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S.1 Generalized Inverse

In this section, we collect some facts about the generalized inverse operator from
operator theory; see also Carrasco, Florens, and Renault (2007) for a comprehensive
review of different aspects of the theory of ill-posed inverse models in econometrics.
Let ¢ € &£ be a structural parameter in a Hilbert space £ and let K : &€ — H be
a bounded linear operator mapping to a Hilbert space H. Consider the functional
equation

Kp=r.

If the operator K is not one-to-one, then the structural parameter ¢ is not point
identified, and the identified set is a closed linear manifold described as ®P = ¢ +
N(K), where N(K) = {¢ : K¢ = 0} is the null space of K; see Figure S.1. The
following result offers equivalent characterizations of the identified set; see Groetsch
(1977), Theorem 3.1.1 for a formal proof.

Proposition S.1.1. The identified set Iy is characterized as a set of solutions to
(i) the least-squares problem: mingeg || K¢ —7||;
(i1) the normal equations: K*K¢ = K*r, where K* is the adjoint operator of K.
The generalized inverse is formally defined below.

Definition S.1.1. The generalized inverse of the operator K is a unique linear op-
erator K7 : R(K) ® R(K)* — &, defined by K'r = o1, where @1 € Iy is a unique
solution to
min ¢ (S.1)
For nonidentified linear models, the generalized inverse maps r to the unique
minimal norm element of I,. It follows from equation (S.1) that ¢, is a projection of
0 on the identified set. Therefore, ¢, is the projection of the structural parameter ¢
on the orthogonal complement to the null space N'(K)*, see Figure S.1, and we call
1 the best approximation to the structural parameter ¢. The generalized inverse
operator is typically a discontinuous map, as illustrated in the following proposition;
see Groetsch (1977), pp.117-118 for more details.

Proposition S.1.2. Suppose that the operator K is compact. Then the generalized
inverse KT is continuous if and only if R(K) is finite-dimensional.

The following example illustrates this when K is an integral operator on spaces
of square-integrable functions.
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ly={¢: Kp=r}

N(K) ={¢: K¢ =0}

(K)t ={:(o,9) =0, Vo e N(K)}

Figure S.1: Fundamental subspaces of £.
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Example S.1.1. Suppose that K is an integral operator

Then K is compact whenever the kernel function k is square integrable. In this case,
the generalized inverse is continuous if and only if k is a degenerate kernel function

k(z,w) = quj(z)wj(w).

It is worth stressing that in the NPIV model, the kernel function k is typically a
non-degenerate probability density function. Moreover, in econometric applications,
r is usually estimated from the data, so that K17+ & Kfr = »; may not hold even
when # % 7 due to the discontinuity of KT.! In other words, we are faced with an
ill-posed inverse problem. Tikhonov regularization can be understood as a method
that smooths out the discontinuities of the generalized inverse (K*K)!.?

S.2 Degenerate U-statistics in Hilbert Spaces

S.2.1 Wiener-I1to Integral

This section reviews key results on the asymptotic distribution of degenerate U-
statistics in Hilbert spaces. Let (X, %, ) be a measure space, and let H be a sepa-
rable Hilbert space. We denote by Lo(X™, H) the space of functions f : X™ — H
satisfying E|| f(X1, ..., X:)|* < co. A stochastic process {W(A), A € ¥}, indexed
by the o-field ¥, = {A € £ : p(A) < oo} is called a Gaussian random measure if:

1. Forall A e X,
W(A) ~ N(0, u(A).

2. For any collection of disjoint sets (Ay)4_; in X, the random variables W(A), k =
1,..., K are independent, and

(0 - £

In practice, the situation is even more complex because the operator K is also estimated from
the data.

2By Proposition S.1.1, solving K¢ = r is equivalent to solving K*K¢ = K*r. The latter is
more attractive to work with because the spectral theory of self-adjoint operators in Hilbert spaces
applies to K*K.
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Now, let (Ax)E_, be pairwise disjoint sets in ¥,,, and consider the set S,, of simple
functions f € Lo(X™, H) of the form

f(@r, . am) = Z Ciyyim LAy (z1) X - x Ly, (),

where ¢;, ;. = 0 if any two indices i1, ...,1,, are equal, i.e., f vanishes on the
diagonal. For a Gaussian random measure W corresponding to P, we define the
random operator J,, : S, — H by

The operator J,, has three notable properties:

1. Linearity;
2. EJn(f) = 0;

3. Isometry: E(Jm(f), Jm(9)) a1 = ([, ) Loxm m).-

Since S, is dense in Lo(X™, H), J,, can be extended to a continuous linear isometry
on Ly(X™, H), known as the Wiener-Ito integral.

Example S.2.1. Let (B;)i>o denote a real-valued Brownian motion. For any interval
(t,s] C [0,00), define W((t,s|) = Bs— By, which is a Gaussian random measure (with
p as the Lebesgue measure). The Wiener-1to integral J : Lo([0,00),dt) — R is then
given by J(f) = | F(1)dB,

S.2.2 Central Limit Theorem

Consider a probability space (X, 3, P), where X is a separable metric space and ¥ is
a Borel o-algebra. Let (X;)"; be i.i.d. random variables taking values in (X, X, P).
Define a symmetric function h : X x X — H, where H is a separable Hilbert space.
The H-valued U-statistic of degree 2 is given by

2
U=~ X, X;).
n(n —1) 1§;§n J

The U-statistic is called degenerate if Eh(x1, X3) = 0. The following theorem pro-
vides the limiting distribution of degenerate H-valued U-statistics; see Korolyuk and
Borovskich (1994), Theorem 4.10.2 for a detailed proof.
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Theorem S.2.1. Suppose that U, is a degenerate U-statistic such that EL(X;, Xy) =
0 and E||h(X1, X2)|* < co. Then

nU, % J(h),

where J(h) = [[,, M1, 22)W(dz)W(dxs) is a stochastic Wiener-Ito integral, and

W is a Gaussian random measure on H.
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