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Appendix A: Procedure to Determine «; Values for the Bonferroni-
Wald Test

In this appendix, we describe the procedure to determine the «y values for the confidence
interval for pp given in Table 2. The procedure is based on simulating the asymptotic
distribution of the Bonferroni-Wald test statistic with 5000 replications and calculating the

frequency of Hy being rejected. In each replication, we first generate {y; }7_; by the mechanism
Yt = (1+G/T)yt71 + €t t:1727"-7T (Al)

with yo = 0, T = 2000, a € [~300, 10] and &; ~ i.i.d N(0,1).
Note that &; used in (A.1) satisfies ¢p = Corr(ey,e? — 02) = 0. To calculate the false

rejection frequencies for other 1 values, we artificially produce an environment where the
Wald test statistic depends on ¢ # 0. Noting that under the null,

2 (or) = 1+ (ef = 1) +(a/T — a/T)*yi 4 — 2(a/T — a/T)yr-1¢t,

and 1y = €7 —1 (combined with ¢;) determines the value of ¢, we artificially replace n, = 7 —1

with 7, == \/1 — ¥21; + 1\/2¢;, obtaining
2 (pr)" P =1+ + (a/T — a/T)*yi 1 — 2(@/T — a/T)ye-1es,
in view of the distributional equivalence W, 4 V1 —9?W; +¢pW, and the fact that V{n,] =

0727 = 2 and Corr(n,&;) = 0. In this replacement, the newly crafted variable ;" takes over



the role of n; = &7 — 1, satisfying E[n; "] = 0, V[;¥] = 2 = V[n;] and Corr(n;", ;) = 4 by
construction. This replacement can be justified by the fact that under the null, the Wald
test statistic asymptotically depends only on ¢ (and a). It follows that the Bonferroni-Wald
test statistic using z7(pr)"*" in place of zZ(pr) asymptotically depends on 1.

For each v, we calculate, under given «;, the false rejection rates of the Bonferroni-Wald
test following Algorithm 1 with a moving over a grid on [—300, 10], and pick an oy value for

the given ¥ such that the false rejection rate is less than or equal to 0.05 for all a.

Appendix B: Proofs of Results in Section 2

In this appendix, we prove the theorems stated in Section 2. To do this, we need the fol-
lowing lemmas. The statements and proofs of Lemmas B.1-B.3 below are basically borrowed
from those of Lemmas A.1, A.2 and 1 of Nishi and Kurozumi (2024).

Lemma B.1. Under Assumption 1, with probability approaching one (w.p.a 1), (pr+wrvy), t =

1,...,T, are all positive.

Proof. This can be shown by noting that

T
P(U{pT +wrv < 0}) < ZP(PT +wrvy <0)

t=1

= Gramp! VRl =0T = ),

where the third inequality holds by Markov’s inequality, and the last convergence by the fact
that E[|vs|?] is finite. O

Lemma B.2. Under Assumption 1, we have

LT | Tr)
I 1 (or + wrvg) = e <1 + Ty o+ op(T1/2)>,
k=1 k=1

uniformly in r € [0, 1].



Proof. By Lemma B.1, In H,EZTIJ (pT —|—wTvk), 0 <r <1, exist w.p.a 1. Thus, we asymptot-

ically have

L)

—

|

H (pr + wrvk) = exp (hl (pr + wTW))
k=1 k=1
|Tr]
= exp<z In(1+a/T+ cvk/T3/4)>
k=1
| Tr| | Tr|
1 a/T + cuy,/T3/*)?
=ex T+ cv T?’/4 = , B.1
oS0/ +eun/10) = 5 37 L, B.)

where we used a Taylor expansion for the third equality and || < |a/T + cv,/T3/*|. As for

the remainder term, we have for any € > 0,

>€) < 34| >
P(1r<nka<XT|Ck| e)_P(r<nka<XT|a/T+cvk/T | > ¢)

P(leop/T**| > € —|a/T))

M’ﬂ

<

e
Il

1

T
< E(e—|a/T|) 27732 ZE[U,%] for T sufficiently large
k=1
— 0 as T — o0,

since E[vZ] = 1. Hence, maxj<<7 (k| is 0p(1). It follows that

|Tr] T

(a/T + cvy,/T3/*)?
Z (14 ¢x)?

(a/T + cvy,/T3/*)?
(1+ Gr)?

k=1
1

T 2
a
< =
~ ming<p<r (1 + G)? kzzl (T2 T7/4 Z“k + T3/2 Z”k)

for which we used T—Y/2 320 v, = Op(1) by the CLT, and T~ 3";_, v? 5 E[v?] = 1 by the

T—1/2)



law of large numbers (LLN). Applying this result to (B.1) yields

LT7] L) LT 3/472
1 T T
LT'I“J |Tr]
—3/4 —1 -1
= exp( T a> <1 +cr¥ ; v + Op(T /2)> (1 + Op(T /2))
LTr)
= e <1 TN+ op(TW)),
k=1
uniformly in r € [0, 1] since
|Tr] |Tr]
T—3/4 T-1/4 7-1/2 0,(T~1/
oS, [T 2 on| =TT sup [T D o] = )
by the FCLT, and exp(a|Tr|/T) = expla(r + O(T™1))] = e (1 + O(T71)). O

Lemma B.3. Consider model (2) under Assumption 1. Define the stochastic process Y on
[0,1] by Yp(r) = T*1/2yLT7,J, 0 <r <1. Then, Y7 = o.J, in the Skorokhod space D]0,1],
where J, solves dJ,(r) = aJy(r)dr + dW(r).

Proof. From (2), a backward substitution yields

t t s

Yt = H (PT + wTvk) Z{ H (PT + wTvk) }_163 + Yo f[ (PT + wTUk)-

k=1 s=1 “k=1 k=1

By Lemma B.2 and yy = op(T1/2) by Assumption 1, we obtain

Yr(r)
=Ty 1)
| Tr] |Tr] s
<1+CT 3/4ka+0 T=1/2) ) Zexp( )<I—CT_3/4ka+Op(T_1/2)> (T_l/st)
k=1 k=1
1)
T2y, (1 Y op<T1/2>)
k=1
7] )
_ qor (T—m ; exp(—ar ) e + Pur(r) + Por(r) + Pg,T(r)> +0,(1),



where

|Tr)

P p(r) = —cT ™4 Z eXp< ) <T_1/2 ka» + 0 (T_1/4)> (T71%,),

[Tr] |Tr]
 p—1/4 —1/2 —1/4 —1/2 S
R L (e

and
|Tr] |Tr
P3r(r) == 2T /2 (T_1/2 Z vk + O, (T4 > Z exp( ) (T—1/2 ka 0, (11
k=1 P
We show P; 7 = op(1), ¢ = 1,2,3, thereby obtaining Y7(-) = o, fo e“('fs)dWE(s) = 0.Ja(").
Now, for P; 7, we have
[Tr] 5 s
Z exp(—af) (Tl/? Z v + Op(T1/4)> (Tfl/QES)
s=1 k=1
L] s 7] 1 s—1
= T_l ; exp(_af)vsgs + eXP(—a/T) ; exXp (—CL ) <T—1/2 ; Vg + Op(T_1/4)>
LTT‘J s LTTJ 1
Ty exp( a7 JElern] + exp(—o/T)T"! 2 exp(—a=7 ) (et — Bler))
[Tr] 1 _
+exp(—a/T) ) exp(—a ) <T1/2 Z vg + op(T1/4)) (T2,
s=1 k=1

:>/ e_astE[61U1]+05/ e Y Wy(s)dWe(s),
0 0

by Theorem 2.1 of Hansen (1992). This result, combined with ¢7~/4 — 0, gives P 1 = 0,(1).

P, 1 also vanishes because ¢T~Y4 - 0 and

|Tr] |Tr] r
<T1/2 Z v + Op(Tfl/4 ) < -1/2 Z exp( >€5> = U€Wv(7’)/ e dW.(s).
k=1 0
That P37 = 0,(1) can be verified by a similar argument. O

Lemma B.4. Consider model (2) under Assumptions 1 and 2. Then, we have

)(T-Wss).

(T_1/25s)



(a) 627(pr) % 02 = B[]
(b) 2 4(pr) % o2 =

(c) ¥r(pr) & o = Elemy]/(o=00).

Proof. The proofs of parts (a) and (b) are the same as those of Lemmas 1(b) and (c) of
Nishi and Kurozumi (2024).

(a) From z:(pr) = yt — pryi—1 = wrvgyi—1 + ¢, we have

aT pT lzzt :OT

T T
= 2772 Z y2 w4 2e77 Z ye_qvees + 171 Z €2, (B.2)
t=1 t=1 t=1
The first term is

T—5/zzyt 1Ut < sup |T 1/2 yir j‘Q'T_l/Q 12% _ T—1/2)

=1 0<r<1

since supp<,<1 ‘yLTTJ/\/T‘ = supg<,<1 |Ja(r)| by Lemma B.3 and the continuous mapping
theorem (CMT). The second term is

T
|T_ /4Zyt 1’Ut8t’ < Sup ‘T 1/2 TJ’T_1/4 _IZ|€t’Ut| :Op(T_1/4).
t=1

Substituting these results into (B.2), we have

T
=71 Zaf +0p(1) = o7
t=1
(b) We write 62 ar(pr) as

on 1 (p 12{% pr) — 67 (PT} =T" 12% (pr) = 627(p)- (B.3)

The first term is

T T T T
T3 2 pr) = T3 g o +ACT Y g e + 6T Y4 e
t=1 t=1 t=1 t=1

T T
+ 4T yagfu + T e,
t=1 t=1



for which we have

T
’T_4ny_1vt < sup [T~ 1/2yLTJ‘ T-t.7" 1ZUt =0,(T™Y),
t=1 Osr<l t=1
T T
‘T13/4ny’15tvf < sup [T~ UQZ/LT J‘ T34 712|£tvf| :Op(T*3/4),
P 0<r<1
‘T 5/22yt letvt <0iu1<)1‘T 1/2yLT J} T 1/2 1Z|€?U2| _ *1/2)’
and
T
‘T‘7/4Zyt_15§’vt < sup ’T /yLTJ}T /4. IZ|5tvt]— T_1/4)
P 0<r<1
Thus, the first term of (B.3) is
T
T 2 pr) = 1Zat +0,(1) B E[e].
t=1
Hence
oo rlpr) = Elet] — o = o7

(c) It suffices to show

T
T3 wlpr){ = or) — 62 r(or) | B B[]
t=1

A simple calculation gives

T
TS e or) — 82 (or)}
t=1
=T 12 (T3 Yy vy + e ) {AT 322 02 + 26Ty 140 + €2 —O’?T(pT)}
t=1
T
= T_l ZE? + AT7
t=1

where

T T T
Ap = ST713/4 Z yp_vp + 32T 0/ Z y? 16007 + 3er /4 Z Y1670
t=1 t=1 t=1

T T
- &S,T(PT) X {CT*7/4 Z yeqvg + T ZEt}.
t=1 t=1



The first term of A satisfies

A7-13/4 Z o 3

t=1

< |ef? S |y|_TrJ/\F‘3XT 7/42111 > = 0p(T/").

t=1

Similarly, we can prove that the other terms of Az is O,(T~'/4). Thus

T T
T4 alpr)zi(or) —620(pr)} =T71 ) &l +0p(1) = E[]]-
t=1 t=1

O]

For later reference, we give several results on the weak convergence of components of test

statistics.

Lemma B.5. Consider model (2) under Assumptions 1 and 2. Then, we have
(¢)

T 1 1 1
T3/2 Z Toi 122 (pr) = crncrg/ Ja2(r)dWy(r) + 620'21/ (Ja2)?(r)dr + QCcréq/ Ja1(r) Jao(r)dr,
0 0 0

t=1

(b)

T 1 1 1
T_Ile,t,lzf(pT) = 0'1705/ Ja,1(r)dW,(r) +c2ag’/ Ja1(r)Ja2(r)dr + 2co? q/ (Ja1)?(r)dr,
P 0 0 0
(C) U~ (pT) £> 0.2}
(d) 6% (pr) = o,

where &2; (pr) and 627*([)7’) are the OLS variance estimators of (9) and (14), respectively.

Proof. For part (a), a straightforward calculation gives

T
732 Z xo1-12;(pr) = Bir + Bar + Bsr,



where

7-3/2

T
(v =T D v ) (6 - o),
t=1

T

2
T T

Z( -7 29271)?/371”?7
t=1

Byg = T3
t=1

and

T T
By = 2cT /4 Z (yf_l -7t Z y,52_1>yt—1€tvt-
t=1 t=1

It is straightforward to show By = oy,02 fol Ja2(r)dW,(r), using Lemma B.3 and The-
orem 2.1 of Hansen (1992). As for By 1, we have

T T T
Bop = c2T73 Z(th—l _ -1 Z yt2_1>2 423 Z(yt? 1 Z 3 1>Z/t (W —1)
. =1 ) t=1 ) t:11
— 02/ (YTQ(T) - / Yﬁ(s)ds) dr + c2T1/2/ (Yﬁ(r) — / Yﬁ(s)ds) Yﬁ(r)dWUQ_LT
0 0 0 0

1
:>620'4/ (Ja’2)2(’l“)d’l",
0

where the last convergence follows from Lemma B.3, the fact that fo (YA(r fo YA (8)ds)YE(r)dW,2_y 1 =
Op(1) by Theorem 2.1 of Hansen (1992), and the CMT. By a similar argument, we obtain

T T T
B3y = 2c<7€qT_5/2 Z (yf_l —7! Z yf_l) (yt—l -7 Z yt—l)
=1 =1 =1
T T
+2T7 Y (93_1 Tty yf_1>yt71(€tvt — Ocv)
t=1 t=1

1
= 2CO’§Q/ Ja,2(r)Ja,1(r)dr.
0

Therefore, we arrive at

KA 2
“,_.
—
=
SN—
=8
=

T 1 1 1
T—3/2Zx2,t—1zt2(pT) = 0,02 / Ja2(r)dW,(r) + 2ol / (Ja2)?(r)dr + 2coiq / Ja2(r)Jq
0 0 0

t=1

as desired.



Part (b) can be proven in a similar fashion. Write 7! Ethl r14-122(pr) as
T
7! Z x14-12¢(pr) = 11 + Cor + Car,

. =1 5T 2 2 . 23 T 2 2 o
where Cip == T >, jx14-1(ef — 0Z), Cor == cT7 2>, | x14-1y; Vi, and Cyp =

2T 4 Zle Z1¢-1Yi—1€:v¢. Then, it is straightforward to show

1
CI,T = 0'710'5/ Ja,l(r)dwn(r)v
0

1
CQT:>C 3/ Ja71(7‘)Ja72(’r’)d’l",
0

and
1 ~
Csr = 2ca€3q/ (Ja71)2(r)dr.
0

Combining the above results completes the proof of part (b).
To prove part (c), we define M := I — X (X’X)~1X and write &52? (pr) as

6% (pr) = T MEE
T

=7 2(5})2 -7t (ZtT=1 r11&f Zthl 532,1%—15?)

t=1

( Sia(rie-1)’ Y ifl,tlfﬁztl)l (ZtTlxl’tﬂ). (B.4)

Zt 122,t—1T1,t—1 2521(362,7:—1)2 Zle ClUQ,t—lfik

The first term of (B.4) becomes

T _ T T 9
TG =T ) - (7 th*)

t=1
=7t Z{C2T_3/2yt2 L (0F = 1) + 2Ty 1 (e — 0ey) + (67 — 02)}
[ -1 Z{CQT_?’/QQ/? 1(vp = 1)+ 2T 84y, 1(evr — 0ev) + (67 — Ug)}]z
— 71 Z + Op(l)
%2,

10



The second term of (B.4) satisfies
-1
T 2 T T *
-1 ( T e T *> D=1 (T1e-1) Dty T1-1T2,-1 D=1 T1t-1&]
Lz Peabi Ly P2k S w11 g (w241)? Sy w21
=T (TS (e — 02) +0,(1) T2 o 1(F = 02) + 0,(1)
-1
T TP e T Sy wn(ef — 02) + 0p(1)
TR ez T8N0 (wa)? T2 3 w20-1(ef — 02) + 0,(1)

= O0,(T™1). (B.5)

Hence, we obtain &E;(pT) it 03], as desired.

To prove part (d), let Z1 == (Z1(pr), %2(pr), - - ., zr(pr)). Then, ZNS(pT) is expressed as

= _ 1 5 _ onr(pr)¥r(er)
Z3(pr) = 1_¢%(pT){zz<pT> o Ailen)

which yields

6%, =T Z5(pr) M Z(pr)

é’**
N N ~2 72
1 &
-1 {Dl,T B 20777TA(PT)¢T(PT)D2’T N ”’TA(QPTWT(’)T)D&T}, (B.6)
1— 2 (pr) Ger(pr) 6Z7(pr)

where Dl,T = Tﬁlzg(pT)/MZQ(pT), D27T = Tﬁlzg(pT)/MZ(pT), and D3,T = Tﬁlz(pT)/MZ(pT).

Since Dy is &2; (pr), we have already proven in part (c) that
Dy 5 ol (B.7)
In view of equation (9), Dy 1 becomes

Dy =T7'E*(pr)' M Z1(pr)
T
=T7'Y &a(pr) - T (Zle r11& S $2,t—1€t*)
t=1

-1
X ( Zle(xu_l)Q Zthlet—let—l) (Zthlxl,t—IZt(PT)>

ST 1T Yy (T24-1)? Sy w2-12(p7)

11



For the first term of Dy 7, we have

-1 th zi(pr) -1 Z{CQT 322 (v — 1) + 2T 3 My, (eqvp — 020) + (67 — 02)}
T
(Zt PT Z )
T
=T 1> (e — 02)er + 0p(1) B E[e]).
t=1

We can also show that the second term of Do is O,(T™!) in the same way as we did in
(B.5). Thus, we get

Do 5 B[] (B.8)

Lastly, D3t becomes

T
!
Dyr=T"" Z a2 pr) T <ZZ=1 x14-12(p1) Z;[:l 902,t—12’t(PT)>
-1
( S(ren)? S ffl,tlxz,H) (Zthl ﬂfl,tlzt(pT)>

S ToaTier 3 (T24-1)? Sy w24-12(pr)

T
2
=&27(pr) = (T3 alor)) + 0,171 B o2, (B.9)
t=1
Substituting (B.7), (B.8), and (B.9) into (B.6) and applying Lemma B.4, we deduce

2 2
A2 p 1 { -9 77,¢ [ ]+ "7 2}
é** ]-_Q,Z)Z 0_6 E

1
= =0} - 20%2 +o2y?) =
Proof of Theorem 1. First, note that

T 3/22 —1¥2;t— lzt<PT)

o T8 Sy a2}

LNr(pr) =

12



Then, using Lemmas B.4 and B.5 and the CMT, we deduce

‘777‘752 fol ja,g(T)de(T‘) + 2ot fol ja72 2(r)dr + 2colq fol ja71(r)Ja,2(r)dr

{ 4f0 Ju.2)? dr} v
_ fo Na Wi (r) 4% 2 [C fo( a72) dT"‘zCQIo a2 )ja,l(r)dr
(o (a, ) rd?’}m 7 (U (Jaz) 2 (r)dr} 2

LNr(pr) =

O]

Proof of Theorem 2. First, by Lemma B.5(c) and the CMT, the denominator of toz (pr)
divided by T%/2 becomes

55*(PT)T_3/2(X M X5)'? = oa(pr{T™ 3(M1Xo) (M1 X2)}/?
T T 1/2
. _ D1 T1p—1T2 2
= Ug*(PT){T 3;<$2,t—1 - Z§1z$1,112)2 1$1,t—1> }
. e Jo Yir(s)Yar(s)ds 2\ 1/?
05*('0T){/o (Y2’T(T) a fol(ffLTp(s)ds YI’T(T)) }
1
= a0t [ @]

where Y1 p(r) = Yp(r fo Yr(s)ds and Yo r(r) == YZ(r fo Y2(s)ds. Next, applying
Lemma B.5, the numerator of #;2 (pr) divided by T3/2 is seen to satisfy

T B T R
% 7525wy qwe TS w1122 (1)
T73/2XéM1Z2(pT) —T7-3/2 T t—thQ (pr) — t=1-"1, ) t=1 11, t
’ _ T
; T2 Zt:1($1,t—1)2

1 1 3
= gy / Joa () AW, (1) + 2o / (Juz)?(r)dr + 2c0*q / Jon () Jus(r)dr
0 0

1
—a?/ Ja1(r)Ja2(r)dr
0
y 0y0e fol j&l(r)dW (r) + 0203f al )J o(r)dr + QCogq fol(ja71)2(r)dr

f (Jan1)?(r)dr
1
:0',70'3/ Qa(r)dW, (1) + 2o / Q% (r)
0

13




Combining the above results gives

Jo Qalr
t@%(pT) [Ofo Q2 1/2 [/ Q2 ]

To derive the asymptotic distribution of Wr(pr), note that

Wr(pr) = 5522()(/22(PT))/(X/X)_I(X/@(PT))

/ —1
2 ( T4 w1122 (pr) T2 (x1-1) TP wimay
)

T35 wau 12t (pr T2 wagamie T3 (w24-1)?

1Zt 1$1t 1%¢ (PT)
T=32 5 way 122 (pr)
Then, applying Lemma B.5 and the CMT, we get
1 2 /
Wr(pr) = fol J~a 1(r)dWy(r) + fo a,1(7) (r)dr + 2cq fo ( al) (r)dr
fo Ja2(r)dW,(r) on \ 2 (Ja7 ) 7’+20q fo 0,1 (1) Jg2(r)dr
- 1
" 1 Oi( m)f(r)dr fo a, 1 (r)dr
fo Ja2(r)Jo1(r)dr fo ( ) dr
) -

)
« { (fol {a,1ET§de(T)> n oz < fo al r) )d7“+2cqf0( a1)2(7")d7“> }7

f0(~a7 )2( 7°+QCQf0 a,1(r)Ja2(r)dr

completing the proof. O

To prove Theorem 3, we use the following lemma.
Lemma B.6. Consider model (2) under Assumptions 1 and 2. Then, we have
(¢)
T 1
T-3/? szt,lzf*(pT) :0,703/ Ja2(r)dWi(r)
0

t=1

1 1 ~
+(1- LZJQ)_I/Q{CQQ?/ (Ja’2)2(7‘)d7" + 2ca§q/ Ja1(r) ag(?ﬂ)dr},
0 0

14



(b)
T 1
T3 21y 127 (pr) oo / ot (F)dWi ()
t=1 0

1
+(1- 1/2 / Ja,1 (r r)dr 4 2co Q/ (ja,l)Q(r)dr}‘
0

Proof. To prove part (a), note that

T ~
1 o
T—3/2 E $2,t—12t2*(,0T) — : {EI,T _ n’TOA(_pT)(fT)(pT)EQ,T}y
t=1 1 — 43 (pr) =TT

where Ey 1 = T—3/2 Zthl :Eg,t,lztz(pT) and Eyp = T—3/2 Zle x2t-12(pr). By Lemma
B.5(a), By satisfies

1 1 1
Eir = 0q02 / Joia ()W, (1) + 2o / (Jo2)2(r)dr + 200q / Jont (1) Joa ()
0 0 0
As for Fy 7, a straightforward calculation yields
T
Eyr = T3/ Z x?,tfl(CT_3/4yt71Ut +et)

t=1

e 1
=T3/2 Z wa_1t + Op(T~ V) = Ug/ Ja,2(r)dWe(r).
0

t=1

Hence, we obtain

T 1 1

1 ~ -

T—3/? E Tos 122 (pr) = { 7702/ JQQ(T)de(T)—i-czaf/ (Ja2)?(r)dr
t=1 V1 —1p? 0

1
+2colq / Jat (1) Jas(r)dr — ”;wag / Ja72(r)dW5(r)}
0 € 0

1
L o0 / Ja2(r)dWe(r)
0
1

+ 2 4/01(j 2)%(r )dr—l—QCa?q/Ol Jan (7 )j,Q(T)dT>7

V1 =2 < 7
in view of (3). This proves part (a). The proof of part (b) is similar, and thus is omitted. [

15



Proof of Theorem 3. The proof for LN}.(pr) is essentially the same as that of Theorem
1 except that we consider Zthl w27t,1zt2*(pT) in the numerator of the test statistic. Dividing
both the numerator and denominator by 7%/2 and applying Lemma B.6(a) leads to the desired
result. The proof for the augmented tests goes along the same lines as those of Theorem 2 if

we replace 22(pr) with z2*(pr) and apply Lemmas B.5(d) and B.6. O

Appendix C: Proofs of Results in Section 3

In this appendix, we prove the asymptotic results mentioned in Section 3: namely, the

asymptotic distribution of pr and the consistency of &fj(pﬁp), 6727,T(ﬁT) and 7 (pr).
Lemma C.1. Consider model (2) under Assumptions 1 and 2. Then, we have

fol Ja(T)WE(T)‘

T(ﬁT - pT) = fol Jg (’l“)d’F

Proof. From the definition of g7, we have

T S g1 (T3 e qvp + &)
T2 Zthl i,
T [LY2(r) AW r (r) + oc [y Yr(r)dWer(r) . Iy Ja(r)dWe(r)
Jo YZ(rydr Jo B2y

T(pr — pr) =

Lemma C.2. Consider model (2) under Assumptions 1 and 2. Then, we have

A2 (AN P
(a) US,T(PT) =02

(b) &%,T(ﬁT> £> 0727;

(c) dr(pr) B .
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Proof. For part (a), ¢ g,T(ﬁT) satisfies

~2 A 12 :
UaT Zt

T

=T {zlpr) — (br — pr)ve—1}’
T T
=T 3 or) = 2T = pr)T > 3 yeerzalpr) + T2 (or = p2'T° 3wt
=1

t=1 t=1

for which we have T~! Zt 22 pr) = O' r(pr), T*(pr — pr)*T 3 Zthl y?2 = O,(T71) by

Lemma C.1 and the CMT, and

T T
T2 Z yi1z(pr) =T Z Y1 (T3 4y _qvp + &)
=1

1 1
= o/ / YA(r)dWr,(r) + T Lo, / Yy (r)dWer(r) = Op(T™H).
0 0

Therefore
627(pr) = 621 (pr) + 0p(1) 5 02,
given Lemma B.4(a).
To prove part (b), write a r(pr) as

T
n 7(pr) - Z{Zt (A1) (P )}2 =7 Z Z?(ﬁT) - 5?,T(/3T)- (C.1)
t=1

The first term is
T
TN 2 (pr)
t=1
T
=7 Z{Zt(PT) — (pr — pr)ye—1}*

QZzt pr)Yi—1 + 6T%(pr — pr)*T BZZt pT)Yi 1

=T" 12% pr) — AT (pr — pr)T
t=1
T

T
— 4

—AT3(pr — pr)* T~ zelpr)yi o + T (pr — pr)* T° Dyt .
t=1 t=1
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Straightforward calculations reveal T2 23;1 2 (pr)yr—1 = Op(T~Y/2), 773 Ethl 2(pr)yt, =
Op(T71), T4 Zle z(pr)yp_y = Op(T72), and TP Zle yt 1 = O,(T~2), which gives
T T
Ty 2 pr) =T 2 pr) + Op(T77?).

t=1 t=1

Substituting this and 62 ,(pr) = &E,T(PT) + 0p(1) into (C.1), we arrive at

by Lemma B.4(b).

To prove part ( ), it suffices to show 7! ZtT L2 (pr) {22 (pr) — oz 2 (pr)} B E[e}], given

that O’eT(pT) 2 62 and UnT(PT) LS O' . Now, we have

T
T 12% (pr) {Zt (pr) AST(pT)}
=1

=T Z{Zt(PT) — (pr — pr)—1 Mzt (pr) — 2061 — pr)i—12e(p1) + (BT — p)yi—1 — 62 0(p1)}

T
=T 12275 pT {Zt pT - U (PT)} +Op( ) £> E[&\?],
t=1

in view of the last line of the proof of Lemma B.4(c). O

Appendix D: Proofs of Results in Section 4

Lemma D.1. Consider model (2). Under Assumption 3 and under Hy : wp = 0, the following
results hold:

(a) yLT”/\/T = 0.1, Ja(r), where J, satisfies dJo(r) = aJo(r)dr + dWe (7).

(b)
T 1

1
T_3/2 Z x2,t712152(PT) = Jn,lro'gg,lr/ Ja,2(r)de,lr(r) + QUa,ersn/ Ja(T)dT,
=1 0 0
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(c)

T 1
7! Z xl,t—lth(pT) = Un,lras,lr/ Ja,l( )dW lr( ) + Asny
t=1 0

(d) 6% (pr) = 07

Proof. (a) Since Hp : wy = 0 holds, y; = pryt—1 + €, and thus part (a) immediately follows
by a standard argument under Assumption 3 (e.g., Phillips, 1987b).

(b) Noting that z2(pr) = (¥ — pryi—1)? = 02 + 1, we have

T o
_ - 3 2 t
T ZxQ,t—lzf(ﬂT) = 02, 0qu T Z(tTl _ -l 5— 1) n
=1 =1 Jer a i’ Onlr
2 ZT: Y1 \? Mt Z ys—1 \21 ZT: 7
Oc 17O, ( ) _ <7) Lo |
N t=1 Ug’lrﬁ JWTﬁ s=1 Us,lrﬁ r t=1 Un,lr\/f

The second term in the parentheses weakly converges to fol J2(r)drW, (1) by part (a), the
FCLT and the CMT. For the first term, we can apply Theorem 3.1 of Liang et al. (2016) to

obtain

T A 1
> (== == / T2 (r (r) + 25"/ Ta(r)dr.
=1 Us,lr\/T On, lr Oc,lrOn,lr JO

Combining the above results yields
T 1 1
T3/2 Z To4 127 (pr) = O'g’h,()'n’lr/ Ja2(r)dWy 1 (1) + 202 1p Aeyy [ Ja(r)dr.
t=1 0 0

(c) Similarly to part (b), we have

T T
T_lzﬂﬁu 121 (p1) = 0= 170 L LA s Z
1~ elr¥n,lr
=1 =1 OeirV T oy, VT s—1 UE,ZT\FT 1 9, VT

Applying part (a), Theorem 3.1 of Liang et al. (2016) and the CMT completes the proof.
(d) As in part (c) of Lemma B.5, we have

6% 12@ T (S ag S wag)
-1
( Zt (@1 1)? Zthl $1,t1x2,t1> (ZtT_lfUl,tlﬁw?k)

ST Y (24-1)? S w216
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The first term becomes

T _ T T 9
TN (G =T Y (- o) = [T Y (e~ o)
t=1 t=1 t=1

2 0727. the short-run variance of 7;)

The second term satisfies

—1
T T T
T (S 21 Slangy) (et agaemen) - (Spaned
= = S T2t o (w21)? D im1 218
—1 _ T _ T
=T (T P i mi(ef —o2) T35 wapa(ef - 03))
-1
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T2 waaaier T35 (w1)? T=323_ way1(ef — o)

= Op(Til)a

by Theorem 3.1 of Liang et al. (2016). Hence, we obtain &§~* (pr) 2 7. O

Proof of (16). As in the proof of Theorem 2, we have

/ -1
Wr(pr) = 6=° ( T w1122 (o) ) ( T2y (we)? TP xl,t—lﬂl??,t—l)

& \T32"  wos 122 (pr) T2 woy qm1s T35 (w941)?

T35 w4122 (pr)

" ( T-'Y 21122 (pr) > .

Given the above equation, (16) is an immediate consequence of Lemma D.1 and the CMT. [

Proof of Theorem 4. First note that under the null of wy = 0,

éT(PT) - (X/X>_1UT(PT)
_ <XfX>-1{ (z 17) (o M ) (Wwwg*,lmw;z}w Y )}
2A.,) .

T T ~ T
D1 T2t 17 (p1) 2241 Ye-1 Virr(p1)0 g 1, (P1) 624, (PT) Doy 20160

= (X'X)"'Fr.
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Therefore, using Lemma D.1, W[ (pr) can be written as
Fr(X'X) "' Fp
oL (o) (L—02,1)

T3 @i Aey(p7)
= {52 1— 1 t=1 T1e—1M | ( R en(PT
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where the last equality follows from the fact that W, . 4 VirWeir + 4/1 — 1/1l2TW1. The

weak limit is the chi-square distribution with 2 degrees of freedom since Wy and W, are

ISH

independent. O
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Appendix E: Additional Simulation Results
E.1 Additional results for Section 2.5 (asymptotic power)

In this section, we give additional simulation results pertaining to Section 2.5, where the
asymptotic power functions are computed for infeasible versions of the LN, augmented t,
and augmented Wald tests. The simulation results for a = —5,—10 are shown in Figures
E.1 and E.2, respectively. The general pattern of the power properties is the same as when
a = 0: The LN test performs best for small ¢, and the Wald test performs best for moderate
to large q. However, the powers of all the tests we consider get lower as a deviates from
0 (as long as a < 0). A similar tendency of the power properties of tests for Hy : w2 = 0
has been observed through simulation by earlier work such as Nagakura (2009) and Horvath
and Trapani (2019). Nonetheless, even when a < 0, the power function of the Wald test is

increasing in ¢ while the power function of the LN test is decreasing in q.

E.2 Additional results for Section 5.1 (finite-sample size)

This section gives the finite-sample size of the Bonferroni-Wald test modified to allow for
serial correlation and conditional heteroskedasticity in ;. We conduct the Bonferroni-Wald
test as explained in Algorithm 3 in Section 4.2 (without refinement). y; is generated by
Yt = pyi—1 + & with p € [0.7,1.01]. Two DGPs are considered for &;: (i) ¢; is a GARCH(1,1)
process of the form &; = oyuy, 07 = 0.1 + 0.8502_; + 0.05¢?_;, where u; ~ i.i.d. N(0,1), and
(i) 4 = 0.4e4—1 + u; is an AR(1) process.

To proceed with the modified Bonferroni-Wald test, we need to specify lag length p to
construct the confidence interval for pp. For the first DGP, we set p = 1 since &; is serially
uncorrelated. This means that the confidence interval for 47, CI, (1), can be directly used
as the confidence interval for pp (Step 2 is skipped). For the second DGP, we use p = 4,
6, and 8 for T" = 200, 500, and 1000, respectively. We set a; = ag = 0.05, resulting in the
eventual significance level of o = a1 + ag = 0.1. We show the results in Figures E.3 and E.4.

For the first DGP in which &; is a GARCH process (Figure E.3), the type 1 error is around
or below the 10% nominal level over p € [0.7,1.01] for T' = 200, 500. However, it increases as
p deviates from 1 if p < 0.9 and T = 1000, exceeding the nominal level eventually. This is
due to the identification problem emerging as y; takes on stationarity (a =T(p—1) = —00);

see Remark 2. Therefore, the Bonferroni test will be valid only in a close neighborhood of
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Figure E.1: Asymptotic power for a = —5
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Figure E.2: Asymptotic power for a = —10
—: Augmented t, ---: LN
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p = 1 when the disturbance is conditionally heteroskedastic. For the case of ¢; being an
AR(1) process (Figure E.4), the type 1 error is stable between 2-5% and does not increase as
a=T(pr —1) = —oc.

Figure E.3: Finite-sample rejection rates Figure E.4: Finite-sample rejection rates
of the Bonferroni-Wald test under the of the Bonferroni-Wald test under the
null, (i)e; GARCH null, (ii)e; AR

—: T =200, - : T =500, ---:T =1000

E.3 Additional results for Section 5.2 (finite-sample power)

Figures E.5-E.7 display the finite-sample power functions of the infeasible Wald, Bonfer-
roni Wald (following Algorithm 2), LN, and HT tests for p = 1.01,0.98,0.95. For the case
p = 1.01, where all but the LN test are performed, the infeasible and Bonferroni-Wald tests
have good power, and their power functions are almost identical. In contrast, the power

function of the HT test stays around the nominal level 0.05 over w? € (0,0.01].
Turning to the cases p < 1, it is noticeable that for each p, the power functions are similar
in shape to those for p = 1, but all tests lose their power as 1 — p gets larger. This finding is

in line with the asymptotic analysis given in Section E.1.

E.3.1 Power for the case where v, is serially correlated

Throughout the article, we have assumed that the random part {v;} of the coefficient is
an i.i.d. sequence. To investigate how tests behave without the i.i.d. assumption on v;, we
generate y; based on the same DGP as that of Section 5.2 except that v; is generated as

vy = 0.4vp—1 + ug with ug ~ ii.d. N(0,1). In this setting, we calculate the power functions

24



(a) Corr(es,v¢) =0 (a) Corr(es,v¢) =0

(b) Corr(et, v) = 0.25 (b) Corr(et,v:) = 0.25

(c) Corr(gt,v) = 0.5 (c) Corr(es, v¢) = 0.5

(d) Corr(et,v) = 0.75 (d) Corr(eg,v:) = 0.75
Figure E.5: Power for T = 200, p = 1.01, & Figure E.6: Power for T' = 200, p = 0.98, &
iid iid
------ : Bonf. Wald, —: Inf. Wald, LN, ---: HT
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(a) Corr(es,v¢) =0 (a) Corr(es,ut) =0

(b) Corr(et, v) = 0.25 (b) Corr(et, us) = 0.25

(c) Corr(gs, v¢) = 0.5 (c) Corr(es,ur) = 0.5

(d) Corr(et,v:) = 0.75 (d) Corr(et, us) = 0.75
Figure E.7: Power for T = 200, p = 0.95, & Figure E.8: Power for T' = 200, p = 1, v
iid AR(1)
------ : Bonf. Wald, —: Inf. Wald, LN, ---: HT
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of the infeasible Wald, Bonferroni-Wald, LN, and HT tests. We report the result for p = 1
only. The results for the case of p = 1.01,0.98,0.95 are available upon request. The result is
given in Figure E.8 along with the correlation between 4 and wu; (rather than v;). The power
functions and power rankings are quite similar to those obtained in the case of v; being i.i.d.

(see Figure 3). Hence, the power analysis given in Section 5.2 is robust to the property of v;.
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