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Table A.1. Empirical rejection frequencies under the null of no changepoint with covariates - Case

β0 = 1

Weighted CUSUM Standardized CUSUM Weighted Page-CUSUM
ψ 0 0.25 0.45 0.5 0 0.25 0.45

cα,0.5 ĉα,0.5

m m∗

25 0.084 0.083 0.061 0.039 0.066 0.078 0.074 0.066

50 50 0.103 0.107 0.095 0.057 0.083 0.103 0.092 0.084
100 0.126 0.124 0.110 0.071 0.093 0.124 0.119 0.101

200 0.139 0.132 0.121 0.074 0.106 0.136 0.143 0.125

50 0.083 0.077 0.063 0.036 0.056 0.075 0.070 0.060

100 100 0.098 0.091 0.078 0.047 0.074 0.097 0.094 0.080
200 0.103 0.102 0.090 0.061 0.072 0.103 0.111 0.092

400 0.112 0.120 0.106 0.056 0.084 0.112 0.118 0.107

100 0.068 0.050 0.043 0.020 0.032 0.065 0.062 0.047

200 200 0.098 0.087 0.082 0.041 0.070 0.092 0.098 0.092
400 0.095 0.096 0.078 0.044 0.068 0.094 0.098 0.083

800 0.109 0.114 0.091 0.056 0.073 0.103 0.106 0.100

A. Further Monte Carlo evidence and guidelines

A.1. Further Monte Carlo evidence - the case of covariates. We report empirical

rejection frequencies in the presence of covariates in (5.1) in the STUR case; in the Extended

Version,1 we also report the stationary and explosive cases.

1Available at https://drive.google.com/file/d/1KP1p7gomMKEt0bu_K2zoOvKOufnJpSWI/view
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Table A.2. Median delays and empirical rejection frequencies under alternatives - DGP with co-

variates

Weighted CUSUM Standardized CUSUM Weighted Page-CUSUM OB
DGP ψ 0 0.25 0.45 0.5 0 0.25 0.45

cα,0.5 ĉα,0.5

100 52
(0.704)

45
(0.671)

34
(0.622)

36
(0.473)

31
(0.553)

55
(0.704)

45.5
(0.699)

31
(0.656)

Case I
(β0=0.5)

m∗ 200 80
(0.849)

61.5
(0.833)

47
(0.792)

52
(0.662)

46
(0.743)

81
(0.848)

59
(0.846)

43.5
(0.809)

54
(0.807)

400 108.5
(0.915)

79
(0.911)

60
(0.880)

71.5
(0.759)

58
(0.834)

109
(0.909)

78
(0.912)

57
(0.881)

72.5
(0.765)

800 135
(0.972)

94
(0.970)

75
(0.942)

94
(0.846)

81
(0.898)

136
(0.967)

95
(0.962)

70
(0.940)

104
(0.878)

100 15
(1.000)

13
(1.000)

9
(1.000)

11
(1.000)

9
(1.000)

19
(1.000)

13
(1.000)

9
(1.000)

Case II
(β0=1.05)

m∗ 200 24
(1.000)

15
(1.000)

9
(1.000)

11
(1.000)

9
(1.000)

25
(1.000)

15
(1.000)

9
(1.000)

400 27
(1.000)

16
(1.000)

10
(1.000)

11
(1.000)

9
(1.000)

28
(1.000)

16
(1.000)

10
(1.000)

800 30
(1.000)

17
(1.000)

10
(1.000)

11
(1.000)

9
(1.000)

31
(1.000)

17
(1.000)

9
(1.000)

100 27
(0.997)

22
(0.996)

18
(0.995)

22
(0.992)

18
(0.994)

29
(0.998)

22
(0.997)

18
(0.997)

Case III
(β0=1)

m∗ 200 34
(1.000)

25
(1.000)

19
(1.000)

22
(1.000)

18
(1.000)

35
(1.000)

24
(1.000)

18
(1.000)

400 39
(1.000)

26
(1.000)

19
(1.000)

22
(1.000)

18
(1.000)

40
(1.000)

26
(1.000)

18
(1.000)

800 45
(1.000)

27
(1.000)

18
(1.000)

23
(1.000)

19
(1.000)

46
(1.000)

29
(1.000)

18
(1.000)

For each DGP, we report the mean detection delay for only the cases where a changepoint is detected (thus leaving out
the cases where no changepoint is detected). Numbers in round brackets represent the empirical rejection frequencies.
We do not report median delays, unlike in Table 5.4. All medians are around zero.

A.2. Further Monte Carlo evidence - power and delays in the presence of a

smooth break. In a separate set of experiments, we consider power and delays of our

procedure in the presence of a smooth break. In particular, we consider a similar set-up

as in (5.4) in the main paper, with the only change being in the deterministic part of the

autoregressive parameter, viz.

yi = (βi + εi,1) yi−1 + εi,2,
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with

βi =


β0 + ∆

(
i/
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⌋)
I
(
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(
i−m >

⌊
m∗

4

⌋)
, ‘fast transition’,

β0 + ∆
(
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⌋)
I
(
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⌊
m∗

2

⌋)
+ ∆I

(
i−m >
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m∗

2

⌋)
, ‘medium transition’,

β0 + ∆I
(
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⌋) (
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1.25
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(
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⌊
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1.25

⌋)
, ‘slow transition’.

We report results only for the case of no covariates; the case where xi is present, from

preliminary simulations, exhibits exactly the same patterns. As in the previous section,

we report results only for the STUR case; results broadly exhibit the same patterns as in

the case of an abrupt break, although tests based on standardization (i.e., using ψ = 1/2)

now appear to perform slightly worse than tests using ψ < 1/2. Results for the stationary

and explosive cases are reported in the Extended Version of the Supplement.2

Table A.3. Median delays and empirical rejection frequencies under a smooth change - STUR case

Weighted CUSUM Standardized CUSUM Weighted Page-CUSUM
Case III
(β0=1)

ψ 0 0.25 0.45 0.5 0 0.25 0.45

cα,0.5 ĉα,0.5

100 42
(0.992)

40
(0.990)

40
(0.984)

46
(0.966)

42
(0.978)

43
(0.996)

38
(0.996)

38
(0.992)

fast transition m∗ 200 64
(1.000)

60
(1.000)

57
(1.000)

65
(0.996)

61
(1.000)

62
(1.000)

55
(1.000)

53.5
(1.000)

400 102
(1.000)

94
(1.000)

95
(1.000)

107
(1.000)

99
(1.000)

99
(1.000)

90
(1.000)

89
(1.000)

800 165
(1.000)

151
(1.000)

157
(1.000)

179
(1.000)

170
(1.000)

161
(1.000)

148
(1.000)

150
(1.000)

100 56
(0.968)

55
(0.962)

56
(0.940)

63
(0.876)

60
(0.914)

56
(0.984)

53
(0.982)

55
(0.972)

medium transition m∗ 200 93
(0.998)

89
(1.000)

91
(1.000)

102
(0.990)

97
(0.994)

90
(1.000)

83.5
(1.000)

86
(1.000)

400 154
(1.000)

147
(1.000)

154
(1.000)

177
(1.000)

161
(1.000)

149
(1.000)

141
(1.000)

145
(1.000)

800 263
(1.000)

251
(1.000)

270
(1.000)

314
(1.000)

295
(1.000)

251.5
(1.000)

243
(1.000)

257
(1.000)

100 71
(0.882)

70
(0.860)

74
(0.786)

79
(0.624)

76
(0.712)

70
(0.932)

69
(0.924)

72
(0.874)

slow transition m∗ 200 122
(0.992)

120
(0.990)

126
(0.970)

140
(0.894)

133
(0.946)

118
(0.996)

112
(0.996)

118
(0.992)

400 212
(0.998)

208.5
(0.998)

222
(0.998)

258
(0.984)

239
(0.996)

202
(1.000)

194
(1.000)

208
(1.000)

800 369
(1.000)

357
(1.000)

397
()

477
(0.998)

443.5
(0.998)

350.5
(1.000)

346
(1.000)

381
()

We report the median detection delay for only the cases where a changepoint is detected (thus leaving out the cases where
no changepoint is detected). Numbers in round brackets represent the empirical rejection frequencies.

2https://drive.google.com/file/d/1KP1p7gomMKEt0bu_K2zoOvKOufnJpSWI/view
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A.3. Further Monte Carlo evidence - power and delays in the presence of breaks

of variable magnitude. We consider - mainly in order to better gauge how the power of

our procedure works - a further set of simulations for the STUR case, where we replicate

the same exercise (with the same design) but with various sizes of the break ∆. In the

Extended Version of the Supplement,3 we also report results for the explosive case.

Table A.4. Median delays and empirical rejection frequencies for different break mag-
nitudes - STUR case

Weighted CUSUM Standardized CUSUM Weighted Page-CUSUM
Case III
(β0=1.0)

ψ 0 0.25 0.45 0.5 0 0.25 0.45

cα,0.5 ĉα,0.5

100 65
(0.170)

52
(0.156)

37
(0.120)

47
(0.070)

38, 5
(0.098)

60
(0.164)

50
(0.152)

38
(0.126)

∆ = 0.02 m∗ 200 107
(0.298)

92.5
(0.278)

70
(0.240)

79
(0.140)

78
(0.190)

105.5
(0.290)

90
(0.306)

63
(0.252)

400 189
(0.378)

160
(0.368)

119
(0.288)

134
(0.160)

124.5
(0.238)

186
(0.376)

150
(0.370)

121
(0.294)

800 170
(0.416)

220
(0.428)

160.5
(0.314)

250
(0.192)

181
(0.236)

164
(0.404)

232
(0.396)

149
(0.306)

100 62
(0.580)

51
(0.540)

45
(0.440)

48
(0.260)

45
(0.372)

63
(0.570)

55.5
(0.554)

45.5
(0.456)

∆ = 0.04 m∗ 200 94
(0.812)

81
(0.780)

71
(0.684)

83.5
(0.520)

71
(0.602)

97
(0.814)

76
(0.806)

64
(0.710)

400 135
(0.934)

108
(0.914)

100.5
(0.852)

120.5
(0.658)

102
(0.770)

136
(0.924)

107
(0.914)

92
(0.852)

800 157
(0.978)

114
(0.978)

105.5
(0.926)

163.5
(0.778)

131
(0.858)

159
(0.974)

123
(0.966)

107
(0.924)

100 48
(0.926)

42
(0.912)

39
(0.852)

46
(0.702)

40
(0.776)

50
(0.938)

44
(0.932)

39
(0.864)

∆ = 0.06 m∗ 200 64
(0.990)

52
(0.980)

44
(0.976)

60
(0.922)

49
(0.966)

65
(0.992)

49
(0.992)

43
(0.988)

400 78
(1.000)

57
(1.000)

48
(1.000)

67
(0.990)

53
(1.000)

80
(1.000)

57
(1.000)

45
(1.000)

800 85
(1.000)

58
(1.000)

50
(1.000)

67
(0.998)

56
(1.000)

88
(1.000)

60
(1.000)

48.5
(1.000)

100 35.5
(0.990)

29
(0.982)

27
(0.976)

34
(0.938)

28
(0.960)

37
(0.992)

30
(0.992)

27
(0.986)

∆ = 0.08 m∗ 200 44
(1.000)

33
(1.000)

27
(1.000)

33
(0.998)

28
(1.000)

46
(1.000)

32
(1.000)

25
(1.000)

400 53
(1.000)

36
(1.000)

29
(1.000)

36
(1.000)

29
(1.000)

55
(1.000)

36
(1.000)

27
(1.000)

800 58
(1.000)

38
(1.000)

29
(1.000)

37
(1.000)

31
(1.000)

60
(1.000)

40
(1.000)

29
(1.000)

We report the median detection delay for only the cases where a changepoint is detected (thus leaving out the cases where
no changepoint is detected). Numbers in round brackets represent the empirical rejection frequencies.

3https://drive.google.com/file/d/1KP1p7gomMKEt0bu_K2zoOvKOufnJpSWI/view
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B. Further empirical evidence and complements to Section 6

B.1. Complements to Section 6. We complement the analysis and the findings in Sec-

tion 6 in the main paper by briefly describing: (1) the test for the null of stationarity by

Trapani (2021) which we use in Section 6.2; and (2) the ‘linearity test’ for the null that

V ar (εi,1) = 0 by Horváth and Trapani (2019).

The test by Trapani (2021) is based on computing

(B.1) DN =
1

N − p

N∑
i=p+1

vp
vp + y2

i

,

where vp = p−1
∑p

i=1 y
2
i . Within this framework, the null and the alternative hypotheses are

(B.2)

 H0 : yi is strictly stationary

HA : yi is nonstationary
.

In order to use DN , Trapani (2021) proposes a randomization thereof, based on defining

lN = exp
(
exp

((
ln2N

)
×DN

)
− 1
)
,

and randomising lN using an artificial sample of size R, and obtaining a statistic, ΘR,N ,

such that, as min (R,N)→∞

ΘR,N
D∗→ χ2

1 under H0,

R−1ΘR,N
P ∗→ c0 > 0 under HA,

where P ∗ denotes the conditional probability with respect of the sample, and ‘D
∗
→’ and

‘P
∗
→’ denote conditional convergence in distribution and in probability according to P ∗. In

order to wash out dependence on the randomness, Trapani (2021) proposes running the

test for 1 ≤ b ≤ B iterations, each time defining a test statistic Θ
(b)
R,N , and computing the

6



randomized confidence function

(B.3) QR,N,B (α) =
1

B

B∑
b=1

I
[
Θ

(b)
R,N ≤ cα

]
,

where cα is defined as P{χ2
1 ≥ cα} = α, for a given nominal level α ∈ (0, 1). Hence, the

decision rule in favor of H0 is

(B.4) QR,N,B (α) ≥ (1− α)−
√
α (1− α)

√
2 ln lnB

B
.

As far as implementation is concerned, following the suggestions in Trapani (2021), we

have set p = blnNc and R = B = N , where N represents the sample size of the whole

datasets. By way of robustness analysis, we have experimented with different values of R

and B also, but results are unchanged. We note that the test by Trapani (2021) does not

explicitly consider the possibility of changes in V ar (εi,1), but all the results in that paper

can be shown to hold even in the case of shifts in the variance of V ar (εi,1) - essentially, this

is due to the fact that the test checks whether the observations yi explode or not, although,

in the presence of heteroskedasticity, the null hypothesis can no longer be interpreted as

‘strict stationarity’, but merely as ‘non-explosiveness’. We apply the test to the covariates

used in the exercise in Section 6.2 in the main paper in Section B.3 hereafter.

The test by Horváth and Trapani (2019) follows a similar logic, and it is based on testing for

(B.5)

 H0 : Var (ε0,1) = 0

HA : Var (ε0,1) > 0
.

In turn, this is based on estimating V ar (εi,1) using WLS, and subsequently use a similar

randomization as above, thereafter constructing the randomized confidence function ex-

actly as in (B.3). As Table B.1 shows, both Covid-19 hospitalizations and housing prices

follow an RCA model, as opposed to a simple, linear AR model.

7



Table B.1. Tests for random autoregressive coefficients

Variable Period Sample size test NOTES

Covid-19 hospitalizations Apr 11th, 2020 - Aug 15th, 2020 127 0.000
[reject; ]

√
V ar (ε0,1) = 7.99× 10−3

Aug 29th, 2020 - Oct 29th, 2020 62 0.000
[reject; ]

√
V ar (ε0,1) = 2.71× 10−2

Nov 5th, 2020 - Dec 31st, 2020 57 0.000
[reject; ]

√
V ar (ε0,1) = 3.64× 10−2

House prices Aug 20th, 2008 - Jan 14th, 2009 100 0.000
[reject; ]

√
V ar (ε0,1) = 4.19× 10−2

Mar 28th, 2008 - Jan 14th, 2009 200 0.000
[reject; ]

√
V ar (ε0,1) = 3.99× 10−2

The main output in each entry of the table is the value taken by the randomized confidence function QR,N,B(α), testing
for the null hypothesis of no randomness; the number in square brackets represent the threshold against which QR,N,B(α)

is compared.

B.2. Further empirical evidence on UK Covid-19 hospitalization data . We re-

port a graph of the logs of (one plus) the daily hospitalization data with the identified

changepoints in Figure B.1.

Figure B.1. Daily Covid-19 hospitalizations - with changepoints - for England.
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We have conducted, by way of comparison, an ex-post changepoint detection exercise,

applying the techniques developed in Horváth and Trapani (2023) to the whole sample.

We only report results obtained using Rényi statistics (corresponding to using a weighted

version of the CUSUM process with weights κ = 0.51, 0.55, 0.65, 0.75, 0.85 and 1 - see

Horváth and Trapani, 2023 for details).4 As far as breakdates are concerned, we pick

the ones corresponding to the ‘majority vote’ across κ, although discrepancies are, when

present, in the region of few days (2 − 5 at most). We use binary segmentation, as also

discussed in Horváth and Trapani (2023), to detect multiple breaks.

Table B.2. Ex-post changepoint detection for Covid-19 daily hospitalization - England data.

Changepoint 1 Changepoint 2 Changepoint 3 Changepoint 4

Apr 10th, 2020
[1.009]

Aug 26th, 2020
[0.994]

Oct 29th, 2020
[1.010]

Jan 12th, 2021
[1.002]

The series ends at 30 January 2021. We use the logs of the original data (plus one, given that, in some days, hospitalizations
are equal to zero): no further transformations are used.
All changepoints have been detected by all Rényi-type tests - no discrepancies were noted. Detected changepoints, and
their estimated date, are presented in chronological order; breakdates have been estimated as the points in time where the
majority of tests identifies a changepoint. Whilst details are available upon request, we note that breaks were detected
with this order (from the first to be detected to the last one): break in August; break in April; break in January 2021;
break in October.
For each changepoint, we report in square brackets, for reference, the left WLS estimates of β0 - i.e., the value of β0 prior
to the breakdate.

Finally, in Table B.3 we report results using the test by Otto and Breitung (2023), as

discussed in Section 5 in the main paper. Results are indeed quite similar, but note the

(sometimes small, sometimes larger) increase in the detection delay.

B.3. Further empirical evidence on housing data. We report some preliminary in-

formation on our data. In Table B.4, we report the outcome of a standard unit root test

on the three covariates used in our exercise.

4Using other weighing schemes give very similar results, available upon request.
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Table B.3. Online changepoint detection for Covid-19 daily hospitalization - England data; using
Otto and Breitung (2023) test.

Changepoint 1 Changepoint 2 Changepoint 3

Sep 8th, 2020 Nov 14th, 2020 Jan 29th, 2021

β̂ = 0.995
[Apr 11th, 2020 - Aug 15th, 2020]

β̂ = 1.010
[Sep 9th, 2020 - Oct 29th, 2020]

β̂ = 1.002
[Nov 15th, 2020 - Dec 31st, 2020]

The series ends at 30 January 2021. We use the logs of the original data (plus one, given that, in some days, hospitalizations
are equal to zero): no further transformations are used. For each changepoint, we report the sample on which estimation
was performed in square brackets.

Table B.4. Unit root tests applied to covariates

Notes
Variable Period t-ADF Trapani’s (2019) test

levels first differences

AAA Mar 28th, 2008 - Oct 30th, 2009 −1.387
[0.863]

0.000
[reject; 0.9218]

0.942
[not reject; 0.9218]

Daily frequency; trend and intercept used in ADF

GS10 Mar 28th, 2008 - Oct 30th, 2009 −1.463
[0.840]

0.000
[reject; 0.9218]

0.940
[not reject; 0.9218]

Daily frequency; trend and intercept used in ADF

VXO Mar 28th, 2008 - Oct 30th, 2009 −2.682
[0.244]

0.000
[reject; 0.9218]

0.965
[not reject; 0.9218]

Daily frequency; trend and intercept used in ADF

WEI Jan 5th, 2008 - Dec 26th, 2009 3.070
[1.000]

0.000
[reject; 0.9123]

0.922
[not reject; 0.9123]

Weekly frequency; trend and intercept used in ADF

For each series, we have carried out a standard ADF test, choosing the number of lags in the Dickey-Fuller regression
based on BIC. The numbers in square brackets are the p-values.
The test by Trapani (2021) for the null hypothesis of strict stationarity is applied to data in levels and in first differences.
In both cases, the main output is the value taken by the randomized confidence function QR,N,B(α); the number in
square brackets represent the threshold against which QR,N,B(α) is compared.

In Figure B.2, we plot housing prices in Los Angeles between March 28th, 2008, and

October 30th, 2009.

In Table B.5, we report the findings when using the critical values ĉα,0.5 instead of cα,0.5.
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Figure B.2. Logs of daily housing prices in Los Angeles - with estimated changepoint.
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Table B.5. Online changepoint detection for Los Angeles daily housing prices.

Model: yi = (βi + εi,1) yi−1 + εi,2 Model: yi = (βi + εi,1) yi−1 + λ1x1,i + λ2x2,i + εi,2

m∗ 100 200 m∗ 100 200

m m

100 Jun 5th, 2009
[no changepoint found]

Jun 8th, 2009 100 Jun 2nd, 2009 Jun 2nd, 2009

200 Jun 5th, 2009
[no changepoint found]

Jun 8th, 2009 200 May 29th, 2009 May 29th, 2009

Model: yi = (βi + εi,1) yi−1 + λ1x1,i + λ2x2,i + λ3x3,i + εi,2 Model: yi = (βi + εi,1) yi−1 + λ1x1,i + λ2x2,i + λ3x3,i + λ4x4,i + εi,2

m∗ 100 200 m∗ 100 200
m m

100 Jun 2nd, 2009 Jun 2nd, 2009 100 May 18th, 2009 May 18th, 2009

200 May 29th, 2009 May 29th, 2009 200 May 28th, 2009 May 28th, 2009

For each combination of m and m∗, we report the estimated breakdate. For all combinations of m and m∗, monitoring
starts on January 15th, 2009. When m = 100, the training sample covers the period August 20th, 2008, till January 14th,
2009; when m = 200, the training sample covers the period March 28th, 2008, till January 14th, 2009. Similarly, when
m∗ = 100, the monitoring horizon stops at June 9th, 2009; when m∗ = 200, the monitoring horizon stops at October
30th, 2009.
We have used the following notation for the regressors: x1,i denotes the 10 Year US Treasury Constant Maturity Rate,
x2,i denotes the Moody’s Seasoned Aaa Corporate Bond Yield, x3,i is the VXO volatility index, and x4,i is the WEI.
Horváth and Trapani (2023) find evidence of a changepoint on February 3rd, 2009, applying ex-post changepoint detection
to the period January 5th, 1995 to October 23rd, 2012. The deterministic part of the autoregressive coefficient, β, is
found to be equal to 0.99931 in the period before the changepoint, and 1.00007 afterwards.
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C. Extensions

In the main paper, we present our results for the case where (1.1) does not have any

deterministics. This allows for a simple presentation, where the presentation of the main

point (i.e., the test statistics) is not overshadowed by the estimation problem.

Even when the model does not have a constant term, we normally use the LS estimators

(OLS or WLS) with an intercept term fitted. Because in real unprocessed data, fitting

LS estimators without an intercept term tends to induce bias. This is also the standard

practice in the unit root literature and bubble testing literature: although the DGP is

a random walk without a constant (or with a diminishing one which does not affect the

asymptotics), the test statistics are still computed with an intercept term fitted.5 As far

as the RCA model is concerned, of course under nonstationarity the constant term is not

identified, so adding it or not does not make a difference for inference (Aue and Horváth,

2011; Horváth and Trapani, 2023).

In this section, we study the extension of our methodology to the case of an RCA model

with a constant and (for completeness) covariates, viz.

(C.1) yi = µ+ (βi + εi,1) yi−1 + λᵀ0xi + εi,2,

for 1 ≤ i ≤ N , where we base our analysis on the maintained hypothesis that the intercept

µ does not change. We focus on the weighted CUSUM process; for the sake of a concise

discussion, we omit the analysis of the Page-CUSUM detectors, which can be conducted

by adapting the arguments in the main paper and in this section.

As in the main paper, we assume that βi is constant for an initial training period 1 ≤ i ≤

m, and we test for the null hypothesis that

(C.2) H0 : β0 = βm+1 = βm+2 = ...,

5We are grateful to an anonymous Referee for asking the question that led to the results in this section.
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versus the same alternative hypothesis as in (3.13) We consider the following alternative,

where the deterministic part of the autoregressive coefficient of (2.1) undergoes a change

(C.3) yi =

 µ+ (β0 + εi,1) yi−1 + λᵀ0xi + εi,2 1 ≤ i ≤ m+ k∗,

µ+ (βA + εi,1) yi−1 + λᵀ0xi + εi,2 i > m+ k∗,

where, as in the main paper, β0 6= βA and k∗ is the time of change.

In this case, the WLS estimator using the data in the training sample is based on

(C.4) min
µ,β,λ

m∑
i=2

(yi − (µ+ βyi−1 + λᵀxi))
2

1 + y2
i−1

.

Letting, as before, b = (β,λᵀ)ᵀ, and defining the (p+ 1) × 1 vector wi = (yi−1,x
ᵀ
i )
ᵀ, the

solutions to (C.4) are

b̃m(C.5)

=

 m∑
i=2

wiw
ᵀ
i

1 + y2
i−1

−

(
m∑
i=2

1

1 + y2
i−1

)−1( m∑
i=2

wi

1 + y2
i−1

)(
m∑
i=2

wᵀi
1 + y2

i−1

)−1

×

 m∑
i=2

wiyi
1 + y2

i−1

−

(
m∑
i=2

1

1 + y2
i−1

)−1( m∑
i=2

yi
1 + y2

i−1

)(
m∑
i=2

wi

1 + y2
i−1

) ,
and

(C.6) µ̃m =

[
m∑
i=2

1

1 + y2
i−1

]−1 [ m∑
i=2

yi
1 + y2

i−1

− b̃ᵀm

m∑
i=2

wi

1 + y2
i−1

]
.

Hence, our monitoring schemes can be based on the partial sums of the weighted residuals,

using (similarly to (4.3)) the detector

(C.7) Z̃X
m (k) =

∣∣∣∣∣∣
m+k∑
i=m+1

[
yi −

(
µ̃m + b̃ᵀmwi

)]
yi−1

1 + y2
i−1

∣∣∣∣∣∣ , k ≥ 1,
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and the estimate

s̃2
m =

1

m

m∑
i=2

z2
µ,i,

with

zµ,i =

(
yi −

(
µ̃m + β̃myi−1 + λ̃

ᵀ

mxi

))
1 + y2

i−1

yi−1 −

∑m
i=2

yi−1

1 + y2
i−1∑m

i=2
1

1 + y2
i−1

 .

We begin by noting that Horváth and Trapani (2023) show that, in the case with no

covariates in (C.1), that

s̃2
m = s2 +OP

(
m−ζ

)
,

for some ζ > 0. The same result can be shown by adapting their arguments, which we

avoid for the sake of a concise discussion.

Hence, we define the stopping rules for the weighted CUSUM detectors as

(C.8) τ̃
(x)
m,ψ =


inf{k ≥ 1 : Z̃X

m (k) ≥ g
(x)
m,ψ (k)},

∞, if Z̃X
m (k) < g

(x)
m,ψ (k) for all 1 ≤ k <∞,

and

(C.9) τ̃
∗(x)
m,ψ =


inf{k ≥ 1 : Z̃X

m (k) ≥ g
(x)
m,ψ (k)},

m∗, if Z̃X
m (k) < g

(x)
m,ψ (k) for all 1 ≤ k ≤ m∗,

for an open-ended and a closed-ended monitoring procedure respectively, where g(x)
m,ψ (k) is

defined in (4.5), using s̃2
m instead of ŝ2

m.

Let w0 =
(
y−1,x

ᵀ
0

)
. We modify Assumption 3.1 to ensure that the denominator of β̃m is

nonzero with probability 1 (see also Assumption 2 in Horváth and Trapani, 2019).

Assumption C.1. If −∞ ≤ E log |β0 + ε0,1| < 0, then it holds that P (w0 = c) < 1 for

all vectors c.
14



Theorem C.1. We assume that Assumptions of Theorem 3.1 are satisfied, with Assump-

tion 3.1 replaced by Assumption C.1. Then, the same results as in Theorems 3.1-3.4, C.5,

3.7 and 3.8-3.9 hold for (C.8) and (C.9).
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D. Preliminary lemmas

We will use the following facts and notation: ‘ D→’ denotes convergence in distribution; ‘D=’

denotes equality in distribution; c1, c2, ... denote positive, finite constants which do not

depend on sample sizes, and whose values may change from line to line.

Recall (2.1) under H0

yi = (β0 + εi,1) yi−1 + εi,2.

If E log |β0 + ε0,1| < 0, define the stationary solution

(C.1) yi =
∞∑
`=0

(∏̀
j=1

(β0 + εi−j,1)

)
εi−`,2,

with the convention that
∏
� = 0. Finally, let

(C.2) a3 = E

(
y2

0

1 + y2
0

)
.

Lemma C.1. We assume that Assumption 2.1 is satisfied and that E log |β0 + ε0,1| < 0.

Under H0, it holds that there exist a κ > 0 and a 0 < c < 1 such that

E |yi − yi|
κ = O

(
ci
)
,

as i→∞.

Proof. The proof is similar to the proof of Lemma A.2 in Horváth and Trapani (2016).

Consider the expression

yi − yi = y0

i∏
s=1

(β0 + εs,1)−
0∑

s=−∞

εs,2

i−1∏
z=s

(β0 + εz+1,1) ,

and note that, choosing κ < 1, Minkowski’s inequality yields

E |yi − yi|
κ ≤ E |y0|κ

i∏
s=1

|β0 + εs,1|κ + E

∣∣∣∣∣
0∑

s=−∞

εs,2

i−1∏
z=s

(β0 + εz+1,1)

∣∣∣∣∣
κ
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≤ E |y0|κ
i∏

s=1

E |β0 + εs,1|κ +
0∑

s=−∞

E |εs,2|κ
i−1∏
z=s

E |β0 + εz+1,1|κ .

Aue et al. (2006) show (see the proof of their Lemma 2) that E |β0 + ε0,1|κ = c < 1; hence

the expression above becomes

E |yi − yi|
κ ≤ E |y0|κ ci + E |ε0,2|κ

0∑
s=−∞

ci−s ≤ c0c
i,

whence the desired result. �

Lemma C.2. We assume that Assumption 2.1 is satisfied. Under H0, it holds that

(i) if E log |β0 + ε0,1| < 0, then∣∣∣∣∣∣
(

m∑
i=2

y2
i−1

1 + y2
i−1

)−1( m∑
i=2

εi,1y
2
i−1

1 + y2
i−1

)
− 1

ma3

(
m∑
i=2

εi,1y
2
i−1

1 + y2
i−1

)∣∣∣∣∣∣ = OP

(
1

m

)
,(C.3)

∣∣∣∣∣∣
(

m∑
i=2

y2
i−1

1 + y2
i−1

)−1( m∑
i=2

εi,2yi−1

1 + y2
i−1

)
− 1

ma3

(
m∑
i=2

εi,2yi−1

1 + y2
i−1

)∣∣∣∣∣∣ = OP

(
1

m

)
;(C.4)

(ii) if either E log |β0 + ε0,1| = 0 and Assumption 3.2 holds, or E log |β0 + ε0,1| > 0 and

Assumption 3.3 holds, then∣∣∣∣∣∣
(

m∑
i=2

y2
i−1

1 + y2
i−1

)−1( m∑
i=2

εi,1y
2
i−1

1 + y2
i−1

)
− 1

m

m∑
i=2

εi,1

∣∣∣∣∣∣ = OP

(
m−1/2−ζ) ,(C.5)

∣∣∣∣∣∣
(

m∑
i=2

y2
i−1

1 + y2
i−1

)−1( m∑
i=2

εi,2yi−1

1 + y2
i−1

)∣∣∣∣∣∣ = OP

(
m−1/2−ζ) ,(C.6)

for some ζ > 0.

Proof. We begin by showing (C.3)-(C.4). By Lemma C.1 and elementary algebra

∞∑
i=2

|εi,1|
∣∣∣∣ y2

i−1

1 + y2
i−1

−
y2
i−1

1 + y2
i−1

∣∣∣∣ ≤ ∞∑
i=2

|εi,1|
∣∣y2
i−1 − y2

i−1

∣∣ ≤ ∞∑
i=2

|εi,1|
∣∣yi−1 − yi−1

∣∣ (|yi−1|+
∣∣yi−1

∣∣) .
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Since we can assume that κ < 1, it follows that

E

(
∞∑
i=2

|εi,1|
∣∣∣∣ y2

i−1

1 + y2
i−1

−
y2
i−1

1 + y2
i−1

∣∣∣∣
)κ/2

≤
∞∑
i=2

(
E |εi,1|κ/2

)
E
(∣∣yi−1 − yi−1

∣∣κ/2 (|yi−1|+
∣∣yi−1

∣∣)κ/2)
≤
∞∑
i=2

(
E |εi,1|κ/2

) (
E
∣∣yi−1 − yi−1

∣∣κ)1/2 (
E |yi−1|κ + E

∣∣yi−1

∣∣κ)1/2

<∞,

having used Assumption 2.1. Hence by Markov’s inequality it follows that

(C.7)
∞∑
i=2

|εi,1|
∣∣∣∣ y2

i−1

1 + y2
i−1

−
y2
i−1

1 + y2
i−1

∣∣∣∣ = OP (1) ,

and by the same logic it also follows that

∞∑
i=2

∣∣∣∣ y2
i−1

1 + y2
i−1

−
y2
i−1

1 + y2
i−1

∣∣∣∣ = OP (1) .

By Lemmas D.1-D.4 in Horváth and Trapani (2023), the sequence y2
i−1/

(
1 + y2

i−1

)
is a

decomposable Bernoulli shift with all moments; hence, by Proposition 4.1 in Berkes et al.

(2011) it follows that ∣∣∣∣∣
m∑
i=2

y2
i−1

1 + y2
i−1

−ma3

∣∣∣∣∣ = OP

(
m1/2

)
,

where a3 is defined in (C.2), and similarly∣∣∣∣∣
m∑
i=2

εi,1y
2
i−1

1 + y2
i−1

∣∣∣∣∣ = OP

(
m1/2

)
.

Equation (C.3) now follows; (C.4) follows also from exactly the same logic.
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We now turn to showing (C.5) and (C.6). When E log |β0 + ε0,1| = 0, Lemma A.4 in

Horváth and Trapani (2016) implies that

(C.8) P
{
|yi| ≤ iκ

}
≤ ci−κ;

when E log |β0 + ε0,1| > 0, Berkes et al. (2009) show that |yi| → ∞ a.s. exponentially fast,

which implies (C.8). Hence by (C.8) it follows that

m∑
i=2

E

∣∣∣∣ y2
i−1

1 + y2
i−1

− 1

∣∣∣∣ =
m∑
i=2

E

∣∣∣∣ 1

1 + y2
i−1

∣∣∣∣ I (|yi| ≤ iκ
)
+

m∑
i=2

E

∣∣∣∣ 1

1 + y2
i−1

∣∣∣∣ I (|yi| > iκ
)

= O
(
m1−κ) .

By the independence between εi,1 and yi−1 and by Assumption 2.1, it follows that

E

(
m∑
i=2

εi,1

(
y2
i−1

1 + y2
i−1

− 1

))2

=
m∑
i=2

Eε2i,1E

(
y2
i−1

1 + y2
i−1

− 1

)2

= O
(
m1−κ) ,

and similarly

E

(
m∑
i=2

εi,2yi−1

1 + y2
i−1

)2

= O
(
m1−κ) .

The proof of (C.5) and (C.6) is now complete. �

Consider now the decomposition

(C.9) Zm (k) =

∣∣∣∣∣(β0 − β̂m
) m+k∑
i=m+1

y2
i−1

1 + y2
i−1

+
m+k∑
i=m+1

εi,1y
2
i−1

1 + y2
i−1

+
m+k∑
i=m+1

εi,2yi−1

1 + y2
i−1

∣∣∣∣∣ ,
where β̂m is the WLS estimator computed using {y1, ..., ym}.

In the next lemma, we obtain asymptotic representations for the terms in (C.9).

Lemma C.3. We assume that Assumption 2.1 is satisfied. Under H0:

(i) if E log |β0 + ε0,1| < 0, then

max
1≤k<∞

k−1/2−η

∣∣∣∣∣
m+k∑
i=m+1

y2
i−1

1 + y2
i−1

− ka3

∣∣∣∣∣ = OP (1) ,(C.10)
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max
1≤k<∞

∣∣∣∣∣
m+k∑
i=m+1

εi,1y
2
i−1

1 + y2
i−1

−
m+k∑
i=m+1

εi,1y
2
i−1

1 + y2
i−1

∣∣∣∣∣ = OP (1) ,(C.11)

max
1≤k<∞

∣∣∣∣∣
m+k∑
i=m+1

εi,2yi−1

1 + y2
i−1

−
m+k∑
i=m+1

εi,2yi−1

1 + y2
i−1

∣∣∣∣∣ = OP (1) ,(C.12)

for all η > 0;

(ii) if either E log |β0 + ε0,1| = 0 and Assumption 3.2 holds, or E log |β0 + ε0,1| > 0 and

Assumption 3.3 holds, then

max
1≤k<∞

k−1

∣∣∣∣∣
m+k∑
i=m+1

y2
i−1

1 + y2
i−1

− k

∣∣∣∣∣ = OP

(
m−ζ

)
,(C.13)

max
1≤k<∞

k−1/2−η

∣∣∣∣∣
m+k∑
i=m+1

εi,1y
2
i−1

1 + y2
i−1

−
m+k∑
i=m+1

εi,1

∣∣∣∣∣ = OP

(
m−ζ

)
,(C.14)

max
1≤k<∞

k−1/2−η

∣∣∣∣∣
m+k∑
i=m+1

εi,2yi−1

1 + y2
i−1

∣∣∣∣∣ = OP

(
m−ζ

)
,(C.15)

for some ζ > 0 and for all η > 0.

Proof. We begin by considering the stationary case E log |β0 + ε0,1| < 0. On account of

the proof of Lemma C.2, (C.10) follows if we show

max
1≤k<∞

k−1/2−η

∣∣∣∣∣
m+k∑
i=m+1

y2
i−1

1 + y2
i−1

− ka3

∣∣∣∣∣ = OP (1) .

This follows immediately, since y2
i−1/

(
1 + y2

i−1

)
is a decomposable Bernoulli shift with all

moments, and the result is implied by the strong approximation in Aue et al. (2014).

Further, (C.11) follows immediately from (C.7); (C.12) can be shown by the same logic.

Consider now the case E log |β0 + ε0,1| ≥ 0. By (C.8)

E
∞∑

i=m+1

1

i

1

1 + y2
i−1

= O
(
m−κ̂

)
,
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for all κ̂ < κ. Hence, Abel’s summation formula yields

1

k

m+k∑
i=m+1

1

1 + y2
i−1

=
m+k∑
i=m+1

1

i

1

1 + y2
i−1

− 1

k

m+k−1∑
i=m+1

((i+ 1)− i)

(
i∑

j=m+1

1

j

1

1 + y2
j−1

)
.

Given that

1

k

m+k−1∑
i=m+1

E

(
i∑

j=m+1

1

j

1

1 + y2
j−1

)
≤ E

∞∑
j=m+1

1

j

1

1 + y2
j−1

= O
(
m−κ̂

)
,

(C.13) follows fromMarkov’s inequality. Letting Fi be the σ-field generated by {(εj,1, εj,2) , j ≤ i},

note that

E

(
εi,1

1 + y2
i−1

∣∣∣∣Fi−1

)
= 0,

and therefore the sequence εi,1/
(
1 + y2

i−1

)
is a martingale difference sequence. Also, using

the Burkholder’s inequality (see e.g. Theorem 2.10 in Hall and Heyde, 2014) and (C.8)

E

∣∣∣∣∣
m+k∑
i=m+1

E

[(
εi,1

1 + y2
i−1

)2
∣∣∣∣∣Fi−1

]∣∣∣∣∣
ν

(C.16)

≤c1E

(
m+k∑
i=m+1

E

(
1

1 + y2
i−1

)2
)ν/2

≤ c2k
ν/2−1

m+k∑
i=m+1

(
E

(
1(

1 + y2
i−1

)ν
))

≤c2k
ν/2−1

m+k∑
i=m+1

(
E

(
1(

1 + y2
i−1

)ν I (|yi| ≤ iκ
))

+ E

(
1(

1 + y2
i−1

)ν I (|yi| > iκ
)))

≤kν/2−1

m+k∑
i=m+1

(
c3i
−κ + c4i

−2νκ
)
≤ c5

kν/2

mκ
.

Similarly, we have

(C.17)
m+k∑
i=m+1

E

∣∣∣∣ εi,1
1 + y2

i−1

∣∣∣∣ν ≤ c6

m+k∑
i=m+1

E

∣∣∣∣ 1

1 + y2
i−1

∣∣∣∣ν ≤ c7
k

mκ
.
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Using (C.16) and (C.17), and Rosenthal’s maximal inequality for martingale difference

sequences (see e.g. Theorem 2.12 in Hall and Heyde, 2014), it follows that

(C.18) E max
1≤j≤k

∣∣∣∣∣
m+j∑
i=m+1

εi,1
1 + y2

i−1

∣∣∣∣∣
ν

≤ c8
kν/2

mκ
.

We now show (C.14) by noting that

P

{
max

1≤k<∞
k−1/2−η

∣∣∣∣∣
m+k∑
i=m+1

εi,1
1 + y2

i−1

∣∣∣∣∣ > x

}

≤
∞∑
`=0

P

{
max

exp(`)≤k≤exp(`+1)
k−1/2−η

∣∣∣∣∣
m+k∑
i=m+1

εi,1
1 + y2

i−1

∣∣∣∣∣ > x

}

≤
∞∑
`=0

P

{
max

exp(`)≤k≤exp(`+1)

∣∣∣∣∣
m+k∑
i=m+1

εi,1
1 + y2

i−1

∣∣∣∣∣ > x exp

(
`

(
1

2
+ η

))}

≤c9x
−ν

∞∑
`=0

exp

(
−ν`

(
1

2
+ η

))
E max

1≤k≤exp(`+1)

∣∣∣∣∣
m+k∑
i=m+1

εi,1
1 + y2

i−1

∣∣∣∣∣
ν

≤c10x
−νm−κ

∞∑
`=0

exp

(
−ν`

(
1

2
+ η

)
+
ν

2
(`+ 1)

)
,

whence (C.14) follows immediately with ζ = κ. Equation (C.15) can be shown using the

same logic. �

Lemma C.4. We assume that Assumption 2.1 is satisfied. Under H0

(i) if E log |β0 + ε0,1| < 0, then we can define two independent standard Wiener processes

{Wm,1 (k) , 1 ≤ k ≤ m} and {Wm,2 (k) , 1 ≤ k <∞}, whose distribution does not depend on

m, such that

max
1≤k<m

k−1/2+ζ

∣∣∣∣∣
m∑
i=2

(
εi,1y

2
i−1

1 + y2
i−1

+
εi,2yi−1

1 + y2
i−1

)
− s1/2Wm,1 (k)

∣∣∣∣∣(C.19)

=OP (1) ,
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max
1≤k<∞

k−1/2+ζ

∣∣∣∣∣
m+k∑
i=m+1

(
εi,1y

2
i−1

1 + y2
i−1

+
εi,2yi−1

1 + y2
i−1

)
− s1/2Wm,2 (k)

∣∣∣∣∣(C.20)

=OP (1) ,

for some ζ > 0;

(ii) if either E log |β0 + ε0,1| = 0 and Assumption 3.2 holds, or E log |β0 + ε0,1| > 0 and

Assumption 3.3 holds, then

max
1≤k≤m

k−1/2+ζ

∣∣∣∣∣
k∑
i=1

εi,1 − σ1Wm,1 (k)

∣∣∣∣∣ = OP (1) ,(C.21)

max
1≤k<∞

k−1/2+ζ

∣∣∣∣∣
m+k∑
i=m+1

εi,1 − σ2Wm,2 (k)

∣∣∣∣∣ = OP (1) ,(C.22)

for some ζ > 0.

Proof. Horváth and Trapani (2023) show that
(
εi,1y

2
i−1 + εi,2yi−1

)
/
(
1 + y2

i−1

)
is a decom-

posable Bernoulli shift under −∞ ≤ E log |β0 + ε0,1| < 0. Hence, the strong approxima-

tion shown in Aue et al. (2014) immediately yields (C.19) and (C.20). Equations (C.21)

and (C.22) follow directly from Komlós et al. (1975) and Komlós et al. (1976). �

Let

(C.23) Γm (k) =

 s1/2 |Wm,2 (k)− kWm,1 (m)| if E log |β0 + ε0,1| < 0 holds,

σ1 |Wm,2 (k)− kWm,1 (m)| if E log |β0 + ε0,1| ≥ 0 holds.

Lemma C.5. Let βm be a sequence such that, as m → ∞, γm → ∞ with γm = o (m).

Then, if assumptions of Theorem 3.4 are satisfied, it holds that under H0

max
γm≤k≤m∗

|Zm (k)− Γm (k)|

m1/2

(
1 +

k

m

)(
k

m+ k

)1/2
= OP

(
βζ−1/2
m

)
,

for some 0 < ζ < 1/2.
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Proof. Upon following the proof of (D.1), it can be shown that there exists a 0 < ζ < 1/2

such that

max
1≤k≤m∗

(
kζ +

k

m
mζ

)−1

|Zm (k)− Γm (k)| = OP (1) .

Hence we have

max
γm≤k≤m∗

|Zm (k)− Γm (k)|

m1/2

(
1 +

k

m

)(
k

m+ k

)1/2

=OP (1) max
γm≤k≤m∗

kζ + k
m
mζ

m1/2

(
1 +

k

m

)(
k

m+ k

)1/2

=OP

(
γζ−1/2
m

)
+OP

(
mζ−1/2

)
= OP

(
γζ−1/2
m

)
.

�

Lemma C.6. We assume that the conditions of Theorem 3.4 hold. Let

γm∗ = O
(
exp

(
log (m∗)1−ε)) ,

with ε > 0 and arbitrarily small. Then, under H0, on a suitably enlarged space, it

is possible to construct two independent Wiener processes {Wm,1 (k) , 1 ≤ k ≤ Tm} and

{Wm,2 (k) , 1 ≤ k ≤ m} whose distribution does not depend on m, such that

max
γm∗≤k≤m∗

∣∣∣∣∣∣∣∣
|Zm (k)|
gm,0.5 (k)

−

∣∣∣∣Wm,2 (k)− k

m
Wm,1 (m)

∣∣∣∣
gm,0.5 (k)

∣∣∣∣∣∣∣∣ = OP

(
exp

(
−c0 log (m∗)1−ε)) ,

for some 0 < c0 < 1/2.

Proof. The proof follows from the same arguments as Lemma C.5, of which this lemma is

a special case. �
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We now report some preliminary results to prove the main results in Section 4. We begin

by studying the WLS estimator β̂m. Define

Qm =


y1 xᵀ2

y2 xᵀ3

. .

ym−1 xᵀm


,

and the diagonal matrix

Wm = diag
{

1

1 + y2
1

,
1

1 + y2
2

, ...,
1

1 + y2
m−1

}
.

Then it holds that

b̂m = (QᵀmWmQm)−1 QᵀmWmYm,

where Ym = (y2, y3, ..., ym)ᵀ. Using the recursion defined in (4.1), we obtain

b̂m − b0 = (QᵀmWmQm)−1 QᵀmWmEm,

having defined b0 = (β0,λ
ᵀ
0)ᵀ and

Em = (ε1,2y1 + ε2,2, ε1,3y2 + ε2,3, ..., ε1,mym−1 + ε2,m)ᵀ .

Based on the above, under the condition for stationarity E log |β0 + ε0,1| < 0, it can be

verified that

yi = (β0 + εi,1) yi−1 + λᵀ0xi + εi,2, −∞ < i <∞,

has a unique stationary, causal solution. Consider the variables

zi =
1(

1 + y2
i−1

)1/2

(
yi−1,x

ᵀ
i

)ᵀ
,(C.24)
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ηi =

((
εi,1yi−1 + εi,2

)
yi−1

1 + y2
i−1

,

(
εi,1yi−1 + εi,2

)
xᵀi

1 + y2
i−1

)ᵀ
,(C.25)

and define

(C.26) Q = E (z1z
ᵀ
1) ,

(C.27) C = E (η0η
ᵀ
0) ,

and

(C.28) a = E

(
(y1,x

ᵀ
2)ᵀ y1

1 + y2
1

)
.

Lemma C.7. We assume that E log |β0 + ε0,1| < 0, and that Assumptions 2.1, 4.1 and

4.2 are satisfied. Then it holds that

b̂m − b0 =
1

m
Q−1

m∑
i=2

ηi + oP
(
m−1/2−ζ) ,

for some ζ > 0, where ηi and Q are defined in (C.25) and (C.26).

Proof. We begin by writing explicitly the solution of (4.1) as

(C.29) yi =
∞∑
`=0

(∏̀
j=1

(β0 + εi−j,1)

)(
xᵀi−`λ0 + εi−`,2

)
,

with the convention that
∏
� = 0. With minor modifications of the arguments in Aue

et al. (2006), it can be shown that there exist a κ > 0 and a constant 0 < c < 1 such that

(C.30) E |yi − yi|
κ = O

(
ci
)
,

as i→∞. Using (C.30) it can be shown that

∥∥QᵀmWmQm −Qm

∥∥ = OP (1) ,
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where

Qm =
m∑
i=2

ziz
ᵀ
i ,

and zi is constructed in the same way as zi defined in (C.24), replacing yi with yi. We now

show that yi defined in (C.29) is a decomposable Bernoulli shift. Indeed, let

yi,k =
k∑
`=0

(∏̀
j=1

(β0 + εi−j,1)

)(
xᵀi−`λ0 + εi−`,2

)
+

∞∑
`=k+1

(∏̀
j=1

(
β0 + ε∗i−j,1

)) (
xᵀi−`,kλ0 + ε∗i−`,2

)
,

where for ` ≥ 0

xi−`,k =

 g
(
ηi−`, ηi−`−1, ..., ηk, η

∗
k−1, η

∗
k−2, ...

)
if ` < i− k,

g
(
η∗i−`, η

∗
i−`−1, ...

)
if ` ≥ i− k,

the η∗js are independent copies of η0,
(
ε∗j,1, ε

∗
j,2

)
are independent copies of (ε0,1, ε0,2), and the

sequences
{
ηj,−∞ < j <∞

}
,
{
η∗j ,−∞ < j <∞

}
, {(εj,1, εj,2) ,−∞ < j <∞} and

{(
ε∗j,1, ε

∗
j,2

)
,

−∞ < j <∞} are independent. Defining ui−` = xᵀi−`λ0 + εi−`,2, and recalling Assump-

tions 4.1 and 4.2, by the same arguments as in Aue et al. (2006) we can show that, under

E log |β0 + ε0,1| < 0, there exists a κ > 0 such that

E |β0 + ε0,1|κ < 1.

Using κ < 1, we have

E

∣∣∣∣∣
∞∑

`=k+1

(∏̀
j=1

(β0 + εi−j,1)

)(
xᵀi−`λ0 + εi−`,2

)∣∣∣∣∣
κ/2

≤
∞∑

`=k+1

E

∣∣∣∣∣∏̀
j=1

(β0 + εi−j,1)

∣∣∣∣∣
κ/2 ∣∣xᵀi−`λ0 + εi−`,2

∣∣κ/2
≤

∞∑
`=k+1

(
E

∣∣∣∣∣∏̀
j=1

(β0 + εi−j,1)

∣∣∣∣∣
κ)1/2 (

E
∣∣xᵀi−`λ0 + εi−`,2

∣∣κ)1/2
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=
∞∑

`=k+1

(E |β0 + ε0,1|κ)`/2 (E |xᵀ0λ0 + ε0,2|κ)1/2

≤c1

∞∑
`=k+1

ρ`/2 ≤ c2c
k
3,

where ρ = E |β0 + ε0,1|κ, and 0 < c3 < 1, having used Assumptions 4.1 and 4.2. By the

same token, we have

E

∣∣∣∣∣
∞∑

`=k+1

(∏̀
j=1

(
β0 + ε∗i−j,1

)) (
xᵀi−`,kλ0 + ε∗i−`,2

)∣∣∣∣∣
κ/2

≤
∞∑

`=k+1

E

∣∣∣∣∣∏̀
j=1

(
β0 + ε∗i−j,1

)∣∣∣∣∣
κ/2 ∣∣xᵀi−`,kλ0 + ε∗i−`,2

∣∣κ/2
≤

∞∑
`=k+1

(
E

∣∣∣∣∣∏̀
j=1

(
β0 + ε∗i−j,1

)∣∣∣∣∣
κ)1/2 (

E
∣∣xᵀi−`,kλ0 + ε∗i−`,2

∣∣κ)1/2

=
∞∑

`=k+1

(E |β0 + ε0,1|κ)`/2 (E |xᵀ0λ0 + ε0,2|κ)1/2 ≤ c4c
k
5,

with 0 < c5 < 1. Hence it holds that

(C.31) E
∣∣yi − yi,k∣∣κ ≤ c6c

κ
7 ,

for some c6 > 0 and 0 < c7 < 1, which shows that yi is a decomposable Bernoulli shift.

This immediately yields, by the approximations developed in Aue et al. (2014), that

(C.32)
∥∥∥∥ 1

m
Qm −Q

∥∥∥∥ = OP

(
m−1/2

)
.

We now turn to studying the numerator of β̂m − β0. We begin with some preliminary

results. Using (C.31), it follows that, for all κ3 > 0 and for c7 < c9 < 1

E

∣∣∣∣ y2
i

1 + y2
i

−
y2
i,k

1 + y2
i,k

∣∣∣∣(C.33)
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≤E

∣∣∣∣∣ |yi|+
∣∣yi,k∣∣

(1 + y2
i )
(
1 + y2

i,k

) ∣∣yi − yi,k∣∣
∣∣∣∣∣
κ3

≤E
(
c8

∣∣yi − yi,k∣∣ I (∣∣yi − yi,k∣∣ ≤ ck9
)

+ c10I
(∣∣yi − yi,k∣∣ ≥ ck9

))κ3
≤c11c

kκ3
9 + c12P

(∣∣yi − yi,k∣∣ ≥ ck9
)
≤ c11c

kκ3
9 + c12c

−k
9 E

∣∣yi − yi,k∣∣
≤c13c

k
14,

for some 0 < c9 < 1. Using the same arguments, for all κ4 < κ1

(C.34) E

∥∥∥∥ xiyi−1

1 + y2
i−1

−
xi,kyi−1,k

1 + y2
i−1,k

∥∥∥∥κ4 ≤ c15c
k
16,

and for all κ5 < κ2/2

(C.35) E

∥∥∥∥ xix
ᵀ
i

1 + y2
i−1

−
xi,kx

ᵀ
i,k

1 + y2
i−1,k

∥∥∥∥κ5 ≤ c17c
k
18,

where 0 < c16, c18 < 1. This entails that all the sequences studied above are decomposable

Bernoulli shifts. Thus ∥∥QᵀmWmEm − Em

∥∥ = OP (1) ,

where

Em =
m∑
i=2

ηi,

and ηi is defined in (C.25).Repeating the arguments above, it can also be shown that, for

all κ6 < κ1

E
∥∥ηi − ηi,k

∥∥κ6 ≤ c19c
k
20,

with ηi,k defined as the other coupling constructions above and 0 < c20 < 1. The final

result now follows from the strong approximation derived in Aue et al. (2014). �
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Lemma C.8. We assume that E log |β0 + ε0,1| < 0, and that Assumptions 2.1, 4.1 and

4.2 are satisfied. Then it holds that

(C.36) max
1≤k<∞

k−1/2−η

∥∥∥∥∥
m+k∑
i=m+1

(yi−1,x
ᵀ
i )

yi−1

1 + y2
i−1

− ka

∥∥∥∥∥ = OP (1) ,

for all η > 0, and

(C.37) max
1≤k<∞

∣∣∣∣∣
m+k∑
i=m+1

(εi,1yi−1 + εi,2) yi−1

1 + y2
i−1

−
m+k∑
i=m+1

(
εi,1yi−1 + εi,2

)
yi−1

1 + y2
i−1

∣∣∣∣∣ = OP (1) .

Proof. The proof is based on the results derived in the proof of Lemma C.7. Equation

(C.36) follows from exactly the same arguments as the proof of (C.10), and (C.37) follows

from the proof of (C.11)-(C.12). �

Lemma C.9. We assume that E log |β0 + ε0,1| < 0, and that Assumptions 2.1, 4.1 and

4.2 are satisfied. Then, on a suitably enlarged probability space, it is possible to define two

independent Wiener processes {Wm,1 (k) , 1 ≤ k ≤ m} and {Wm,2 (k) , 1 ≤ k <∞}, whose

distributions do not depend on m, such that∣∣∣∣∣
m∑
i=2

aᵀQηi − sx,1Wm,1 (m)

∣∣∣∣∣ = OP

(
m1/2−ζ) ,

and

max
1≤k<∞

1

k1/2−ζ

∣∣∣∣∣
m+k∑
i=m+1

(
εi,1yi−1 + εi,2

)
yi−1

1 + y2
i−1

− sx,2Wm,2 (k)

∣∣∣∣∣ = OP (1) ,

for some 0 < ζ < 1/2, where sx,1 and sx,2 are defined in (4.7).

Proof. In the proof of Lemma C.7 we have shown that ηi is a decomposable Bernoulli shift;

the desired result follows from Aue et al. (2014). �
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Lemma C.10. We assume that E log |β0 + ε0,1| > 0, and that Assumptions 2.1, 4.1-4.3

are satisfied. Then it holds that

∥∥∥b̂m − b0

∥∥∥ = OP

(
m−1/2

)
.

Proof. Recall that

b̂m − b0 = (QᵀmWmQm)−1 QᵀmWmEm.

Repeating the proof of Theorem 3.1 in Berkes et al. (2009), it follows that |yi| → ∞ a.s.

exponentially fast; this immediately yields

‖QᵀmWmQm −Bm‖ = OP (1) ,

where Bm is a (p+ 1) × (p+ 1) symmetric matrix with elements {Bi,j, 1 ≤ i, j ≤ p+ 1}

defined as

B1,1 = m,

(B1,2, ..., B1,p+1) =
∞∑
i=2

xᵀi yi−1

1 + y2
i−1

,

{Bi,j, 2 ≤ i, j ≤ p+ 1} =
∞∑
i=2

xix
ᵀ
i

1 + y2
i−1

.

Since we already know from the above that ‖Em‖ = OP

(
m1/2

)
, the result follows immedi-

ately. �
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E. Proofs

Proof of Theorem 3.1. Recall (C.23). We begin by showing that

(D.1) max
1≤k<∞

|Zm (k)− Γm (k)|

m1/2

(
1 +

k

m

)(
k

m+ k

)ψ = oP (1) .

We begin by considering the case E log |β0 + ε0,1| < 0; we write

(
β0 − β̂m

) m+k∑
i=m+1

y2
i−1

1 + y2
i−1

+
k

m

m∑
i=2

(
εi,1y

2
i−1

1 + y2
i−1

+
εi,2yi−1

1 + y2
i−1

)

=
(
β0 − β̂m

)( m+k∑
i=m+1

y2
i−1

1 + y2
i−1

− ka3

)

− ka3

( m∑
i=2

y2
i−1

1 + y2
i−1

)−1

− 1

ma3

( m∑
i=2

(
εi,1y

2
i−1

1 + y2
i−1

+
εi,2yi−1

1 + y2
i−1

))

+
k

m

m∑
i=2

(
εi,1

(
y2
i−1

1 + y2
i−1

−
y2
i−1

1 + y2
i−1

)
+ εi,2

(
yi−1

1 + y2
i−1

− yi−1

1 + y2
i−1

))
=Rm,1 (k) +Rm,2 (k) +Rm,3 (k) .

Using Lemmas C.2 and C.3 with η < 1/2

max
1≤k<∞

|Rm,1 (k)|

m1/2

(
1 +

k

m

)(
k

m+ k

)ψ
=OP

(
m−1

)
max

1≤k≤M

k1/2+η(
1 +

k

m

)(
k

m+ k

)ψ
+OP

(
m−1

)
max

M<k<∞

k1/2+η(
1 +

k

m

)(
k

m+ k

)ψ
=OP (1)

(
m−1/2 max

1≤k≤M
kη + max

M<k<∞
kη−1/2

)
= oP (1) .
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Using the same logic, it can also be shown that

max
1≤k<∞

|Rm,2 (k)|

m1/2

(
1 +

k

m

)(
k

m+ k

)ψ = oP (1) ,

max
1≤k<∞

|Rm,3 (k)|

m1/2

(
1 +

k

m

)(
k

m+ k

)ψ = oP (1) .

Using Lemma C.4, it follows that

max
1≤k<∞

∣∣∣∣∣ km
m∑
i=2

(
εi,1y

2
i−1

1 + y2
i−1

+
εi,2yi−1

1 + y2
i−1

)
− k

m

(
a1σ

2
1 + a2σ

2
2

)1/2
Wm,1 (m)

∣∣∣∣∣
m1/2

(
1 +

k

m

)(
k

m+ k

)ψ(D.2)

=OP (1) max
1≤k<∞

k

m

m1/2−ζ

m1/2

(
1 +

k

m

)(
k

m+ k

)ψ
=OP

(
m−ζ

)
max

1≤k<∞

(
k

m+ k

)1−ψ

= oP (1) .

By the same token, we can show that

max
1≤k<∞

∣∣∣∣∣
m+k∑
i=m+1

(
εi,1

(
y2
i−1

1 + y2
i−1

−
y2
i−1

1 + y2
i−1

))∣∣∣∣∣
m1/2

(
1 +

k

m

)(
k

m+ k

)ψ(D.3)

=OP (1) max
1≤k<∞

1

m1/2

(
1 +

k

m

)(
k

m+ k

)ψ
=OP

(
m−1/2

)
max

1≤k<∞

m

m+ k

(
k

m+ k

)−ψ
= OP

(
m−1/2+ψ

)
= oP (1) ,
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and

max
1≤k<∞

∣∣∣∣∣
m+k∑
i=m+1

(
εi,2

(
yi−1

1 + y2
i−1

− yi−1

1 + y2
i−1

))∣∣∣∣∣
m1/2

(
1 +

k

m

)(
k

m+ k

)ψ(D.4)

=OP (1) max
1≤k<∞

1

m1/2

(
1 +

k

m

)(
k

m+ k

)ψ
=OP

(
m−1/2

)
max

1≤k<∞

m

m+ k

(
k

m+ k

)−ψ
= OP

(
m−1/2+ψ

)
= oP (1) ,

having used Lemma C.3. Similarly, by Lemma C.4

max
1≤k<∞

∣∣∣∣∣
m+k∑
i=m+1

(
εi,1y

2
i−1 + εi,2yi−1

1 + y2
i−1

)
−
(
a1σ

2
1 + a2σ

2
2

)1/2
Wm,2 (k)

∣∣∣∣∣
m1/2

(
1 +

k

m

)(
k

m+ k

)ψ(D.5)

=OP (1) max
1≤k<∞

k1/2−ζ

m1/2

(
1 +

k

m

)(
k

m+ k

)ψ = oP (1) .

Putting all together, (D.1) has been shown for the stationary case. Considering now the

case E log |β0 + ε0,1| ≥ 0, write

(
β0 − β̂m

) m+k∑
i=m+1

y2
i−1

1 + y2
i−1

+
k

m

m∑
i=2

εi,1

=
(
β0 − β̂m

)( m+k∑
i=m+1

y2
i−1

1 + y2
i−1

− k

)

− k

( m∑
i=2

y2
i−1

1 + y2
i−1

)−1

− 1

m

( m∑
i=2

(
εi,1y

2
i−1

1 + y2
i−1

+
εi,2yi−1

1 + y2
i−1

))

− k

m

(
m∑
i=2

εi,1
1 + y2

i−1

+
m∑
i=2

εi,2yi−1

1 + y2
i−1

)
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=Rm,4 (k) +Rm,5 (k) +Rm,6 (k) .

The arguments are similar to the above. Indeed, using Lemmas C.2-C.4

max
1≤k<∞

|Rm,4 (k)|

m1/2

(
1 +

k

m

)(
k

m+ k

)ψ(D.6)

=OP

(
m−1/2

)
max

1≤k<∞

km−ζ

m1/2

(
1 +

k

m

)(
k

m+ k

)ψ
=OP

(
m−ζ

)
= oP (1) .

Similarly it can be shown that

max
1≤k<∞

|Rm,5 (k)|

m1/2

(
1 +

k

m

)(
k

m+ k

)ψ = OP

(
m−ζ

)
= oP (1) ,(D.7)

max
1≤k<∞

|Rm,6 (k)|

m1/2

(
1 +

k

m

)(
k

m+ k

)ψ = OP

(
m−ζ+η

)
= oP (1) ,(D.8)

having chosen η < ζ in the last equation. Lemma C.4 yields

(D.9) max
1≤k<∞

∣∣∣∣∣ km
m∑
i=2

εi,1 − σ1
k

m
Wm,1 (m)

∣∣∣∣∣
m1/2

(
1 +

k

m

)(
k

m+ k

)ψ = OP

(
mζ−1/2

)
= oP (1) ,

and

(D.10) max
1≤k<∞

∣∣∣∣∣
m+k∑
i=m+1

εi,1 − σ1Wm,2 (k)

∣∣∣∣∣
m1/2

(
1 +

k

m

)(
k

m+ k

)ψ = OP

(
mζ−1/2

)
= oP (1) .
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similarly, by Lemma C.3

max
1≤k<∞

∣∣∣∣∣
m+k∑
i=m+1

εi,1
1 + y2

i−1

∣∣∣∣∣+

∣∣∣∣∣
m+k∑
i=m+1

εi,2yi−1

1 + y2
i−1

∣∣∣∣∣
m1/2

(
1 +

k

m

)(
k

m+ k

)ψ(D.11)

=OP

(
m−ζ

)
max

1≤k<∞

k1/2+η

m1/2

(
1 +

k

m

)(
k

m+ k

)ψ
=OP

(
m1/2−ζ) max

1≤k<∞

k1/2+η−ψ

(m+ k)1/2+η−ψ+1/2−η = OP

(
mη−ζ) = oP (1) ,

having chosen η < ζ. Putting all together, (D.1) now follows for the case E log |β0 + ε0,1| ≥

0.

Let now

(D.12) Γ (t) =

 s1/2 |W2 (t)− tW1 (1)| if E log |β0 + ε0,1| < 0 holds

σ1 |W2 (t)− tW1 (1)| if E log |β0 + ε0,1| ≥ 0 holds
,

where {W1 (k) , 1 ≤ k ≤ m} and {W2 (k) , 1 ≤ k <∞} are two independent standardWiener

processes. Using the fact that the distribution of Wm,1 (·) and Wm,2 (·) does not depend on

m, and exploiting the scale transformation and the continuity of the Wiener process

max
1≤k<∞

Γm (k)

m1/2

(
1 +

k

m

)(
k

m+ k

)ψ

D
= max

1≤k<∞

Γ

(
k

m

)
(

1 +
k

m

)(
k/m

1 + k/m

)ψ
D
= sup

0<t<∞

Γ (t)

(1 + t)

(
t

1 + t

)ψ .
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Computing the covariance kernel, it can be easily verified that

(D.13)
{
W2 (t)− tW1 (1)

1 + t
, t ≥ 0

}
D
=

{
W

(
t

1 + t

)
, t ≥ 0

}
,

where W (·) denotes a standard Wiener. Hence

max
1≤k<∞

Γm (k)

m1/2

(
1 +

k

m

)(
k

m+ k

)ψ D
= sup

0<t<∞

s

∣∣∣∣W (
t

1 + t

)∣∣∣∣(
t

1 + t

)ψ ,

whence Theorem 3.1 follows. �

Proof of Theorem 3.2. Using exactly the same arguments as in the proof of Theorem 3.1,

it follows that

(D.14) max
1≤k≤m∗

|Zm (k)− Γm (k)|

m1/2

(
1 +

k

m

)(
k

m+ k

)ψ = oP (1) .

Further, it is immediate to see that

max
1≤k≤m∗

Γm (k)

m1/2

(
1 +

k

m

)(
k

m+ k

)ψ

D
= max

1≤k≤m∗

Γ

(
k

m

)
(

1 +
k

m

)(
k/m

1 + k/m

)ψ
D
= sup

0<t<m0

Γ (t)

(1 + t)

(
t

1 + t

)ψ .
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Using (D.13), it finally follows

sup
0<t<m0

Γ (t)

(1 + t)

(
t

1 + t

)ψ D
= sup

0<t<m0

s

∣∣∣∣W (
t

1 + t

)∣∣∣∣(
t

1 + t

)ψ ,

whence the desired result. �

Proof of Theorem 3.4. We begin by noting that, repeating verbatim the proof of (D.1) with

ψ = 1/2, it can be shown that

(D.15) max
1≤k≤m∗

|Zm (k)− Γm (k)|

m1/2

(
1 +

k

m

)(
k

m+ k

)1/2
= OP (1) .

Recall also that the distribution of Γm (k) does not depend on m, so that

{
m−1/2Γm (mt) , t ≥ 0

} D
= {Γ (t) , t ≥ 0} ,

where Γ (t) is defined in (D.12); further recall that, by (D.13){
1

s

Γ (t)

1 + t
, t ≥ 0

}
D
=

{∣∣∣∣W (
t

1 + t

)∣∣∣∣ , t ≥ 0

}
.

We now report some results concerning Γm (k). We begin by studying

1

s
max

1≤k≤logm

Γm (k)

m1/2

(
1 +

k

m

)(
k

m+ k

)1/2
(D.16)

D
=

1

s
max

1/m≤t≤(logm)/m

Γ (t)

(1 + t)

(
t

1 + t

)1/2

D
= max

1/m≤t≤(logm)/m

∣∣∣∣W (
t

1 + t

)∣∣∣∣(
t

1 + t

)1/2

D
= max

1/(m+1)≤u≤(logm)/(m+logm)

|W (u)|
u1/2

D
= max

1≤v≤logm

|W (v)|
v1/2
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=OP

(√
log log logm

)
,

where we have repeatedly used the scale transformation of the Wiener process, and the

Law of the Iterated Logarithm in the last passage. Similarly

1

s
max

m/ logm≤k≤m∗

Γm (k)

m1/2

(
1 +

k

m

)(
k

m+ k

)1/2
(D.17)

D
=

1

s
max

1/ logm≤t≤m∗/ logm

Γ (t)

(1 + t)

(
t

1 + t

)1/2

D
= max

1/ logm≤t≤m∗/ logm

∣∣∣∣W (
t

1 + t

)∣∣∣∣(
t

1 + t

)1/2

D
= max

1/(logm+1)≤u≤m∗/(m+m∗)

|W (u)|
u1/2

D
= max

1≤v≤m∗(logm+1)/(m+m∗)

|W (v)|
v1/2

=OP

(√
log log

m∗ (logm+ 1)

m+m∗

)
= OP

(√
log log logm

)
.

Finally, by the same token, note that

1

s
max

logm≤k≤m/ logm

Γm (k)

m1/2

(
1 +

k

m

)(
k

m+ k

)1/2

D
=

1

s
max

logm≤k≤m/ logm

Γm

(
k

m

)
(

1 +
k

m

)(
k

m+ k

)1/2

D
=

1

s
max

(logm)/m≤t≤1/ logm

Γ (t)

(1 + t)

(
t

1 + t

)1/2

D
= max

(logm)/m≤t≤1/ logm

∣∣∣∣W (
t

1 + t

)∣∣∣∣(
t

1 + t

)1/2

D
= max

(logm)/(m+logm)≤t≤1/(logm+1)

|W (u)|
u1/2

D
= max

1≤v≤(m+logm)/((1+logm) logm)

|W (v)|
v1/2

,
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and using the Law of the Iterated Logarithm it follows that

(D.18) lim
m→∞

1√
2 log log

m+ logm

(1 + logm) logm

max
1≤v≤(m+logm)/((1+logm) logm)

|W (v)|
v1/2

= 1 a.s.

Given that, as m→∞
log log

m+ logm

(1 + logm) logm

log logm
= 1,

it follows that the term in (D.18) dominates, and therefore, putting all together

lim
m→∞

P

 max
1≤k≤m∗

Zm (k)

m1/2

(
1 +

k

m

)(
k

m+ k

)1/2
= max

1≤v≤(m+logm)/((1+logm) logm)

|W (v)|
v1/2

 = 1.

Using the Darling-Erdős theorem (Darling and Erdős, 1956), it follows that

lim
m→∞

P

{
γ

(
log

m+ logm

(1 + logm) logm

)
max

1≤v≤(m+logm)/((1+logm) logm)

|W (v)|
v1/2

≤ x+ δ

(
log

m+ logm

(1 + logm) logm

)}
= exp (− exp (−x)) .

The desired result follows upon noting that, by elementary arguments∣∣∣∣γ ( m+ logm

(1 + logm) logm

)
− γ (m)

∣∣∣∣→ 0,∣∣∣∣δ( m+ logm

(1 + logm) logm

)
− δ (m)

∣∣∣∣→ 0,

as m→∞. �

Proof of Theorem 3.3. We start with the proof of (3.4), considering the case E log |β0 + ε0,1| <

0. As in the proof of Theorem 3.1, it suffices to show that

max
1≤k≤m∗

Z∗m (k)

gm,ψ (k)

D→ 1

cα,ψ
sup

0≤t≤1

|W (t)|
tψ

,
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where

Z∗m (k) =

∣∣∣∣∣∣
(

m∑
i=2

y2
i−1

1 + y2
i−1

)−1( m∑
i=2

εi,1y
2
i−1

1 + y2
i−1

+
m∑
i=2

εi,2yi−1

1 + y2
i−1

)(
m+k∑
i=m+1

y2
i−1

1 + y2
i−1

)

+
m+k∑
i=m+1

εi,1y
2
i−1

1 + y2
i−1

+
m+k∑
i=m+1

εi,2yi−1

1 + y2
i−1

∣∣∣∣∣ ,
where recall that yi is the stationary solution of (2.1). Using the proofs of Lemmas C.2

and C.3, it follows by routine calculations that∣∣∣∣∣∣
(

m∑
i=2

y2
i−1

1 + y2
i−1

)−1

− 1

ma3

∣∣∣∣∣∣ = OP (m) ,

and ∣∣∣∣∣
m∑
i=2

εi,1y
2
i−1

1 + y2
i−1

+
m∑
i=2

εi,2yi−1

1 + y2
i−1

∣∣∣∣∣ = OP

(
m1/2

)
,

where a3 is defined in (C.2). The approximations in Aue et al. (2014) yield

(m∗)−1/2+ψ max
1≤k≤m∗

1

kψ

∣∣∣∣∣
m+k∑
i=m+1

(
y2
i−1

1 + y2
i−1

− a3

)∣∣∣∣∣ D→ a4 sup
0≤t≤1

|W (t)|
tψ

,

where

a4 =
∞∑

h=−∞

E

[(
y2

0

1 + y2
0

− a3

)(
y2
h

1 + y2
h

− a3

)]
.

Thus we conclude

(m∗)−1/2+ψ

(
m∑
i=2

y2
i−1

1 + y2
i−1

)−1 ∣∣∣∣∣
m∑
i=2

εi,1y
2
i−1

1 + y2
i−1

+
m∑
i=2

εi,2yi−1

1 + y2
i−1

∣∣∣∣∣ max
1≤k≤m∗

1

kψ

m+k∑
i=m+1

y2
i−1

1 + y2
i−1

=OP

(
m−1/2

)
(m∗)−1/2+ψ max

1≤k≤m∗
1

kψ

m+k∑
i=m+1

y2
i−1

1 + y2
i−1

=OP

(
m−1/2

)
(m∗)−1/2+ψ k1−ψ

+OP

(
m−1/2

)
(m∗)−1/2+ψ max

1≤k≤m∗
1

kψ

m+k∑
i=m+1

(
y2
i−1

1 + y2
i−1

− a3

)
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=OP

((
m∗

m

)1/2

+m−1/2

)
= oP (1) .

Using Aue et al. (2014), we can define two independent Wiener processes {Wm,1 (x) , x ≥ 0}

and {Wm,2 (x) , x ≥ 0} such that

max
1≤k≤m∗

1

(m∗)1/2−ψ kψ

∣∣∣∣∣
m+k∑
i=m+1

εi,1y
2
i−1

1 + y2
i−1

+
m+k∑
i=m+1

εi,2yi−1

1 + y2
i−1

−
(
a

1/2
1 σ1Wm,1 (k) + a

1/2
2 σ2Wm,2 (k)

)∣∣∣∣∣
=oP (1) .

By the scale transformation and the continuity of the Wiener process, it follows that

max
1≤k≤m∗

1

(m∗)1/2−ψ kψ

∣∣∣a1/2
1 σ1Wm,1 (k) + a

1/2
2 σ2Wm,2 (k)

∣∣∣
D
= max

1/m∗≤k/m∗≤1

(
k

m∗

)−ψ ∣∣∣∣a1/2
1 σ1Wm,1

(
k

m∗

)
+ a

1/2
2 σ2Wm,2

(
k

m∗

)∣∣∣∣
D→ sup

0≤u≤1

1

tψ

∣∣∣a1/2
1 σ1W1 (t) + a

1/2
2 σ2W2 (t)

∣∣∣ ,
where W1 and W2 are independent Wiener processes. Since

{
a

1/2
1 σ1W1 (t) + a

1/2
2 σ2W2 (t) , t ≥ 0

}
D
= {sW (t) , t ≥ 0} ,

where {W (t) , t ≥ 0} is a Wiener process, the result follows.

Next we consider the case ψ = 1/2, and we establish a Darling-Erdős limiting law for

Z∗m (k). Firstly note that

max
1≤k≤m∗

1

k1/2

(
m∑
i=2

y2
i−1

1 + y2
i−1

)−1( m∑
i=2

εi,1y
2
i−1

1 + y2
i−1

+
m∑
i=2

εi,2yi−1

1 + y2
i−1

)
m+k∑
i=m+1

y2
i−1

1 + y2
i−1

=OP

((
m∗

m

)1/2
)
,
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1

(log logm∗)1/2
max

1≤k≤m∗
1

k1/2

∣∣∣∣∣
m+k∑
i=m+1

εi,1y
2
i−1

1 + y2
i−1

+
m+k∑
i=m+1

εi,2yi−1

1 + y2
i−1

∣∣∣∣∣ = OP (1) ,

and

1

(log logm∗)1/2
max

logm∗≤k≤m∗/ logm∗

1

k1/2

∣∣∣∣∣
m+k∑
i=m+1

εi,1y
2
i−1

1 + y2
i−1

+
m+k∑
i=m+1

εi,2yi−1

1 + y2
i−1

∣∣∣∣∣ P→ c > 0.

The above entails that we need to consider the maximum of Z∗m (k) over logm∗ ≤ k ≤

m∗/ logm∗. We have

max
logm∗≤k≤m∗/ logm∗

1

k1/2

(
m∑
i=2

y2
i−1

1 + y2
i−1

)−1( m∑
i=2

εi,1y
2
i−1

1 + y2
i−1

+
m∑
i=2

εi,2yi−1

1 + y2
i−1

)
m+k∑
i=m+1

y2
i−1

1 + y2
i−1

=OP

((
m∗

m

)1/2

(logm∗)−1/2

)
.

By the Law of the Iterated Logarithm, it follows that

max
1≤k≤logm∗

1

k1/2

∣∣∣∣∣
m+k∑
i=m+1

εi,1y
2
i−1

1 + y2
i−1

+
m+k∑
i=m+1

εi,2yi−1

1 + y2
i−1

∣∣∣∣∣ = OP

(
(log log logm∗)1/2

)
.

Hence we need to show that, for all −∞ < x <∞

lim
m→∞

P

{
γ (logm∗)

1

s
max

1≤k≤m∗
1

k1/2

∣∣∣∣∣
m+k∑
i=m+1

εi,1y
2
i−1

1 + y2
i−1

+
m+k∑
i=m+1

εi,2yi−1

1 + y2
i−1

∣∣∣∣∣ ≤ x+ δ (logm∗)

}

= exp (− exp (−x)) ,

which follows from the same logic as the proof of Theorem 3.4.

We now turn to the case E log |β0 + ε0,1| ≥ 0. Following the proof of Lemma C.2, it can

be shown that

(D.19)

∣∣∣∣∣∣
(

m∑
i=2

y2
i−1

1 + y2
i−1

)−1

− 1

m

∣∣∣∣∣∣ = OP

(
m−3/2

)
,
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(D.20)

∣∣∣∣∣
(

m∑
i=2

εi,1y
2
i−1

1 + y2
i−1

+
m∑
i=2

εi,2yi−1

1 + y2
i−1

)
−

m∑
i=2

εi,1

∣∣∣∣∣ = OP (1) ,

(D.21) max
1≤k<∞

∣∣∣∣∣
m+k∑
i=m+1

y2
i−1

1 + y2
i−1

− k

∣∣∣∣∣ = OP (cm) ,

and

(D.22) max
1≤k<∞

∣∣∣∣∣
(

m+k∑
i=m+1

εi,1y
2
i−1

1 + y2
i−1

+
m+k∑
i=m+1

εi,2yi−1

1 + y2
i−1

)
−

m+k∑
i=m+1

εi,1

∣∣∣∣∣ = OP (cm) ,

with some 0 < c < 1. Thus we get(
m∑
i=2

y2
i−1

1 + y2
i−1

)−1 ∣∣∣∣∣
m∑
i=2

εi,1y
2
i−1

1 + y2
i−1

+
m∑
i=2

εi,2yi−1

1 + y2
i−1

∣∣∣∣∣ (m∗)−1/2+ψ max
1≤k≤m∗

1

kψ

m+k∑
i=m+1

y2
i−1

1 + y2
i−1

=OP

(
m−1/2

)
(m∗)−1/2+ψ max

1≤k≤m∗
1

kψ
(k + cm)

=OP

((
m∗

m

)1/2
)

= oP (1) .

Our assumptions entail that

(m∗)−1/2+ψ max
1≤k≤m∗

1

kψ

∣∣∣∣∣
m+k∑
i=m+1

εi,1

∣∣∣∣∣ D→ σ1 sup
0≤t≤1

|W (t)|
tψ

,

where {W (t) , t ≥ 0} is a Wiener process; this completes the proof of (3.4). Considering the

case ψ = 1/2, we can follow the same arguments as above, using (D.19)-(D.22). We obtain∣∣∣∣∣ max
1≤k<m∗

|Z∗m (k)|
k1/2

− max
logm∗≤k<m∗/ logm∗

1

k1/2

∣∣∣∣∣
m+k∑
i=m+1

εi,1

∣∣∣∣∣
∣∣∣∣∣ = oP

(
(log logm∗)−1/2

)
.

Hence we need to prove only that

lim
m→∞

P

{
γ (logm∗)

1

σ1

max
logm∗≤k<m∗/ logm∗

1

k1/2

∣∣∣∣∣
m+k∑
i=m+1

εi,1

∣∣∣∣∣ ≤ x+ δ (logm∗)

}
= exp (− exp (−x)) ,
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which is shown in Csörgő and Horváth (1997). �

Proof of Theorem 3.5. Since the distributions of Wm,1 (·) and Wm,2 (·) do not depend on

m, Corollary C.6 entails that, for all −∞ < x <∞

P

{
max

hm∗≤k≤m∗
Zm (k)

gm,0.5 (k)
≥ x

}
= P

 max
hm∗≤k≤m∗

∣∣∣∣W1 (k)− k

m
W2 (m)

∣∣∣∣
m1/2

(
1 +

k

m

)(
k

m+ k

)1/2
≥ x

+ o (1) ,

as m∗ →∞. In turn, this entails that we can construct critical values ĉα,0.5 based on

P

 max
hm∗≤k≤m∗

∣∣∣∣W1 (k)− k

m
W2 (m)

∣∣∣∣
m1/2

(
1 +

k

m

)(
k

m+ k

)1/2
≥ ĉα,0.5

 = α.

Using the scale transformation for Wiener processes

max
hm∗≤k≤m∗

∣∣∣∣W1 (k)− k

m
W2 (m)

∣∣∣∣
m1/2

(
1 +

k

m

)(
k

m+ k

)1/2

D
= max

hm∗/m∗≤k/m∗≤1

(
1 +

k

m

) ∣∣∣∣W (
k/m

1 + k/m

)∣∣∣∣(
1 +

k

m

)(
k/m

1 + k/m

)1/2

D
= max

hm∗/m∗≤τ≤1

∣∣∣∣W (
τ

1 + τ

)∣∣∣∣(
τ

1 + τ

)1/2

D
= max

hm∗/(m∗+hm∗ )≤u≤1/2

|W (u)|
u1/2

D
= max

1≤v≤φm

|W (v)|
v1/2

D
= max

1≤v≤exp(log φm)

|W (v)|
v1/2

,
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where W (·) is a standard Wiener process and φm = (m∗ + hm∗) / (2hm∗). Using equation

(18) in Vostrikova (1981), we have

P

{
max

1≤v≤exp(log φm)

|W (v)|
v1/2

≥ ĉα,0.5

}
'
ĉα,0.5 exp

(
−1

2
ĉ2
α,0.5

)
(2π)1/2

(
log φm +

4− log φm
ĉ2
α,0.5

+O
(
ĉ−4
α,0.5

))
,

as ĉα,0.5 →∞. This proves the claim. �

Proof of Theorem 3.6. The proof follows, with minor modifications, the proofs of the re-

sults above, so we only outline its main passages. We begin with part (i), and consider the

case E log |β0 + ε0,1| < 0. Lemma C.2 entails that we need to prove only that

max
1≤k<∞

1

gm,ψ (k)
max
1≤`≤k

∣∣∣∣∣
m+k∑
i=m+`

(
εi,1y

2
i−1

1 + y2
i−1

+
εi,2yi−1

1 + y2
i−1

)
(D.23)

−k − `
m

m∑
i=2

(
εi,1y

2
i−1

1 + y2
i−1

+
εi,2yi−1

1 + y2
i−1

)∣∣∣∣∣
D→ sup

0<x<∞

sup0≤t≤x |(W2 (x)−W2 (t))− (x− t)W1 (1)|
(1 + x) (x/ (1 + x))ψ

,

where recall that yi is the stationary solution of (2.1). The approximations in Lemma C.4

imply

max
1≤k<∞

1

gm,ψ (k)
max
1≤`≤k

∣∣∣∣∣
m+k∑
i=m+`

(
εi,1y

2
i−1

1 + y2
i−1

+
εi,2yi−1

1 + y2
i−1

)
− k − `

m

m∑
i=2

(
εi,1y

2
i−1

1 + y2
i−1

+
εi,2yi−1

1 + y2
i−1

)

−s
(
Wm,2 (k)−Wm,2 (`)− k − `

m
Wm,1 (m)

)∣∣∣∣
=oP (1) .

By the scale transformation and the continuity of the Wiener process we have

max
1≤k<∞

(
k +m

k

)ψ
m

m+ k
max
1≤`≤k

∣∣∣∣(Wm,2 (k)−Wm,2 (`)− k − `
m

Wm,1 (m)

)∣∣∣∣
D→ sup

0<x<∞

(
1 + x

x

)ψ
1

1 + x
sup

0≤t≤x
|(W2 (x)−W2 (t))− (x− t)W1 (1)| ,
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whence the desired result.

Next we consider the nonstationary case. Applying Lemma C.3(ii), we can replace (D.23)

with the proof of

max
1≤k<∞

1

gm,ψ (k)
max
1≤`≤k

∣∣∣∣∣
m+k∑
i=m+`

εi,1y
2
i−1

1 + y2
i−1

− k − `
m

m∑
i=2

εi,1y
2
i−1

1 + y2
i−1

∣∣∣∣∣
D→ sup

0<x<∞

(
1 + x

x

)ψ
1

1 + x
sup

0≤t≤x
|(W2 (x)−W2 (t))− (x− t)W1 (1)| ,

which follows from the approximations in Lemma C.4(ii).

We conclude our proof by showing that

(D.24) P

{
sup

0<x<∞

(
1 + x

x

)ψ
1

1 + x
sup

0≤t≤x
|(W2 (x)−W2 (t))− (x− t)W1 (1)| <∞

}
= 1.

When 0 < x ≤ 1, using Theorem 2.1 in Garsia et al. (1970),6 it follows that there exists a

random variable ζ such that E |ζ|p <∞ for all p ≥ 1 and(
1 + x

x

)ψ
1

1 + x
sup

0≤t≤x
|(W2 (x)−W2 (t))|

≤ |ζ|
(

1 + x

x

)ψ
1

1 + x
sup

0≤t≤x

∣∣∣∣∣
(

(x− t) log

(
1

x− t

))1/2
∣∣∣∣∣

a.s., whence

(
1 + x

x

)ψ
1

1 + x
sup

0≤t≤x
|(W2 (x)−W2 (t))− (x− t)W1 (1)|

(D.25)

≤ |ζ|
(

1 + x

x

)ψ
1

1 + x
sup

0≤t≤x

∣∣∣∣∣
(

(x− t) log

(
1

x− t

))1/2
∣∣∣∣∣+W1 (1)

(
1 + x

x

)ψ
1

1 + x
sup

0≤t≤x
|x− t| .

6See also Lemma 4.1 in Csörgő and Horváth, 1993.
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It is now easy to see that

|ζ|
(

1 + x

x

)ψ
1

1 + x
sup

0≤t≤x

∣∣∣∣∣
(

(x− t) log

(
1

x− t

))1/2
∣∣∣∣∣ = OP (1) .

As far as the second term in (D.25) is concerned, it immediately follows that

|W1 (1)|
(

1 + x

x

)ψ
1

1 + x
sup

0≤t≤x
|x− t| = OP (1)

(
1 + x

x

)ψ−1

= OP (1) .

Also, by the Law of the Iterated Logarithm, it follows that

sup
1≤x<∞

(
1 + x

x

)ψ
1

1 + x
sup

0≤t≤x
|(W2 (x)−W2 (t))− (x− t)W1 (1)|

≤ sup
1≤x<∞

1

x
2 sup

0≤t≤x
|W2 (x)|+ |W1 (1)| <∞,

a.s., whence (D.24) follows.

Finally, as far as parts (ii) and (iii) of the theorem are concerned, the proofs are based on

the observation that

max
1≤k≤m∗

1

g∗m,ψ (k)
max
1≤`≤k

k − `
m

∣∣∣∣∣
m∑
i=2

εi,1y
2
i−1

1 + y2
i−1

+
εi,2yi−1

1 + y2
i−1

∣∣∣∣∣ = oP (1) ,

and the same using gm,ψ (k); hence, the arguments above can be repeated with minor

modifications. �

Proof of Corollary 3.1. The result is shown e.g. in the proof of Theorem 3.4 in Horváth

and Trapani (2016), or Corollary 3.1 in Horváth and Trapani (2023). �

In order to prove the next set of results, we will make use of the following decomposition,

valid under (3.13). Let the recursion under the alternative be defined as

y(2),i = (βA + εi,1) y(2),i−1 + εi,2,
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for i > 0, with initial value y(2),0. Then we have

Zm (k) =

∣∣∣∣∣
m+k∗∑
i=m+1

εi,1y
2
i−1 + εi,2yi−1

1 + y2
i−1

−
(
β̂m − β0

)( m+k∗∑
i=m+1

y2
i−1

1 + y2
i−1

+
m+k∑

i=m+k∗+1

y2
(2),i−1

1 + y2
(2),i−1

)(D.26)

+ (βA − β0)

(
m+k∑
i=m+1

y2
(2),i−1

1 + y2
(2),i−1

−
m+k∗∑
i=m+1

y2
(2),i−1

1 + y2
(2),i−1

)

+
m+k∑
i=m+1

εi,1y
2
(2),i−1 + εi,2y(2),i−1

1 + y2
(2),i−1

−
m+k∗∑
i=m+1

εi,1y
2
(2),i−1 + εi,2y(2),i−1

1 + y2
(2),i−1

∣∣∣∣∣
= |I + II + III + IV + V | .

Proof of Theorem 3.7. Based on the results above, the theorem follows from standard ar-

guments - see e.g. Theorem 4.1 in Horváth and Trapani (2023). �

Proof of Theorem 3.8. The proof is inspired by Aue and Horváth (2004), but it differs

substantially in some arguments. Let

(D.27) N (m;x) = N =

σ(2)cα,ψm
1/2−ψ

∆m

−

(
σ(2)x

c
1/2−ψ
α,ψ m(1−2ψ)2

∆
3/2−ψ
m

)1/(1−ψ)
1/(1−ψ)

,

and note the following facts

lim
m→∞

N

m
= 0,(D.28)

lim
m→∞

√
N |∆m| =∞,(D.29)

lim
m→∞

k∗

m
= 0,(D.30)

lim
m→∞

k∗

N
= 0,(D.31)

lim
m→∞

1

σ(2)

(
N

m

)ψ−1/2
(
cα,ψ −

N∆m

m1/2 (N/m)ψ

)
= x,(D.32)
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and, as m→∞

(D.33) N ≈
(
σ(2)cα,ψm

1/2−ψ

∆m

)1/(1−ψ)

.

Recall (D.26). We begin by showing that

(D.34)
(
N

m

)ψ−1/2
(

max
1≤k≤k∗

|Zm (k)|
m1/2 (1 + k/m) (k/ (k +m))ψ

− N∆m

m1/2 (N/m)ψ

)
P→ −∞.

We begin by noting that, by (D.33)

(D.35) lim
m→∞

N∆m

m1/2 (N/m)ψ
= cα,ψ > 0.

Further, since for k ≤ k∗

Zm (k) =
m+k∑
i=m+1

εi,1y
2
i−1 + εi,2yi−1

1 + y2
i−1

−
(
β̂m − β0

) m+k∑
i=m+1

y2
i−1

1 + y2
i−1

,

it holds that

max
1≤k≤k∗

|Zm (k)|
m1/2 (1 + k/m) (k/ (k +m))ψ

≤ max
1≤k≤k∗

∣∣∣∣∣
m+k∑
i=m+1

εi,1y
2
i−1 + εi,2yi−1

1 + y2
i−1

∣∣∣∣∣
m1/2 (1 + k/m) (k/ (k +m))ψ

+ max
1≤k≤k∗

∣∣∣∣∣(β̂m − β0

) m+k∑
i=m+1

y2
i−1

1 + y2
i−1

∣∣∣∣∣
m1/2 (1 + k/m) (k/ (k +m))ψ

.
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Recalling that β̂m − β0 = OP

(
m−1/2

)
, irrespective of whether yi is stationary or not, and

using (C.10) and (C.13), it follows that, for all values of E log |β0 + εi,1|

max
1≤k≤k∗

∣∣∣∣∣(β̂m − β0

) m+k∑
i=m+1

y2
i−1

1 + y2
i−1

∣∣∣∣∣
m1/2 (1 + k/m) (k/ (k +m))ψ

=OP (1)m−1/2 max
1≤k≤k∗

k

m1/2 (1 + k/m) (k/ (k +m))ψ

=OP

((
k∗

m

)1−ψ
)

= oP (1) ,

by (D.30). Also

max
1≤k≤k∗

∣∣∣∣∑m+k
i=m+1

εi,1y
2
i−1 + εi,2yi−1

1 + y2
i−1

∣∣∣∣
m1/2 (1 + k/m) (k/ (k +m))ψ

≤ max
1≤k≤k∗

∣∣∣∣∑m+k
i=m+1

εi,1y
2
i−1 + εi,2yi−1

1 + y2
i−1

−Wm (k)

∣∣∣∣
m1/2 (1 + k/m) (k/ (k +m))ψ

+ max
1≤k≤k∗

|Wm (k)|
m1/2 (1 + k/m) (k/ (k +m))ψ

,

where Wm (k) is a Wiener process. Using Lemma C.4, it holds that, for all values of

E log |β0 + εi,1|

max
1≤k≤k∗

∣∣∣∣∣
m+k∑
i=m+1

εi,1y
2
i−1 + εi,2yi−1

1 + y2
i−1

−Wm (k)

∣∣∣∣∣
m1/2 (1 + k/m) (k/ (k +m))ψ

=OP (1) max
1≤k≤k∗

kζ

m1/2 (1 + k/m) (k/ (k +m))ψ

=OP

((
k∗

m

)1/2−ψ
)

= oP (1) ,
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for some 0 < ζ < 1/2; further, by the Law of the Iterated Logarithm for Wiener processes

(see e.g. Breiman, 1968)

max
1≤k≤k∗

|Wm (k)|
m1/2 (1 + k/m) (k/ (k +m))ψ

=OP (1) max
1≤k≤k∗

k1/2 (log log k)1/2

m1/2 (1 + k/m) (k/ (k +m))ψ

= (log log k∗)1/2OP

((
k∗

m

)1/2−ψ
)

= oP (1) .

Putting all together, it follows that

max
1≤k≤k∗

|Zm (k)|
m1/2 (1 + k/m) (k/ (k +m))ψ

= oP (1) ,

whence, using (D.35), (D.34) follows. We now turn to showing that

(D.36)
(
N

m

)ψ−1/2

max
k∗≤k≤N

∣∣Zm (k)−
(
σ(2)W

′
m (k) + a(2)k∆m

)∣∣
m1/2 (1 + k/m) (k/ (k +m))ψ

= oP (1) ,

where {W ′
m (k) , k ≥ 1} is a standard Wiener and

(D.37) a(2) =


E

y2
(2),0

1 + y2
(2),0

if E log |βA + εi,1| < 0

1 if E log |βA + εi,1| ≥ 0

.

Indeed, considering I in (D.26), it holds that

∣∣∣β̂m − β0

∣∣∣ (N
m

)ψ−1/2

max
k∗≤k≤N

m+k∗∑
i=m+1

y2
i−1

1 + y2
i−1

+
m+k∑

i=m+k∗+1

y2
i−1

1 + y2
i−1

m1/2 (1 + k/m) (k/ (k +m))ψ

=OP (1)m−1/2

(
N

m

)ψ−1/2

max
k∗≤k≤N

c0k
∗ + c1 (k − k∗)

m1/2 (1 + k/m) (k/ (k +m))ψ

=OP (1)
Nψ

m1/2
= oP (1) ,
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by (D.28). Also, note that, using (D.28)-(D.32)(
N

m

)ψ−1/2

max
k∗≤k≤N

k∗∆m

m1/2 (1 + k/m) (k/ (k +m))ψ

=O (1) ∆mN
ψ−1/2 (k∗)1−ψ = o (1) ,

as shown in equation (3.13) in Aue and Horváth (2004). Therefore it is not hard to see that

(
N

m

)ψ−1/2

∆m max
k∗≤k≤N

m+k∑
i=m+1

y2
(2),i−1

1 + y2
(2),i−1

−
m+k∑

i=m+k∗+1

y2
(2),i−1

1 + y2
(2),i−1

m1/2 (1 + k/m) (k/ (k +m))ψ
= oP (1) ;

also, using Lemma C.3 it follows that, irrespective of E log |βA + εi,1|

(
N

m

)ψ−1/2

∆m

 max
k∗≤k≤N

∣∣∣∣∣
m+k∑
i=m+1

y2
(2),i−1

1 + y2
(2),i−1

− ka(2)

∣∣∣∣∣
m1/2 (1 + k/m) (k/ (k +m))ψ

−
Na(2)

m1/2 (k/m)ψ

 P→ −∞.

Similarly, noting that
m+k∗∑
i=m+1

εi,1y
2
i−1 + εi,2yi−1

1 + y2
i−1

= OP

(√
k∗
)
,

for all values of E log |βA + εi,1|, it follows that

(
N

m

)ψ−1/2

max
k∗≤k≤N

∣∣∣∣∣
m+k∗∑
i=m+1

εi,1y
2
i−1 + εi,2yi−1

1 + y2
i−1

∣∣∣∣∣
m1/2 (1 + k/m) (k/ (k +m))ψ

=OP (1)

(
N

m

)ψ−1/2

max
k∗≤k≤N

√
k∗

m1/2 (1 + k/m) (k/ (k +m))ψ

=OP

((
k∗

N

)1/2−ψ
)

= oP (1) ,
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and by the same token it can be shown that

(
N

m

)ψ−1/2

max
k∗≤k≤N

∣∣∣∣∣
m+k∑
i=m+1

εi,1y
2
(2),i−1 + εi,2y(2),i−1

1 + y2
(2),i−1

−
m+k∑

i=m+k∗+1

εi,1y
2
(2),i−1 + εi,2y(2),i−1

1 + y2
(2),i−1

∣∣∣∣∣
m1/2 (1 + k/m) (k/ (k +m))ψ

= oP (1) ,

and also

(
N

m

)ψ−1/2

max
k∗≤k≤N

∣∣∣∣∣
m+k∑
i=m+1

εi,1y
2
(2),i−1 + εi,2y(2),i−1

1 + y2
(2),i−1

− σ(2)W
′
m (k)

∣∣∣∣∣
m1/2 (1 + k/m) (k/ (k +m))ψ

=OP (1)

(
N

m

)ψ−1/2

max
k∗≤k≤N

kζ

m1/2 (1 + k/m) (k/ (k +m))ψ

=OP (1)Nψ−1/2 max
k∗≤k≤N

kζ−ψ = oP (1) ,

for some 0 < ζ < 1/2. Putting all together, (D.36) finally follows. From hereon, the proof

of Theorem 1.1 in Aue and Horváth (2004) can be followed verbatim, yielding the final

result. �

Proof of Theorem 3.9. The proof builds on the results derived in Aue et al. (2008) and on

the proof of Theorem 3.8, and we report only the main passages. Let

(D.38) N ′ (m;x) = N ′ = σ2
(2)

(
cα,0.5 − x

∆m

)2

,

and note that (see equation (4.2) in Aue et al., 2008)

(D.39) lim
m→∞

N ′

(
2σ2

(2) log logm

∆2
m

)−1

= 1,

and, using (3.21)

(D.40) lim
m→∞

k∗

m
= 0.

54



We begin by showing that

(D.41) max
1≤k≤k∗

|Zm (k)|
m1/2 (1 + k/m) (k/ (k +m))1/2

−
√
N ′∆m

P→ −∞.

We begin by noting that, by (D.39)

(D.42) lim
m→∞

√
N ′∆m√

log logm
= 1.

Recalling that, for k ≤ k∗

Zm (k) =
m+k∑
i=m+1

εi,1y
2
i−1 + εi,2yi−1

1 + y2
i−1

−
(
β̂m − β0

) m+k∑
i=m+1

y2
i−1

1 + y2
i−1

,

it holds that

max
1≤k≤k∗

|Zm (k)|
m1/2 (1 + k/m) (k/ (k +m))1/2

≤ max
1≤k≤k∗

∣∣∣∣∣
m+k∑
i=m+1

εi,1y
2
i−1 + εi,2yi−1

1 + y2
i−1

∣∣∣∣∣
m1/2 (1 + k/m) (k/ (k +m))1/2

+ max
1≤k≤k∗

∣∣∣∣∣(β̂m − β0

) m+k∑
i=m+1

y2
i−1

1 + y2
i−1

∣∣∣∣∣
m1/2 (1 + k/m) (k/ (k +m))1/2

.

Using the fact that β̂m − β0 = OP

(
m−1/2

)
, irrespective of whether yi is stationary or not,

and (C.10) and (C.13), it follows that, for all values of E log |β0 + εi,1|

max
1≤k≤k∗

∣∣∣∣∣(β̂m − β0

) m+k∑
i=m+1

y2
i−1

1 + y2
i−1

∣∣∣∣∣
m1/2 (1 + k/m) (k/ (k +m))1/2

=OP (1)m−1/2 max
1≤k≤k∗

k

m1/2 (k/m)1/2
= OP

((
k∗

m

)1/2
)

= oP (1) ,
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by (D.30). Also

max
1≤k≤k∗

∣∣∣∣∣
m+k∑
i=m+1

εi,1y
2
i−1 + εi,2yi−1

1 + y2
i−1

∣∣∣∣∣
m1/2 (1 + k/m) (k/ (k +m))1/2

≤ max
1≤k≤k∗

∣∣∣∣∣
m+k∑
i=m+1

εi,1y
2
i−1 + εi,2yi−1

1 + y2
i−1

−Wm (k)

∣∣∣∣∣
m1/2 (1 + k/m) (k/ (k +m))1/2

+ max
1≤k≤k∗

|Wm (k)|
m1/2 (1 + k/m) (k/ (k +m))1/2

,

where Wm (k) is a Wiener process. Using Lemma C.4

max
1≤k≤k∗

∣∣∣∣∣
m+k∑
i=m+1

εi,1y
2
i−1 + εi,2yi−1

1 + y2
i−1

−Wm (k)

∣∣∣∣∣
m1/2 (1 + k/m) (k/ (k +m))1/2

=OP (1) max
1≤k≤k∗

kζ

m1/2 (k/m)1/2
= OP (1) ,

for some 0 < ζ < 1/2 and all values of E log |β0 + εi,1|. Further, using the Law of the

Iterated Logarithm for Wiener processes (see e.g. Breiman, 1968), it follows that

max
1≤k≤k∗

|Wm (k)|
m1/2 (1 + k/m) (k/ (k +m))1/2

=OP (1) max
1≤k≤k∗

k1/2 (log log k)1/2

m1/2 (k/m)1/2
= OP

(
(log log k∗)1/2

)
= OP

(
(log log logm)1/2

)
,

having used (3.21). Putting all together, it follows that

max
1≤k≤k∗

|Zm (k)|
m1/2 (1 + k/m) (k/ (k +m))1/2

= OP

(
(log log logm)1/2

)
,
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whence, using (D.42), (D.41) follows. We now turn to showing that

(D.43) max
k∗≤k≤N ′

∣∣Zm (k)−
(
σ(2)W

′
m (k) + a(2)k∆m

)∣∣
m1/2 (1 + k/m) (k/ (k +m))1/2

= oP

(
(log logm)1/2

)
,

where {W ′
m (k) , k ≥ 1} is a standard Wiener and a(2) is defined in (D.37). As in the proof

of Theorem 3.8, it follows that, for all values of E log |β0 + εi,1|

∣∣∣β̂m − β0

∣∣∣ max
k∗≤k≤N ′

m+k∗∑
i=m+1

y2
i−1

1 + y2
i−1

+
m+k∑

i=m+k∗+1

y2
i−1

1 + y2
i−1

m1/2 (1 + k/m) (k/ (k +m))1/2

=OP (1)m−1/2 max
k∗≤k≤N ′

c0k
∗ + c1 (k − k∗)

m1/2 (1 + k/m) (k/ (k +m))1/2
= OP

((
N
′

m

)1/2
)

= oP (1) .

Moreover

∆m max
k∗≤k≤N ′

m+k∑
i=m+1

y2
(2),i−1

1 + y2
(2),i−1

−
m+k∑

i=m+k∗+1

y2
i−1

1 + y2
i−1

m1/2 (1 + k/m) (k/ (k +m))1/2
(D.44)

=OP (1) max
k∗≤k≤N ′

k∗∆m

m1/2 (1 + k/m) (k/ (k +m))1/2

=O (1) ∆m (k∗)1/2 = o
(

(log logm)1/4
)
,

and

(D.45) lim
m→∞

(N ′)
−1/2

max
k∗≤k≤N ′

m+k∑
i=m+1

y2
(2),i−1

1 + y2
(2),i−1

m1/2 (1 + k/m) (k/ (k +m))1/2
= a(2) > 0.

Recalling that
m+k∗∑
i=m+1

εi,1y
2
i−1 + εi,2yi−1

1 + y2
i−1

= OP

(√
k∗
)
,
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for all values of E log |βA + εi,1|, it follows that

(D.46) max
k∗≤k≤N ′

∣∣∣∣∣
m+k∗∑
i=m+1

εi,1y
2
i−1 + εi,2yi−1

1 + y2
i−1

∣∣∣∣∣
m1/2 (1 + k/m) (k/ (k +m))1/2

= OP (1) max
k∗≤k≤N

√
k∗

k1/2
= OP (1) ;

furthermore we have

(D.47)

max
k∗≤k≤N ′

∣∣∣∣∣
m+k∑
i=m+1

εi,1y
2
(2),i−1 + εi,2y(2),i−1

1 + y2
(2),i−1

− σ(2)W
′
m (k)

∣∣∣∣∣
m1/2 (1 + k/m) (k/ (k +m))1/2

= OP (1) max
k∗≤k≤N

kζ−1/2 = OP (1) .

Recalling that k∗ = o (N ′) and using the Law of the Iterated Logarithm, it follows from

(D.47) that

(D.48) lim
m→∞

1√
2 log logN ′

max
k∗≤k≤N ′

∣∣∣∣∣
m+k∑
i=m+1

εi,1y
2
(2),i−1 + εi,2y(2),i−1

1 + y2
(2),i−1

∣∣∣∣∣
m1/2 (1 + k/m) (k/ (k +m))1/2

P→ c1 > 0.

Putting together (D.44)-(D.48), it follows that

lim
m→∞

P

{
max

k∗≤k≤N ′
|Zm (k)|

m1/2 (1 + k/m) (k/ (k +m))1/2

= max
k∗≤k≤N ′

∣∣σ(2)W
′
m (k) + a(2)k

∣∣
m1/2 (1 + k/m) (k/ (k +m))1/2

}
= 1.

From hereon, the proof of Theorem 2.2 in Aue et al. (2008) can be followed verbatim,

yielding the final result. �

Proof of Theorem 4.1. We begin by decomposing the detector ZX
m (k) as

(D.49) ZX
m (k) =

∣∣∣∣∣(b0 − b̂m

)ᵀ m+k∑
i=m+1

(yi−1,x
ᵀ
i )

yi−1

1 + y2
i−1

+
m+k∑
i=m+1

(εi,1yi−1 + εi,2) yi−1

1 + y2
i−1

∣∣∣∣∣ .
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Henceforth, the proof is very similar to the proof of Theorem 3.1, and we only report the

main passages where the two proofs differ.

Consider first the case E log |β0 + ε0,1| < 0; using Lemmas C.7-C.9 instead of Lemmas C.2-

C.4, it can be shown along the same lines as in the proof of Theorem 3.1 that

max
1≤k<∞

ZX
m (k)

m1/2

(
1 +

k

s2
xm

)(
k

k + s2
xm

)ψ D→ sup
0<t<∞

|−sx,1tW1 (1) + sx,2W2 (t)|(
1 +

t

s2
x

)(
t

t+ s2
x

)ψ ,

where {W1 (t) , t ≥ 0} and {W2 (t) , t ≥ 0} are two independent standard Wiener processes.

It is not hard to see that

sup
0<t<∞

|−sx,1tW1 (1) + sx,2W2 (t)|(
1 +

t

s2
x

)(
t

t+ s2
x

)ψ D
= sup

0<u<∞

|−sx,1s2
xuW1 (1) + sx,2W2 (s2

xu)|

(1 + u)

(
u

1 + u

)ψ ,

and that, for u ≤ v

E
((
−sx,1s2

xuW1 (1) + sx,2W2

(
s2
xu
)) (
−sx,1s2

xvW1 (1) + sx,2W2

(
s2
xv
)))

=s2
x,1

(
s2
x

)2
uv + s2

x,2s
2
xu =

s4
x,2

s2
x,1

(uv + u) .

Hence it follows that{
−sx,1s2

xuW1 (1) + sx,2W2 (s2
xu)

1 + u
, u ≥ 0

}
D
=

{
s2
x,2

sx,1
W (u) , u ≥ 0

}
,

where {W (u) , u ≥ 0} is an independent standard Wiener process. This completes the

proof when E log |β0 + ε0,1| < 0.

When E log |β0 + ε0,1| > 0, consider (D.49) again. Seeing as

(D.50)

∥∥∥∥∥
∞∑

i=m+1

xiyi−1

1 + y2
i−1

∥∥∥∥∥ = OP (1) ,
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it is easy to see that∣∣∣∣∣(b0 − b̂m

)ᵀ( m+k∑
i=m+1

(yi−1,x
ᵀ
i )

yi−1

1 + y2
i−1

−
m+k∑
i=m+1

(
yi−1,0

ᵀ
p

) yi−1

1 + y2
i−1

)∣∣∣∣∣
≤
∥∥∥b0 − b̂m

∥∥∥∥∥∥∥∥
m+k∑
i=m+1

(yi−1,x
ᵀ
i )

yi−1

1 + y2
i−1

−
m+k∑
i=m+1

(
yi−1,0

ᵀ
p

) yi−1

1 + y2
i−1

∥∥∥∥∥
=OP

(
m−1/2

)
,

where 0p is a p-dimensional vector of zeros. Similarly, using (D.50) and standard algebra,

it follows that∥∥∥∥∥∥
(
b0 − b̂m

)ᵀ
−

( m∑
i=2

y2
i−1

1 + y2
i−1

)−1( m∑
i=2

εi,1y
2
i−1

1 + y2
i−1

)
,0ᵀp

∥∥∥∥∥∥ = OP

(
m−1/2

)
,

and by (C.13)

max
1≤k<∞

1

k

∣∣∣∣∣∣
(

m∑
i=2

y2
i−1

1 + y2
i−1

)−1( m∑
i=2

εi,1y
2
i−1

1 + y2
i−1

)(
m+k∑
i=m+1

y2
i−1

1 + y2
i−1

− k

)∣∣∣∣∣∣ = OP

(
m−1/2−ζ) ,

for some ζ > 0, and similarly to (C.5)-(C.6)∣∣∣∣∣∣
(

m∑
i=2

y2
i−1

1 + y2
i−1

)−1( m∑
i=2

εi,1y
2
i−1

1 + y2
i−1

)
− 1

m

m∑
i=2

εi,1

∣∣∣∣∣∣ = OP

(
m1/2−ζ) .

Thus, putting all together

max
1≤k<∞

1

k

∣∣∣∣∣(b0 − b̂m

)ᵀ m+k∑
i=m+1

(yi−1,x
ᵀ
i )

yi−1

1 + y2
i−1

− k

m

m∑
i=2

εi,1

∣∣∣∣∣ = OP

(
m−1/2−ζ) .

Finally, similarly to (C.14) it can be shown

max
1≤k<∞

k−1/2−η

∣∣∣∣∣
m+k∑
i=m+1

εi,1y
2
i−1

1 + y2
i−1

−
m+k∑
i=m+1

εi,1

∣∣∣∣∣ = OP

(
m−ζ

)
,

60



for some ζ > 0 and for all η > 0. Putting all together and recalling that, when E log |β0 + ε0,1| >

0, s2
x = 1, it follows that

max
1≤k<∞

∣∣∣∣∣ZX
m (k)−

∣∣∣∣∣
m+k∑
i=m+1

εi,1 −
k

m

m∑
i=2

εi,1

∣∣∣∣∣
∣∣∣∣∣

m1/2

(
1 +

k

m

)(
k

k +m

)ψ = oP (1) .

Hereafter, the final result follows by making appeal to the proof of Theorem 3.1. �

Proof of Theorem 4.2. The proof follows immediately from the approximations derived

above, and from the proof of Theorem 3.4. �

Proof of Theorem 4.10. The proof follows by the same arguments as the proof of Theorem

3.6, and we therefore omit it to save space. �

Proof of Theorem 4.4. The proof follows from the same arguments as in the case with no

covariates. �

Proof of Theorem C.1. The proof is essentially the same as the proofs above, so we only

report some arguments thereof. We begin with the stationary case E log |β0 + ε0,1| < 0.

In such a case, the proof follows from marginally adapting the above, upon defining x̃i =

(1,xᵀi )
ᵀ and subsequently redefining zi, ηi, Q, C and a defined in (C.24)-(C.28) as

z̃i =
1(

1 + y2
i−1

)1/2

(
yi−1, x̃

ᵀ
i

)ᵀ
,

η̃i =

((
εi,1yi−1 + εi,2

)
yi−1

1 + y2
i−1

,

(
εi,1yi−1 + εi,2

)
x̃ᵀi

1 + y2
i−1

)ᵀ
,

Q̃ = E (z̃1z̃
ᵀ
1) ,

C̃ = E (η̃0η̃
ᵀ
0) ,

ã = E

(
(y1, x̃

ᵀ
2)ᵀ y1

1 + y2
1

)
.
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We note that the denominator of b̃m can be approximated by

E
w0w

ᵀ
0

1 + y2
−1

−
(
E

1

1 + y2
−1

)−1(
E

w0

1 + y2
−1

)(
E

w0

1 + y2
−1

)ᵀ
,

where wi =
(
yi−1,x

ᵀ
i

)ᵀ. In order to ensure that this is nonzero, note that, for all nontrivial

vectors b, it holds that

(D.51)
(
E

bᵀw0

1 + y2
−1

)2

≤
(
E

1

1 + y2
−1

)(
E
bᵀw0w

ᵀ
0b

1 + y2
−1

)
,

by the Cauchy-Schwartz inequality, whence also(
E
bᵀw0w

ᵀ
0b

1 + y2
−1

)
≥
(
E

1

1 + y2
−1

)−1

bᵀ
(
E

w0

1 + y2
−1

)(
E

wᵀ0
1 + y2

−1

)
b.

The equality in (D.51) holds if and only if

P

(
bᵀw0w

ᵀ
0b

1 + y2
−1

= c0
1

1 + y2
−1

)
= 1,

for some constant c0. In turn, this holds if and only if

P (bᵀw0w
ᵀ
0b = c0) = 1,

which requires P (w0 = c1) = 1, for some vector of constants c1. But this is ruled out by

Assumption C.1.

When E log |β0 + ε0,1| > 0, the fact that |yi| grows exponentially readily entails that(
m∑
i=2

1

1 + y2
i−1

)−1( m∑
i=2

wi

1 + y2
i−1

)(
m∑
i=2

wᵀi
1 + y2

i−1

)
= OP (1) ,

whence the result in Lemma C.10 holds also in this case mutatis mutandis. The rest of the

proof then follows from the same passages as above. �
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