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S.1 Generalized Inverse

In this section, we collect some facts about the generalized inverse operator from
operator theory; see also Carrasco, Florens, and Renault (2007) for a comprehensive
review of different aspects of the theory of ill-posed inverse models in econometrics.
Let φ ∈ E be a structural parameter in a Hilbert space E and let K : E → H be
a bounded linear operator mapping to a Hilbert space H. Consider the functional
equation

Kφ = r.

If the operator K is not one-to-one, then the structural parameter φ is not point
identified, and the identified set is a closed linear manifold described as ΦID = φ +
N (K), where N (K) = {ϕ : Kϕ = 0} is the null space of K; see Figure S.1. The
following result offers equivalent characterizations of the identified set; see Groetsch
(1977), Theorem 3.1.1 for a formal proof.

Proposition S.1.1. The identified set I0 is characterized as a set of solutions to

(i) the least-squares problem: minϕ∈E ∥Kϕ− r∥;

(ii) the normal equations: K∗Kϕ = K∗r, where K∗ is the adjoint operator of K.

The generalized inverse is formally defined below.

Definition S.1.1. The generalized inverse of the operator K is a unique linear op-
erator K† : R(K) ⊕ R(K)⊥ → E, defined by K†r = φ1, where φ1 ∈ I0 is a unique
solution to

min
ϕ∈I0

∥ϕ∥. (S.1)

For nonidentified linear models, the generalized inverse maps r to the unique
minimal norm element of I0. It follows from equation (S.1) that φ1 is a projection of
0 on the identified set. Therefore, φ1 is the projection of the structural parameter φ
on the orthogonal complement to the null space N (K)⊥, see Figure S.1, and we call
φ1 the best approximation to the structural parameter φ. The generalized inverse
operator is typically a discontinuous map, as illustrated in the following proposition;
see Groetsch (1977), pp.117-118 for more details.

Proposition S.1.2. Suppose that the operator K is compact. Then the generalized
inverse K† is continuous if and only if R(K) is finite-dimensional.

The following example illustrates this when K is an integral operator on spaces
of square-integrable functions.
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N (K)⊥ = {ϕ : ⟨ϕ, ψ⟩ = 0, ∀ψ ∈ N (K)}

N (K) = {ϕ : Kϕ = 0}

I0 = {ϕ : Kϕ = r}

0

Figure S.1: Fundamental subspaces of E .
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Example S.1.1. Suppose that K is an integral operator

K : L2 → L2

ϕ 7→
∫
ϕ(z)k(z, w)dz.

Then K is compact whenever the kernel function k is square integrable. In this case,
the generalized inverse is continuous if and only if k is a degenerate kernel function

k(z, w) =
m∑
j=1

ϕj(z)ψj(w).

It is worth stressing that in the NPIV model, the kernel function k is typically a
non-degenerate probability density function. Moreover, in econometric applications,
r is usually estimated from the data, so that K†r̂

p−→ K†r = φ1 may not hold even
when r̂

p−→ r due to the discontinuity of K†.1 In other words, we are faced with an
ill-posed inverse problem. Tikhonov regularization can be understood as a method
that smooths out the discontinuities of the generalized inverse (K∗K)†.2

S.2 Degenerate U-statistics in Hilbert Spaces

S.2.1 Wiener-Itô Integral

This section reviews key results on the asymptotic distribution of degenerate U-
statistics in Hilbert spaces. Let (X ,Σ, µ) be a measure space, and let H be a sepa-
rable Hilbert space. We denote by L2(Xm, H) the space of functions f : Xm → H
satisfying E∥f(X1, . . . , Xm)∥2 < ∞. A stochastic process {W(A), A ∈ Σµ}, indexed
by the σ-field Σµ = {A ∈ Σ : µ(A) <∞} is called a Gaussian random measure if:

1. For all A ∈ Σµ,
W(A) ∼ N(0, µ(A)).

2. For any collection of disjoint sets (Ak)
K
k=1 in Σµ, the random variablesW(Ak), k =

1, . . . , K are independent, and

W

(
K⋃
k=1

Ak

)
=

K∑
k=1

W(Ak).

1In practice, the situation is even more complex because the operator K is also estimated from
the data.

2By Proposition S.1.1, solving Kφ = r is equivalent to solving K∗Kφ = K∗r. The latter is
more attractive to work with because the spectral theory of self-adjoint operators in Hilbert spaces
applies to K∗K.
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Now, let (Ak)
K
k=1 be pairwise disjoint sets in Σµ, and consider the set Sm of simple

functions f ∈ L2(Xm, H) of the form

f(x1, . . . , xm) =
K∑

i1,...,im=1

ci1,...,im1Ai1
(x1)× · · · × 1Aim

(xm),

where ci1,...,im = 0 if any two indices i1, . . . , im are equal, i.e., f vanishes on the
diagonal. For a Gaussian random measure W corresponding to P , we define the
random operator Jm : Sm → H by

Jm(f) =
K∑

i1,...,im=1

ci1,...,imW(Ai1) . . .W(Aim).

The operator Jm has three notable properties:

1. Linearity;

2. EJm(f) = 0;

3. Isometry: E⟨Jm(f), Jm(g)⟩H = ⟨f, g⟩L2(Xm,H).

Since Sm is dense in L2(Xm, H), Jm can be extended to a continuous linear isometry
on L2(Xm, H), known as the Wiener-Itô integral.

Example S.2.1. Let (Bt)t≥0 denote a real-valued Brownian motion. For any interval
(t, s] ⊂ [0,∞), define W((t, s]) = Bs−Bt, which is a Gaussian random measure (with
µ as the Lebesgue measure). The Wiener-Itô integral J : L2([0,∞), dt) → R is then
given by J(f) =

∫
f(t)dBt.

S.2.2 Central Limit Theorem

Consider a probability space (X ,Σ, P ), where X is a separable metric space and Σ is
a Borel σ-algebra. Let (Xi)

n
i=1 be i.i.d. random variables taking values in (X ,Σ, P ).

Define a symmetric function h : X ×X → H, where H is a separable Hilbert space.
The H-valued U -statistic of degree 2 is given by

Un =
2

n(n− 1)

∑
1≤i<j≤n

h(Xi, Xj).

The U -statistic is called degenerate if Eh(x1, X2) = 0. The following theorem pro-
vides the limiting distribution of degenerate H-valued U -statistics; see Korolyuk and
Borovskich (1994), Theorem 4.10.2 for a detailed proof.
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Theorem S.2.1. Suppose that Un is a degenerate U-statistic such that Eh(X1, X2) =
0 and E∥h(X1, X2)∥2 <∞. Then

nUn
d−→ J(h),

where J(h) =
∫∫

X×X h(x1, x2)W(dx1)W(dx2) is a stochastic Wiener-Itô integral, and
W is a Gaussian random measure on H.
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