorem, equation (S.46) is equivalent to
Gn({yt,n(qsn(@))}) — Oa Vi € AO- (847)

11



Note that the distribution of G,,({ye..(én(-))}) is identical to that of G, ({yn(-)}), as

a consequence of P = P o ¢ !. Hence, the conclusion holds from (S.47). [

Proof of Theorem 4.1. By Theorem 2.1 and Lemma S.5, it is evident that
SUp | Sy (0, 2) — Sp(o, 2) + 2V (2)v/n(0,, — 60)| = 0,(1). (S.48)
2€Z

By (S.27), Lemma S.4, and the continuity of V(z), in the space [*°(Z), we have

S,(00, 2) — V'(2)251T,, is asymptotically tight, (S.49)

where T), is defined in (5.27). Furthermore, by applying the martingale central limit
theorem and Lemma S.2, for any a;,as € R and z1, 2o € Z, it can be demonstrated

that

al[S’n(Qo, 21) — ‘7/(21)22_17—'”] + ag[Sn(Ho, 22) — V’(ZQ)Z;lTn]

i> N(O, (I%AQ(Zl, Zl) + 2a1a2A0(21, Zg) + CL%A()(ZQ, ZQ)) (850)
Consequently, (5.49) and (S.50) imply that
Sn(Bo,2) — V'(2)251T, ~ So(2). (S.51)

Thus, the theorem follows from equations (5.37), (S.48), and (S.51), along with the

application of the continuous mapping theorem. O

Proof of Theorem 4.2. Initially, we recall several notations, as delineated below,

12



which were previously defined in the proofs associated with Lemma S.5:

C,=1{0:/nll0 — 6| < C},
Rm(e, 2) = Tyn(0, 2) — Tin(bo, 2) = 210, €xp (z’f/t,m)[l(em > Z{,(0 = 00)) — I(ern > 0)],

Rtfn(Q, 2,0) = 2y, exp (z'fft_lm)[[(at,n > Zt'jn(H —00) F | Zinll) — I(gen > 0)],

Co |
NLD
where § € R"™?, z € Z, and C, 6 > 0. In addition, for any z;, 2 € Z, we define

n

Ap(21,20) =n? Z {[Fm(QO, 21) = V'(21)25 Zy pwy sgn(en)]

t=p+1

5 [Frn(00, 22) — V' (22) 55 Zuntwe  sgn(cen)] }

Then, based on Lemma S.2 and Assumption 2.7, and by leveraging the boundedness

and the Lipschitz continuity of exp (2’ fft,l’n), it is easy to check that

sup |An(z1, 22) — Ao(21, 22)| = 0,(1), (S.52)

21,2262

where Ag(z1, 22) is defined in Theorem 4.1.

Step 1: Assume that C € N and § € QN (0,1). Then, there exists a sequence
of open balls {Begs(u;)}X, such that Be(0) € UX% Bos(us), where u; € Be(0) and
K5 < (2)"™. Let 63, = 6y + u;/+/n, then we have C, C U%,C;,, with C;, = Bos (0n).

For S%(6, z), we have

52(0.2) = 5100.2) = 7= 3 BlRua0.)] + 7= 30 (= DE[fen(6.2)
t=p+1 t=p+1
+ in bi{Rin(0,2) — E[R, (6, 2)]}. (S.53)
t=p+1
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Observe that when 6 € C, and z € Z, n™ 237} E[Ry,(0, 2)|Fi—1] is uniformly
bounded. Subsequently, based on Lemma S.5 (ii) and applying the dominated con-

vergence theorem, we conclude that

n

s % S° Elfn(0, 2)] + 27(2)/n(0 — )| = o(1). (S.54)

Furthermore, by a simple calculation, we can show that there exists a constant C" > 0

such that for any 6,60, € C,, and 21, 2, € Z, the following inequality holds:

’% > (b = D{E[Rin(61, 21)] _E[Rt,n(92722)]}‘

' & . _
< == 3 (16 = 1% (1102 = o] + 7220 — ]]). (3.55)
t=p+1

It can be verified that

s~ 3" (B[R0, )1 = o(1). (S.56)

n
0eCn,z€2 t=pt1

Consequently, based on equations (S.55) and (S.56), Assumption 3.1, and the inde-

pendence of {b;}, we conclude that

*

sup ]%tz;l (b — DE[Run(6, )] 2> 0. (S.57)

066n7262

Analogous to the approach used in equations (S.115) and (S.118), it can be derived

that

sup [% S bi{Run(6,2) ~ Bl 60.20)] < S0 3 b

0€Cn,2€2 t=pt1 n P—
1 < - -
i *__ + (9. _ + (0.
+ max sup nt§p+1 [(bt D{R; (0in, 2, 0) ]E[Rt,n(%z,c?)]}”
+ max sup ]i f: (RE (04, 2,0) — B[R (i, 2 5)]}]. (S.58)
1<i<Ks ,ez \/ﬁt: - n % n 2
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Step 2: Observe that the set {(C,d) : C € N, € QN (0,1)} is countable.
Following a similar approach to the proofs for Theorem 3.1, based on equations (S.26)—
(S.27), (S.35), Lemma S.3, (5.40), (S.52), and Lemmas S.5-5.6, and by applying
Dudley’s almost sure representation theorem again, on an extended probability space
(Q, A, P), there exist a sequence of measurable and perfect mappings ¢, : Q —
and a set Ay with P(Ay) = 1, such that for any @ € Ay, the convergence results of
(S.41) and the following convergences occur simultaneously:

> (R, 2 {yen (00(@))) + 2V (VRO — )} =0, (8.59)

t=p+1

max sup Z {an(em,z, O {yrn(Pn(@))}) — ]E[Rifn(@n,zﬁ)]}‘ — 0, (S.60)

‘ 1
1SisKs sez v/ A=)

‘ 1
sup —
0€Cn,zEZ \/ﬁ

max_ sup [% > L 2,6 {n (00 (@)}) = ELRE, (03, 2 0)]1| =0, (S.61)

1SiSKs ez L £

sup [An (21, 205 {Yen(n(@))}) — Ao(21, 22)[ — O, (5.62)

z1,22€2

where C' € Nand 6 € QN (0, 1).

Notice that {(b; — D){ R, (0in, 2, 0; {yen (90 (@))}) — E[R},(0in, 2,0)]} } consists of
independent random variables for a given w. Subsequently, based on equation (S.61)
and following the tightness proofs for Sn(e(),Z) as outlined in Lemma S.4, for any

CeNanddeQn(0,1), we have

max sup| - py (8 = DLRE (B, 2,0 o (00(@))}) = ELRS, 01, 2,0)]} ]| L5 0.
(S.63)

Consequently, based on equations (S.58), (S.60), (S.63), and the arbitrariness of §,

15



we can further demonstrate that, for any e > 0,

P sup % S bRl 7 {en(90(@))}) — ElRun(6, 2))) > €) = 0.

0eCn,zEZ t=pt1

By a similar argument, we can also establish that

p*< inf % 3" B {Run(0, % {yen(00(@))}) — E[Ren(6,2)]} < —e) 0.

0€Cn,z€2
t=p+1

Therefore, it follows that

up <= 3 Widia 0.5 {n(0,(@))) ~ ELR 0.2 25 0. (364)

0eCy,zeZ t=p+1

Accordingly, by equations (S.53)-(S.54), (S.57), (S.59), and (S.64), and applying

the conclusions in (S.44) and (S.45), it is straightforward to demonstrate that

52055 05 (n (60@)D) = 8000 2 a2 @))) (5.6
={ = 3 0= Dl = (@)

n

— VS Y 0 = Den{men(@n@)h | +o3(1).

t=p+1

Ultimately, by equation (S.62) and applying the tightness proofs in Lemma S.4, we

establish that

n

{% S (0 — Do, % {un(60(@))})

n

~V(ET Y = Dén{yen(@n@)D ]~ So(2). (S66)

t=p+1

Thus, we conclude that on an extended probability space,

Tr ({07}, {9 (60(@)}) <= To, ¥ € Ao. (.67)
This completes the whole proof, as a consequence of P = P o ¢ O
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Proof of Theorem 4.3. Upon carefully examining the proofs of Lemmas S.1-S.2,
and utilizing the fact that sup, ,, E|a;,|*® < oo as stated in Assumption 2.3, it follows

that under the same conditions as those in Lemmas S.1-S.2, we can deduce that

ki

D0 lven = et/ = Oyl "), (5.68)
t=ki—1+1

m+1
n Z J( Y- 1" Z/ J (s, Y1 (s))]ds, (5.69)
t p+1

1 n m+1 /
ﬁt:;lj< Y- 1”)ft" > Z/ J(5,Y 1 1(8)) fie(0; 5)]ds. (S.70)

Step 1: Let &, = €1n + arn/v/n. Then, 4, = \/ﬁ(én — ) is the minimizer of

the objective function L, (u), defined as

Lo(u) = —u'T, +2Z [Con ()| Fi1] + 26, (), (S.71)

t=p+1

g y Z ) ) ( = ] ) (S 2)
\/_

n
—=u'Ztn
&n(t) = Wy / (i < 8) — I(En < 0)]ds. (S.73)
0

For T,,, we have the following decomposition:

To=Y Gnat ) Gmo=Tor +Tha, (S.74)

t=p+1 t=p+1

where ém,l = \/Lﬁmem sgn(et,) and ét,n,z = \/LﬁZt,nwt,n[Sgﬂ(ét,n) —sgn(een)]. By
Assumptions 2.5-2.7 and using the martingale central limit theorem and equation

(5.69), it is straightforward to prove that
Ty =5 N(0,21). (S.75)

17



On the other hand, by Assumption 2.6-2.7 and sup, ,, E|a;,|** < oo, we can deduce

that

n

Y [ine = E(Gnal Fion)] = 0p(1). (S.76)

t=p+1

Meanwhile, by a;,, = Mo, and f;,(0) = f,(0)/o:, and using (S.69), we have

Z E gtn2|ft 1 Z Wy nZt nQ nft n( ) + Op(l)- (S77>
t=p+1 t=p+1
2 < 2M
; Z wt,nZt,nat,nft,n( ) - i Z Wy nZtn —> (5 (878)
t=p+1 t=p+1

Thus, equations (S.74)—(S.78) indicate that
T —25 N (62, %1). (S.79)

Furthermore, by Assumptions 2.6-2.7 and equation (S.70) and using the same proof

process for equation (S.35) and Lemma S.3, it is straightforward to show that

n

> ElGn(w)[Fir] = 0/S2u/2 + 0p(1), dn(u) = 0,(1). (S.80)

t=p+1

Then, equations (S.71), (5.79), and (S.80) imply that, under the local alternative,

equation (S.37) is modified to

V6, — 0) = 271551 x Ty + 0,(1) 5 V(27155 10,, 55151551 /4). (S.81)

Step 2: Now, we investigate the limiting distribution of S, (6,, z) under the local
alternative hypothesis. In this scenario, observe that &,,(0) = &, — Z{,(0 — 0).

Consequently, we have

Sn(Bo, 2) = Wy 5N (E ) €xp (2Yi_10). (S.82)

5i-
I
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For Sn(eo, z), we substitute &;, with &, in the proof of Lemma S.4 and note that

the following inequality holds:

n n

l l
E%tz [ sen(Een) [ eson)l] < E\%tz (i sen (e ([ 9o son)]

+ E‘% Z (Wt n[sgn(Ern) — sgn(ern) — E{[sgn(&sn) — sgn(gtyn)ﬂ}“tfl}](n gtfjm)”
+ E‘% Z [0y [E{[sgn(&sn) — SgD(Et,n)HE—l}](H Ji—jn)]- (S.83)

Subsequently, by the moment inequality for the sum of martingale difference sequences

and using &;,, = &, + atn/\/n, there exists a constant Cj such that

n

!
Bl = 3 faunsenn) [Tosl] < 4 (3.84)

:p+1

Hence, the asymptotic tightness is derived from equations (5.84) and (S.108)-(S.112).

Concurrently, it is straightforward to demonstrate that for any fixed z € Z,

1 &< s
Sn(by, 2) = ﬁ Z Wi sgN(Er ) exp (2'Yi—1.0) (S.85)

t=p+1

2M f,(0) o~ y
+ # Z Wi, eXP(2'Yi-1,0) + 0p(1).

t=p+1

On the other hand, it can be directly shown that Lemma S.5 remains valid under the
alternative hypothesis. Therefore, by equations (S.82), (5.85), and Lemma S.5, we

can deduce that

n

Z [ exp(2 Vi1 n) — V'(2)85 Zy pwy ] sgn(ern) (S.86)

t=p+1

~

gn(ﬁn, z) =

Si-

2M £,(0) < Y %
I fq(0) Z [0 exp(2'Yi 1) — V'(2)25' Zy i 0] + 0,(1).

t=p+1
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Consequently, it follows that

~ ~

Sn(B, 2) ~ So(2) + MD,(2). (S.87)

This completes the proof for part (i) of Theorem 4.3.

Step 3: Now, we concentrate on the bootstrap procedures. By following the
same proof procedures used for Theorem 3.1 and Theorem 4.2, it is straightforward
to demonstrate that

N* N — — 1 - * < *
Vs —6,) =275, x NG > (0 = D) Zynwin sgn(Een) + oj(1). (S.88)

t=p+1

Observe that the center §, in equation (S.81) has been omitted because the i.i.d.

sequence {b; — 1} has a zero center. Moreover, we can deduce that

1 5 > - _ 3 ;
= NG Z {(b;‘ — D[ nexp(2'Yi 1) — V' (2)55 Z4 i )] sgn(st,n)} +0y(1).
t=p+1

Therefore, conclusion (ii) in Theorem 4.3 follows from equation (S.89). O

II. Some Technical Lemmas

In this section, we give some technical lemmas.

Lemma S.3. Suppose that Assumptions 2.1-2.7 hold. Then we have

an(w) = Y {Ga(u) = ElGn(w)| Fia]} =0,

t=p+1

as n — 00, where (;,(u) is defined in (S.25).
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Proof of Lemma S.3. Note that (;,(u) can be rewritten as follows.
Ct,n(u) = wt,nu;Zt,th,n<un)a (890)

where u,, = n~2u, M;,(u) = fol Xin(U'Zy ps)ds and Xy, (2) = (g4 < ) — (4, <
0). By the Cauchy-Schwarz inequality, we obtain the following result:

@] < ¢ | 30 (s Ze Mo — BRI Ficd}) | (8290

t=p+1
Therefore, to establish the conclusion, it suffices to demonstrate that, for any j < r+p,
> (winZ0{ Myn(tn) = EIMyn (wn)|Fia]}) = 0/ + nlual),  (8.92)
t=p+1

where Z denotes the j-th component of the vector Z; ,,.

Let my,, = wtht]ﬁ and ftn( ) = My My, (u), and further define D, (u) as

Z {Fon(1) = Efon(u)| Fioa]}. (5.93)

Vi S

Since u, — 0, we only need to prove that, for any n € (0, 1),

_DPn(u)]

sup =0,(1), as n — oo. (S.94)

lull<n 1+ 1+ /nlul|

For (S5.94), we can assume my, > 0 (if not, we can utilize the equality m;, =

max{ms, 0} — max{—m;,, 0} to adjust it), and we divide the proof into three steps.

Step 1: Based on Assumptions 2.6-2.7, there exists a constant C such that
25up; (Wenl| Zenll?) sup, ; fin(y) < Ci. Then, for any € € (0,C1) and 6 € (0,7)], using
the basic result for packing number ( as seen in Problem 2.1.6 of van der Vaart and

Wellner (1996)), we can find a sequence of open balls {B @ (u;)}<, that cover the
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T+
open ball Bs(0), where u; € Bs(0) and K, < (%) " Therefore, there exists a

partition {U;(0)}, of Bs(0) such that U;(8) C Bci(u,)

Thus, for any u € U;(6), utilizing the monotonicity of X ,(x) and the fact that

my, > 0, we have the following uniform result:

Fimi < fon(w) < fifs, (5.95)

where ftim = My fol Xin (W Zy s £ 5—‘51||Zt,n||)ds. Moreover, applying Fubini’s theo-

rem along with Assumptions 2.6 and 2.7, and Assumption 2.2, we derive that

E[(-ﬁfn,z - -ﬁjn,z)|‘7:¥—1] < €d. (Sg6>

Step 2: Let 6, = n/2* for k = 0,1,---, and define B(k) = Bs, (0) and A(k) =
B(k)/B(k+1). Based on the results from Step 1, for a fixed k, there exists a partition

{Us(0x)}E<, of B(k). Then, by (S.95)-(S.96), for any u € U;(;,), we have

1 ~ -
ﬁ Z [ ttrn,i - E(fttrn,i’ﬂ—l)] + v/nedy,
t=p+1

Dt (w;) + /nedy. (S.97)

Since A(k) = B(k)/B(k + 1), (S.97) implies that

Dn(“)
P( su —>66) SP( sup D, (u >3\/ﬁe(5)
b T vl S Dl ‘

< P( max D (u;) > \/ﬁe5k>

1<i<K,

. + (0 )12
< K. x maXzE[?g(uz)] |
nezo;,

(S.98)

22



Note that the sequence { ﬁrm — E( ﬂfn’i|ft,1)} is a martingale difference sequence.

Therefore,
E(-];t—j_n,z ) 2

Elwinll Zenl sup fen()] X Ok = 70 (01)- (5.99)
ye

t=p+1

Based on equations (S.98) through (S.99), we obtain that

Keﬂ'n(dk)

252
ne2o;

P( sup Dn—(u)>6€> <

(S.100)
wea(ky 1+ v/nllul|

By a similar argument as presented in equation (S.100), we can derive the same bound

for the lower tail. Consequently, it follows that

D, 2K (0
P( sup _Dn(w)] > 66) < # (S.101)
wea(r) 14+ v/nllul| ne*dj,
In addition, Assumptions 2.6-2.7 indicate that
sup m,(0x) — 0, as k — oo. (S5.102)

n

Step 3: For any ¢ > 0, based on equation (S.102), we can select some k. such

that

2K,
sup G;T—nz(ék) <€, Vk>ke. (S.103)
n €°n

Meanwhile, let k,, > ko be the unique integer satisfying n=1/2 < 27%» < 2p~1/2,

Note that B,(0) = B(k, + 1) U B(k, + 1), where B(k, + 1) = U} A(k). Then,

based on equation (S.101), the definition of &, = 1/2*, and the inequality n=/2 <
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27kn we have

P( sup ]Dn(u)| > 66) < iP( sup D (u)| > 66)

ueBe(ht1) L+ v/llull < Nuca L+ Vallul

k. k

< 2L 7, (6%) o €qb
D)

k=0 k=k+1
<O(n) +4¢. (S.104)

On the other hand, given that 2% < 2n=1/2 1+4./n|lul| > 1, and n € (0, 1), a similar

procedure to that used for equations (S.100) through (S.101) implies that

D 2K,

P( sup 3
€

weB(kn+1) 1+ v/nlul|

as n — 0.
Then, based on equations (5.104) through (5.105) and the arbitrariness of €, we

have demonstrated that

D
P( sup _Dn(w)] > 6€> — 0, asn — oo. (S.106)
weBy () L+ Vnllu]

This completes the whole proof. O

Lemma S.4. Suppose that all the conditions in Theorem 2.1 hold. Then we have
Sn(0o, 2) ~ S1(2),

as n — oo, where Sy(z) is a centered Gaussian process with covariance function

Ai(z, ) = 0 fA E{@*(x, Y/, ,(x)) exp (21 + 2)'Vig-1(z)) bda.

Proof of Lemma S.4. We begin by demonstrating the asymptotic tightness of S,, (6, ).

Specifically, it is essential to establish that for any e, > 0, there exists a ¢ > 0 such
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that:

limsup P( sup |Sn(fo, 21) — Su(fo, 22)| > €) <. (S.107)

n—0o 2122 <6

For any 2, z, € Z with ||z, — 23| < 1, given the boundedness of Z and Y;_; ,,, and

by applying the Taylor expansion of the exponential function, we derive the following

result:

508 1) — Bul6, 22) = {0 sen(ernlexp (4¥i10) = exp (%11}

t=p+1

hS]
+

n

>~ { e sen(enn) (Vi)' = (5¥io) )1

1 t=p+1

o~
Il

R

M8 %\H E\H
Mg

nl(e())Zl)ZQ)' (8108)

o~
Il

1

Furthermore, let (ji,ja, -+ ,71) be a combination of j; € {1,---,p}. Then,

n l l l
Sni(fo, 21,22) = > {(% > [@asenlern) ([ [ den)]) * [ ] 210 — H227ji]/l!}’
(Js 1) t=p+1 i=1 i=1 i=1

(S.109)

where z;, is the j;-th component of z,. Additionally, through a straightforward

calculation, it is evident that

l l
‘ H Al — H 22,ji
=1 =1

Hence, for any 6 € (0,1), equations (S.109)—(S.110) imply that

< lzr = 22l x (1 [zl + [l22 )" (5.110)

I
E[ sup |Sni(6o,21,2)|] < 6CL/1 x Z E|\/_ Z wt,nsgn(st,n)(Hgt_jm)]’

llz1—22(| <6 t=p+1 i=1

< scieiptu, (S.111)
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where C depends solely on the domain of Z, and Cy depends on w(-) and ¢(-).

Consequently, by equations (S.108) and (S.111), we have demonstrated that:

E{ sup \gn(Go, 21) — gn(QO,ZQ)\} < 0 x exp (C1Cyp). (S.112)

[|z1—22||<é

The conclusion in (S.107) is thus derived from the arbitrariness of § and (S.112).

To establish the finite-dimensional convergence of S, (6, z), without loss of gen-
erality, we focus on the two-dimensional case. Let aj,as € R and 21,20 € Z. We

have

n

_ _ 1 ) - -
a15n (00, 21) + a25,(60, 22) = % Z {wt,n sgn(een)|ar exp (21Yi—1,n) + a2 €xp (ZQ}/;—l,n)]}-
t=p+1

Observe that the summands form a martingale difference sequence (m.d.s.). By the

martingale central limit theorem and following similar proof procedures as for equa-

tion (S.27), it follows that:

algn(eo, 21) + (ngn(907 ZQ) i> N(O, G?Al (Zl, Zl) + 2@1@2/\1 (217 ZQ) + CL%AI(ZQ, ZQ))
(S.113)

Thus, the lemma is established from equations (5.107) and (S.113). O

Lemma S.5. Suppose that all the conditions in Theorem 2.1 hold, and denote C,, =

{0 :\/nl||0 — 6o|| < C} for some constant C > 0. Then it follows that

(i) $UPyec, cez | 7 Lotmpir {Ben(0,2) — E[Ren(0, Z)Ifm]}‘ = 0p(1),

(ii). SUPgec,,ze2

G i (B[R (0, 2)| Fia]} + 2V (2)v/(0 = 00)| = 0,(1),

where Ry (6, 2) = Fyn(0, 2) — 710(00, 2) with 7,(6, 2) given in (4.3).
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Proof of Lemma S.5. (i) According to the definition of 7 ,(0, z) in (4.3), we can

deduce that
Rm(e, z) = 2y, €Xp (z'f/t_lm)[](sm > Zt',n(ﬁ —00)) — I(g,, > 0)]. (S.114)

To establish result (i), we use the standard argument similar to that for Lemma
S.3. For any § € (0,1), there exists a sequence of open balls {Bgs(u;)}, such
that B (0) C Ufi‘schg(ui), where u; € Be(0) and Ks < (%)Hp. Furthermore, let

0in = 0o + u;/\/n, then we have C, C UX,C;,, with C;p, = Bes (6in).

Notice that, for any 6 € C;,, by the monotone property of the indicator function

and the positivity of w0, and exp (2’ Y/t—l,n)y we uniformly have
Ry, (0in, 2,0) < Ren(0,2) < R (01, 2,6), (S.115)
where R;'fn(em, z,0) are given by

an(ﬁm, 2,0) = 2y, exp (z’f/t,l’n)[[(at,n > Zg,n(Qm —0o) | Zinll) — I(gn > 0)].

F <
vn
(S.116)

Given that w(-) satisfies Assumption 2.7 and, in conjunction with Assumption 2.6,

considering the boundedness of Z and ¢(-), we can deduce the following inequality:

- - s

where C’ denotes a constant that is independent of ¢, 6;,, z, and n.

Subsequently, based on equations (S.115) and (S.117), we can straightforwardly
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derive that

sup \/_ Z {Ry(0, 2) — E[Ry (0, 2)| F-1]}

0eCn,z€2 t=pt1

< max sup— Z (R, (0in, 2,0) — E[RF, (Bin, 2,0)| Fia]} + C'6. (S.118)

1<i<K,
1262 V1 L —
Furthermore, we have

Bl D (R 2. 8) — BIRE (O 0) 7]}

_P+1

1 C"(o+1
s - B[RS, (0in, 2,0)] < ) >, (S.119)
n t=p+1 \/ﬁ
where C” is a constant independent of §, 6;,, z, and n. By following the proof strategy

of (S.107), it is easy to show that

Z {R Oin, 2,0) — [R;n(em, z,0)|Fi_1]} is asymptotically tight. (S.120)

—p+1

Given that Kj is finite, inequalities (S.119) and (S.120) imply that

max sup’\/_ Z (R}, (0in, 2,0) — B[R}, (05, 2,0)| Feoa]}| = 0p(1).  (S.121)

1<i<Ks ,cz

Based on (S.118) and (S.121) and the arbitrariness of §, we conclude that, for any

€ >0,

P( sup f Z {Rin(0,2) — E[Rin(0, 2)| Fii]} > e) 0,

GECn,ZEZ t—= p+1

as n — 0o. By a similar argument, we can also establish that

P( inf f Z {Rin(0,2) — E[Run(0, 2)| Fia]} < —e) 0.

0cCp,ze€ 2
=p+1
This completes the proof for the conclusion (i).
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(ii) Given &, = oy, and Assumption 2.6, it follows that

ST (B0, 9\ ]} = —% S [ exp (Fi1) 22 y(0) /o] x V0~ 1)

NG
t=p+1 t=p+1

+% Z [wt,n exp (z’fftfl,n)Z{’n[fn(O) — fn(st)]/am] x /(0 —6y), (S.122)

t=p+1
where |s;| < Coy'l|Zin|/+/n for all t. By Lemma S.2 and the Lipschitz continuity of

exp (2'Yy_1.,), we can demonstrate that

1 & . -
sup H— Z Wy exXp (2'Yi-1,0) 24 1 [ (0) /O1 i — V’(z)H = 0,(1), (S.123)
zez2 11T t=p+1
1 - ~ N / o
sup |2 37 G exp (1) ZLnl20) — Fu(slfoun]| = 01, (8124)
zez2 11T t=p+1
Then the conclusion (ii) follows from the fact that supgee, /n||6 — 6] < C. O

Lemma S.6. Suppose that all the conditions in Theorem 2.1 hold. Then, for any

C,0 >0, it follows that

(). sup.ez

G St {00, 2,0) = EIRE (60,2001} = 0,(1),

(“’) SuszZ [% Z?:p-&-l {R?,:n<0n’ 2 5) - E[Ra:n(en’ 2 5)]}2:| = Op(l);

where 0, = 6y + u/+\/n for some u € R"™P satisfying ||u|| < C, and an((‘)n, z,0) are

defined in equation (S.116).

Proof of Lemma S.6. Since the proof procedures are very similar, we present only
the details for the conclusions pertaining to the sequence {Rf (0, 2,6)}. Firstly, by

examining the proofs of equations (S.119) and (S.121), it follows that the analogous
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results are obtained when 6;,, is replaced by 6,,, specifically,

n

sup {37 B[RS (02,0 } = o(0), (8.125)

n
z2EZ t=p+1

sup ‘% tz;l (R0 2.0) — ELRY, (02, 2.6)| Fial)| = 0,(1). (S.126)

ZEZ

By equation (5.126), for result (i), it suffices to demonstrate that

z2€EZ

sup ]% > ABIRS (n 2 0 Fot] — ELR (00 2,0} = 0(1). (S127)

By the definition of }?Zn(ﬁn, z,0), we obtain

1 & s 2£,(0) —~ [ - -
T 3 BRG] = =21 S (i e i) Z ~ 120 OO}

t=p+1 t=p+1

+ 25 i exp( Vi) Zit — 1 2ea| CO)4(0) ~ folsl o}, (5:128)

t=p+1

where |s;| < n~Y2C(1 4 6)|| Zi.n|l/o0. Subsequently, by Lemma S.2 and the Lipschitz
continuity of exp (2/Y;_1,), we can further show that

sup ’% i B[R], (0n, 2,6)|Fio1] + 2V (2)u — 20(2)C3| = 0,(1), (S.129)

z€Z t=p+1
where 0(z) is given by

m+1

52 = 3 [ Bl Vi a(o) exp (Viaoa (@) 2ol 052

From equation (S.128), it is evident that n='/237 . B[R/, (0,, 2, 6)|F—1] is uni-
formly bounded for all n and z. Therefore, by equation (S.129) and applying the

dominated convergence theorem, we conclude that

sup ’% t:%;lE[é:n(Qm 2,0)] + 2V (2)u — 20(2)C6| = o(1). (S.130)

z2€EZ

30



Then, the conclusion (S.127) follows from (5.129) and (S.130).

For the result (ii), based on the definition of R;fn(Gn, z,0) and Assumption 2.7,
and by leveraging the boundedness and the Lipschitz continuity of exp (2’ Y/t—m), it
is straightforward to demonstrate that there exists a constant C} such that for any
21, 29 € Z, the following inequality holds:

sup [— Z {Rin(On, 21,0)} = {Rin (0, 22,0)}?|| < Cillz1 — 2. (5.131)

t=p+1
In addition, (S.125) implies that, for any z € Z, n=' 37" ., {Rin(0,2,0)}% = 0,(1).
Then, by (5.131), we have

sup [— Z {Rin(00, 2, 5)}] 0,(1). (S.132)

€2 MV

Thus, the conclusion holds from (5.125) and (S.132). O

I1I. Proofs for Theorem 7.1

In this section, we present details for Theorem 7.1 in Section 7.

Proof of Theorem 7.1. Analogous to the approach for Theorem 2.1, observe that
G (7) = /n(0,(7) — bp) is the minimizer of the objective function L, (u,7), defined

as:

[n7]

1
L,(u,7) = Z wt,n[!&,n - %Zt/,nld - !e?t,nl],

t=p+1

[nT]

T)+ 2 Z [Cen(w)| Foza] + 20, (u, 7), (S.133)

t=p+1
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where T,(7) = 20" &, and a(u, 7) = S0 {Cun (1) — E[Crn(u)| Fioa]}. We first

establish the following three facts:

T, (7) ~ To(7), (S.134)
o]

sup | 37 Eln(w)] Fooa] — ' Sa(r)uf2| = 0,(1) (S.135)

sup |a(u, 7)| = 0,(1). (S.136)

TET

For (S.134), we first show the asymptotic tightness of T,(7), that is, for any

€, > 0, there exists 6 > 0 such that

limsup P( sup ||T.(71) — Th(m)|| > €) < n. (S5.137)

n—oo |7'1 77'2|<§
Because {&;,} is an m.d.s., by the Burkholder inequality and Assumption 2.7, for any

q > 2 and ky, ko € Z, we have

B(13 6l) < 0, (Tl 1y 5139
t=k1

where C is a constant only relying on w(:) and ¢. Furthermore, by the maximum

inequality in Proposition 1 in Wu (2007) and (S.138), for any k;,d € Z, we have

ki+k d 24-r k1+2"m /
Elo) X )" <2 [Xe0 ¥ al)]”
< 0272 /\/n. (S.139)

Therefore, by the duality argument, (S.139) indicates that for 75 € (0,1) and ¢ > 0,

E( sup | Ty (o + 7) — Tnm)uq) < (2C5)7(6 + 1/n)9/2. (S.140)

|T|<d
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Since T is a subset of (0, 1], for any ¢ € (0,1), we can always divide 7 into the union

U¥s [65_1,6:] with &; — ;1 € (0,6) and ks < 3/6, then by (S.140), it is obvious that
limsup P( sup || T, (1) — To(m)| > €) < C367/>71 /el (S.141)
n—oo |7'177'2|<§

By the fact that ¢ > 2 and the arbitrariness of §, (S.137) holds.

On the other hand, we need prove the finite-dimensional convergence of T, (7).
Without loss of generality, we focus only on the two-dimensional case. Let 5y, s €
R™? and 71,7 € (0,1) with 73 < 7o, then by similar proof procedures for (S.27), it is

not hard to show that

B Tn(m1) + By T(T2) - N(0, B1E1(11) 51 + 26181 (11) B2 + B3%1(72)B2).  (S.142)
As a result, (S.134) holds from (S.137) and (S.142).

For (S.135), by checking the proof process for (S.28) and using (S.34), it is obvious

that
[nT] [nT]
SUP‘ Z Ctn ’-Ft 1 —U Z wthtn ,nft,n(o)}u‘
€T iSpt t=p+1
fu "Zin
< Z wtn/ S[fun(5tm) — FunlO )]ds) = 0,(1). (S.143)
t=p+1

Notice that Assumptions 2.6-2.7 imply that there exists some deterministic constant

Cjy such that for any 7 < 7

[n72]

1
= Y wnZinZinfinl0)| < Cilra = 7+ 1/m). (S.144)

t=[nr]+1
Thus, combine the following point-wise convergence

[nT]

n Z WenZn 2y frn(0) = 2a2(7) + 0p(1), (S.145)

t=p+1
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the conclusion (S.135) holds.
For (S.136), we only need to show the functional version of (5.93) holds, namely,

| Dn (1, 7)]
sup sup ———=—— = 0,(1), (S.146)
fi<n = L+ voful 7

as n — 0o, where D,,(u, 7) is defined as follows.

[n7]

D(u,7) = % S {on() = Elfon(w) Fo]}. (5.147)

t=p+1

Note that for a fixed u, by the Doob’s maximum inequality for the martingale differ-
ence sequence and repeating the procedures as Step 2 in Lemma S.3, we can easily

show that the counterpart of (S.101):

Dn ) 2K€ n 0
P( sup supM > 66) < #, (S.148)
wedtk) 7 1+ +/nlul ne*dj,

where 7, () is defined in (S.99). Then the conclusion can be easily derived following

the same process in Step 3 for Lemma S.3.

Finally, since ¥(7) is invertible for any 7 > 0, then by the continuity of ¥5(7) and
the compactness of 7, the maximum eigenvalue of ¥5(7) is bounded from above and
the minimum eigenvalue of ¥5(7) is bounded away from 0. Meanwhile, notice that
L, (u, ) is convex in u for each 7 and bounded in 7 for each wu, then by Theorem 2 in

Kato (2009) and (S.134)-(S.136), the theorem holds. This completes the proof. [

IV. Additional Simulation Studies

In this section, we extend our analysis with additional simulation results. We main-

tain the same parameters and configurations as detailed in Section 5, with the excep-
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tion that the distribution of the bootstrap weight b; is altered to follow a standard
exponential distribution (i.e., Exp(1)). This modification allows us to explore the
sensitivity of our simulation outcomes to changes in the weight distribution, pro-
viding further insights into the robustness of our methodology. The outcomes of
these simulations are encapsulated in Tables S.1 to S.2. A comparison reveals that
the performance of the bootstrap tests in Sections 3-4 is strikingly similar to those
presented in Tables 7 to 10, suggesting that the bootstrap methodology employed
within this study exhibits a considerable degree of stability regardless of the specific

distributional characteristics of the weight b} .

Table S.1: The size and power of the bootstrap test for the AR(2) coefficient in model (5.7), where

*

7 is altered to follow a standard exponential distribution

ne ~ N(0,1) e~ t3
a@)~ N\ n k=00 k=02 k=04 k=00 k=02 K=04

(5.3) 0.25 400 0.051 0.665 0.995 0.047 0.820 1.000
800  0.043 0.914 1.000 0.043 0.992 1.000

0.50 400 0.047 0.688 0.997 0.043 0.850 1.000

800  0.045 0.944 1.000 0.057 0.991 1.000

0.75 400 0.053 0.734 0.999 0.040 0.879 1.000

800  0.058 0.942 1.000 0.046 0.997 1.000

(5.4) 0.25 400 0.049 0.666 0.999 0.043 0.823 1.000
800  0.050 0.943 1.000 0.053 0.984 1.000

0.50 400 0.054 0.699 0.993 0.041 0.872 1.000

800  0.050 0.928 1.000 0.043 0.998 1.000

0.75 400 0.052 0.726 0.999 0.050 0.915 1.000

800  0.053 0.954 1.000 0.042 0.986 1.000

(5.5) 0.25 400 0.046 0.670 0.997 0.037 0.850 1.000
800  0.053 0.921 1.000 0.056 0.984 1.000

0.50 400 0.041 0.697  0.998 0.053 0.881 1.000

800  0.059 0.947 1.000 0.048 0.991 1.000

0.75 400 0.042 0.700 0.996 0.050 0.895 1.000

800  0.058 0.951 1.000 0.045 0.994 1.000
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Table S.2: The size and power of T, in model (5.8), where b is altered to follow a standard

exponential distribution

g1(z) ~ (5.3) g1(z) ~ (5.4) g1(z) ~ (5.5)

N~ A1 n k=00 =02 k=04 k=00 k=02 £k=04 k=00 k=02 k=04

N(0,1) 0.25 400 0.031 0.379  0.893 0.040  0.700 0.986 0.042  0.362 0.923
800  0.048 0.677  0.997  0.037  0.958 1.000  0.051 0.681 0.997

0.50 400 0.044 0.340  0.857  0.041 0.745 0.996 0.038  0.398 0.916

800  0.039 0.591 0.996 0.067  0.963 1.000  0.045  0.662 0.999

0.75 400 0.046 0.333  0.865 0.051 0.812 1.000  0.031 0.434  0.935

800  0.038 0.585 0.994 0.057 0.988 1.000 0.047 0.701 0.996

t3 0.25 400 0.061 0.332 0.856 0.052 0.690 0.999 0.029 0.308 0.821
800  0.040 0.577 0.993 0.061 0.932 1.000 0.052 0.575 0.980

0.50 400 0.027 0.304 0.841 0.040 0.674 0.993 0.042 0.316 0.801

800  0.044 0.562 0.983 0.045 0.930 1.000 0.057  0.578 0.995

0.75 400 0.035 0.309 0.844 0.038 0.760 0.999 0.038 0.341 0.795

800  0.050 0.582 0.992 0.048  0.945 1.000  0.046  0.557  0.994
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