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5.5 More Simulation Studies 33

S.1 Proofs of Theorems @»@, Lemma , and Corollary

In the subsequent proofs, all results will be derived on F when using Assumptions 1-6,

Conditions M1-M2, and Conditions A1-A2.

S.1.1 Proof of Theorem

We first prove part (i). Let C' > 0 be a sufficiently large constant. From Assumption 5, there
exists a constant K¢, = max{Ky, [2/0c|+1]+1} > 0such that 6, |c|41—1/n > 0cj41/2 > 0

for any n > K¢. Since m};* satisfies 1/n > 0, -1 from (@), we have

1
en,LCjJrl - en,m;‘l*—i—l > 9n,[CJ+1 - E > 07
which, along with Assumption 3, leads to m* + 1 > |C'| + 2. This further implies that for
any constant C' > 0, there exists a constant K} > 0 such that m* > |C| +1 > C for any
n > K¢, ie., lim,_,, m;" = oo. This completes the proof of Theorem E(l)

Next, we prove part (ii). When M,, > m**, we have m} = m}*, and thus
RMS(mr) > t1(Pz ) = tr(Pppes Q) > 10z > c1m,,” — 00.
When M,, < m»*, we have m! = M,, and thus by (@) and Assumptions 2-3,

Ry(my) = RYS(My) = ' (L — Py, ) p + tr(Pa, )

> p (Prze — Py, )+ tr(Pag, Q)

*k

My

= Y {(Pr — Pru1) Q0,0 + t1(Pa, Q)
m=M,+1
> pmy > t{(Po — Pt} + (P, Q)
m=M,+1



= tr(Pps- Q) > 1V > cymy" — 00. (S.1)

Therefore, RMS(m?) — oo as n — oo for any M,,. Combining this fact with Theorem m, we

have RMA(w*) > RMS(m?)/2 — oo as n — oo. This completes the proof of Theorem E(n)

S.1.2 Proof of Theorem @

Under Condition M1, lim,, o M,,/m** = 0, which implies that M, < m}* when n is large
enough, and thus m! = M,,. By (@), for a sufficiently large n,

My,

B [tr{(P,, — P,,_1)Q}]
An = Z p' (P, — P )p+tr{(P, — P, 1)}

m=2

S zn: tI‘{(Pm — Pm_l)ﬂ}

S CQ(VMn — Vl) S CQV(Mn — ].), (82)

where the last two inequalities are due to Assumptions 2 and 4, respectively. Combining

(@)7 (@)7 lim,, o M, /m}* = 0, and Theorem @, we have

li A'n, CQV
1111 Sup ~
n—oo er\L/[S(m;kl) Cl n—oo m**

which yields A,, = o{f RM3(m?)}. This completes the proof of Theorem a

S.1.3 Proof of Theorem @

When Condition M2 holds, we consider two scenarios to prove this theorem: M,, > m** and
¢ < M, /m** < 1, for any sufficiently large n.
(i) M, > m’* for any sufficiently large n. In this case, m} = m}* satisfies (@) When

Condition A1 holds, we first examine the order of the optimal risk of MS. Let s = max{s:

|k*(m +1)] <d,,s=0,1,...}. The first term in (@) is upper bounded by

dn dn

= Z l,l,T(Pm — P )p= Z NT(Pm — P

m=m}+1 m=mj,+1



—1 [k H (my+1)] -1 dn

= Z NT(Pm P 1)p+ Z HT(Pm —Pua)p
§=0 m=|k*(m;;+1)] m=|kh (mz+1)]
sy —1 k5t (m)+1)] -1 dn

= Z ntr{(Pm - mel)Q}en,m + Z ntr{(Pm - Pm71>9}0n,m
5=0 m=|ks(m}+1)] m= |k (m3,+1)]
sE—1 k5t (mi+1)] -1

< D Onlkstmz ) > ntr{(P - Pn)Q}
s=0 m=_k* (m3+1)]
dn

00, 5% (g 41)) Z ntr{(P, — Pp,_1)2}
m=[k5H (i +1))

sy—1

O +1 Z Nt { (P gt (ms 41) -1 — Plrs(mz41)-1)2}

+n9n,m;+177 "tl"{(Pdn - P[ksﬁ(m;H)J—l)Q}

x
sp—1

< e Z ns(VLkSH(m;;—&-l)j - Vucs(m;;ﬂ)J) + 02778:(’41” - VLkS?l(m;;-i-l)J—l)
s=0

<V S (R (my + 1)) — [k (my + 1))

*
Sn

~ eV (k= 1)(mp + 1)) (kn)® < m, < tr(Py, ).

s=0

In this progression, the first equality follows from the fact that p ' (I,—P,, )p = 0; the first in-
equality follows from Assumption 3; the second inequality follows from 0, | s (mz 11)|/Onmz +1 <
n® for a sufficiently large n, which can be obtained by Condition A1 and Theorem E; and
the last two inequalities follow from (@) and Assumption 4 respectively. Thus, the order
of the optimal risk of MS satisfies RY®(m};) =< tr(P,,: Q).

Next, we prove that the potential advantage A, of MA over MS has the same order as
RMS(m?) under Condition Al. Define ¢, = min{t € N: [kt] > m +1}. Then it follows from
Theorem E and Peng and Yang (2022) that lim,, . t, = 00, |kt,| ~ m}
The first term in (@) can be lower bounded by

and t, ~ m?* /k.

n?

S B (P~ P )2 (P — P )t
,;2 {tr{(Pm P12} (P, — P, )+ tr{(P, — P, ,)Q}

Lktn ]

tr{ (P, — Pm—l)Q}NT(Pm —Po1)p
= tr{(Pm; a Pl)ﬂ} a Z PIT(Pm - Pm—1>PJ + tr{(Pm - Pm—l)ﬂ}

m=2
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Lktn ]

> tr{ (P — P1)Q2} — Zn: {(Pp — Pro)Q} = ) tr{(Ppm — Pr1)Q2}

e T ()

2 tr{(Ppy, — Py, )2} — tr{ (P ke,) — Py,) 82},

1
14+1/(nbp4,)
1
T 5tr{<Pth"J — Ptn)ﬂ}

> tr{(Pp: — Py,)Q} —

1
=13 tr[{(1+ 6)Pynz — P, — 0P, } Q] (S.3)

where the third inequality follows from Assumption 3, and the last inequality follows from

the following fact

1
< < <
1+1/(nbny,) — 140/(nOn ke,)) ~ 140/ (nbpmzi1) ~ 140’

which can be derived by (@) and Condition Al. Since vy, ~ V|, |, it is easy to show that
(1+0)Py: — Py, | — 0Py, is positive semi-definite for sufficiently large n. By Assumption 2
and the fact that tr(AB) > A (A)tr(B) for symmetric matrix A and positive semi-definite

matrix B (Bernstein, 2005, Proposition 8.4.13), we have

1
1T tr [{(1 + 5)Pm; — PUfth — 5Ptn}ﬂ}

&
> - ; S+ 0wy — Vi) — O, }
015

146
————my < tr(Pp,: ), (S.4)

> 1T+ 5( thnj> + (my, — tn)
( — 1)615

k(1+0)

where the last line is due to vp,: ~ vk, | and t, ~ m} /k. From (@), we see

S ir{(Pyy — Py )T (P — Py )ps
R (m) > A, > [tr P, P, 1)Q} — :
(ma) 2 Z_ i R p' (P, —Pp)p + tr{(Py, — P, 1)}
which, along with (@) and (@), implies A,, < RMS(m>). This completes the proof of the

result under Condition Al.
When Condition A2 holds, we examine A, = o{ RM5(m?)}. Let 2/m’ < k' < 1. The
first term in (@) is upper bounded by

*
my

B B tr{( — Py 1)Q}NT(Pm - Pm—l)ﬂf
Z [tr{(Pm Prn-)2} p' (P, —Pp)p + tr{(Py, — Pr1)Q}

m=2
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[K'm7, )

<t {(P; — PR}~ Y tr{ (P, — P, 1)}

1+ 1/(nbnm)

m=2
1 [k'm, |
< tr{(Prg ~ PR} = ey D (P = Pui))
n,| k'my Jo—t
1
=tr{(P, —P,)Q} — tr{ (P x| — P1)2
r{( -y 1) } 1+ 1/(n9n,tk’mgj) 1"{( [k'ms, | 1) }
P\_k’m*] - Pl
=1 P, —P— I Q5. S.5
A (PP 1/(”9n,tk’mm)) j (5:5)
Observe that
P p Plomy) = P1 Py = Plomg) + (Pay — P1)/ (08 jmy )
m* — 1 h— p—
" ]_ + 1/(n9nytk/mm) 1 —f- 1/<n0n,|_k’mm)

is a positive semi-definite matrix. By the fact that tr(AB) < Apax(A)tr(B) for symmetric

matrix A and positive semi-definite matrix B (Bernstein, 2005, Proposition 8.4.13), we have

Plms) — P
tre [ P — P1 — Q
" 1+ 1/(n0"»|_k’m7*1j)

Co Pm* — Pl
< tr{ P — Plogs ) + —2——
— 141/ kg ) ( e nen,tk'mm)
Co Vmx — 11
= ]/m* — UV ! * + —n
1+ ]-/(nen,Lk/m;‘lj) < " Kma] nen,Lk’m;@j )
CQV * /% m:b —1 )
< my, — [K'my ]+
gn m¥
< eavfomt = w4 P - )} (5.6)
n,| k'm? |

where the second inequality follows from Assumption 4. Since limy, o O / On, | krmz) = 0
for any & < 1 under Condition A2 and Theorem E, we have
en mk k/ . en mX ]-
{m;;— [K'm} | + ——— (m;‘l—l)}/mzzl— L+my] + (1——) —1-F,
en, Lk'mz% | m; en, [k'm% | m;kl
which along with (@) and (@), yields that

- (P — P ) p (P — Prt)p — — K ym
Z[tr{(Pm Pr-1)$2} uT(Pm—Pml)qutr{(Pm—Pm1)Q}} ot

m=2

Due to the arbitrariness of &' and the fact tr(P,: Q) < m}, letting &' — 1, we can obtain

the first term of (@)

*

my,

*

my

- _ (P = P ) u (B =P | p
Z {tr{(Pm P, 1)Q} 1w (P — P+ tr{(P,, — Pm—1)9}1 {r(Po )}

" (S.7)




Next, we consider the order of the second term of (@) Choose k > 1. We have

% {1 (P — Py 1)p)?
e 1 (P = Pry)p + tr{(Py — Pp1) 2}

Lk(mn+1)] (S:8)

min{M,,dn} T
-~ W (P, — P 1)) .
Z 1+1/(nbnm) m[k(mz*—i-l)J—H 1+1/(nbnm)

m=m2+1

The first term of (@) is upper bounded by
[k(my+1)] 0y

T 1l P T P

0 » Lk(m%+1)]
< 1M tr{ (P — Pp1)2
T 14+ 1/(nOnms41) m:%*:ﬂ . i
1
< St{(Plnz+n) — Py )82}
(&)

IN

5( k(ms+1)) — Vimz,)

SV(LkGm, + 1)) = m}),

n

IA

where the first two inequalities follow from Assumption 3 and (@), respectively, and the

last inequality follows from Assumption 4. Using Theorem E, as n — 0o,

[k(my + D] —my  [k(my +1)]

—1—=k-1.

*
mn mn

Therefore,

[k(mp+1)] -

T (o P = Prct) @) = O = Dz} = Of(k = Dex(Po D). (59)

m=m}+1

The second term of (@) can be upper bounded by

min{ M, ,dn}

MT(Pm - Pm—l)ﬂf
Z 14+ 1/(nbm)

m=|k(mi+1)|+1

1 min{My,dn}
< /JJT(Pm —Po1)p
L1/ (0 o ) m:Lk%:H)Hl
< ! ' (Puingas, dny — Pliims 1)) B
L+ Onmz 1/ On, | k(mz +1)) "
1

p' (L = Pz )

1 + en,m;—&-l/en,Lk(m;Jrl)J
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= o{u" (T, — Py s}, (.10)

where the first two inequalities follow from Assumption 3 and (@), respectively, and the

last inequality follows from the following fact:

p' (L =P )p=p (L = Punian,d) B+ 1 Puiniisd) — Plroms 1)) B
+ 1 (Pl +1)) — Py )t

> MT(Pmin{Mn,dn} — Plimz+1)) )10

The last equality of (8.10) follows from the fact that 1im, s 0y k(s 11| /Onms 41 = O for any
k > 1 under Condition A2. Combining (@), (@), and (), we have

My,

{P’T(Pm - Pm—l)/"'}2
Z w' (P —Pp)p + tr{(Py, — P, 1)Q}

= O{(k_l)tr(Pm;‘LQ)}+0{“T<In_Pm;)ﬂ'}
m=m}+1
Duo to the arbitrariness of k, letting & — 1, we have

My

{pn! (Pr = Pr1)p}” [ pMS[ .
2 pw' (P —Po p+tr{(P, — P, 1)Q} o{ By (my) },

m=mj +1
which, along with (@) and (@), leads to A, = o{ RMS(m?)}. This completes the proof of
the result under Condition A2.

(i) ¢ < M, /m}* < 1 for any sufficiently large n. In this case, m! = M, < m**. When

Condition A1 holds, there exists a finite positive integer 7 such that k=™ < ¢. Therefore,

S|

: (S.11)

Onmzi1 = On vy 11 < O femer |41 < On mimaeg1)] SO Onmerin <077

where the last inequality is due to (@) Then, using the same arguments in (i) and (),
it is easy to prove the result under Condition A1. When Condition A2 holds, we can also
obtain (@), which along with the fact that the second term of (@) equals 0, yields the
result under Condition A2. This completes the proof of Theorem @ under (ii).

S.1.4 Proof of Lemma m

From Assumption 7, we know that for any small 0 < € < 1, there exists a constant K. > 0
which does not depend on m, such that 0 < 1 — € < 6,,,,,/0 < 1+ € holds uniformly in

m=1,...,d, and n > K.



(i) When Condition B1 holds, there exist constants £ > 1 and 0 < §* < n* < 1 with

kn* < 1 such that for a sufficiently large n,

— 0, 0, oF 0r
1—c¢ 5 < Akl ] On k) « |kl | % Zln <
1+4+¢ in erkl ] 0;; len 1—c¢

Let 0 = 1—;26* and n = ”en* Since lim,_, 1= * = 1, we can choose a small enough € > 0

< 1+€7)*.

such that 0 < § <7 < 1 and kn < 1. Therefore, Condition B1 implies Condition Al.
(ii) When Condition B2 holds, for every constant k£ > 1 and every integer sequence {l,,}
satisfied lim,,_,o [,, = 00,

0, 0, o 0 1 o]
iy Omolbta) { Lkt Lk P }S +€ lim Ll o

gfkln ] Ql*n Ont,

Therefore, Condition B2 implies Condition A2.

n—oo O, n—00 1 —€en—oo Ql*n

S.1.5 Proof of Corollary

From Theorem m 1/2 < RMA(w)/RMS(m?*) < 1 for any sufficiently large n. Since

n

RMS(m)/RMS(m2) = 1+ 0,(1) and RMA(wW)/RMA(w?) = 1 + 0,(1), we have when n is

large enough,

1 RyAw)  RMW) Ry (wy) RyP(my)
5{1+0P<1)} < RMS(A

)
m)  RMA(w*) RMS(m*) RMS(m) < 1+ 0,(1),

which yields that RMA(wW) =<, RMS(). Observe that
RS(m) — BRyAW) L RPAW) BS(my)  RR(W)  An RB(my)
RYS(m) RYA(wr) RyS(m) — RYA(w) RYS(my) RyS(m) -
Under Conditions M2 and Al, from Theorem @, A, /RM5(m*) > ¢* for some c* € (0,1/2)]

(S.12)

and any sufficiently large n. Therefore, when n is large enough,
RE(m) - RYAW) | BYIAW) Ay RP(my) RYA (W) RyS(my)
RS (m) — RYA(wr) RYB(my) RYS(m) Ry (wy) RYS(m)

> {1+ 0p(1)} = 0p(1) = {1 + 0,(1)},
which leads to RM3(fm) — RMA (W) =<, RM5(m). Under Condition M1 or Conditions M2 and

A2, lim, oo A, /BMS(m?) = 0 from Theorems B and @ Therefore, by (), we have
MS(75) _ pMA
RMS ()

which implies that RMS(fm) — RMA(W) = 0,{ RM5(n)} or RMS(n) ~, RMA(W). This com-

1> —‘1

pletes the proof of Corollary EI



S.1.6 Proof of Theorem g

From (@) and Assumption 3, it is easy to see that the risk of the optimal MA estimator

without the total weight constraint is

er\l/IA(W*) . Zn: tr{(Pm — mel)Q}N’T(Pm — P 1)p

n/ + ’ In - P n )
HT(Pm - Pm—l)“ + tr{(Pm - Pm—l)ﬂ} K ( M )N

m=1
which along with (@) and Assumption 2, yields that

{tr(P,Q)}?
WP (P

RYA(w;) — RIA(W;) =

(P Q) < Col1.

Furthermore, if Assumptions 4-6 hold, we have RMA(w?*) — oo from Theorem E ii). There-

fore, RMA(w*) — RMA(W*) = o{ RMA(w?)}, which completes the proof of Theorema

S.1.7 Two Lemmas and Their Proofs

Before giving the proof of Theorems B, we prove two lemmas. Let [a] denote the least integer

greater than or equal to a € R. We first present the following lemma on an expression of

Ry (wy n)-

Lemma S.1. Suppose that Assumptions 3 and 6 hold. For any sufficiently large n, the
optimal risk of MA restricted to W, (N) is given by

RN (w) ) = tr(P1Q) + T (L, — Py,

Py m(z [(%)ir{@m P, )0+ (1 - %)QﬂPm P, )u

i=in, Nt m=m, (ZL)+1

+ i [(2”N> tr{(Pm — Ppn1)Q2} + <1—i%N)2uT(Pm—Pm—1)u ,

2¢7L7N+1)
2N

m=mp(

where i, Ny = (N’y;';Mn — %L and my(2) forz € (v, ;1) is aninteger in {1, ..., q,} satisfying

z

en,mn(z) > ( Z en,mn(z)+17 (813)

1—2)n

and my(zo) = 1 for any zo > 1.
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Proof. Since w € W,(N), we have 7, = S22 w; € {0,1/N,2/N,...,1}. Observe that

j=m
fm(Ym) = 751 [U’T<Pm =P+ tr{(Py — mel)ﬂ}} - ZVmHT(Pm —Pu)p+ UT<Pm —Pu1)p

= [MT(Pm ~ P )p+ tr{(Py — Pm71>Q}] (Y = Vnm)” + Vot { (P — P 1) 23,

where v, is defined in (@) Since {7}, }m=, is nonincreasing, it is easy to see that

1 21 —1 2i+1
- — _ h <L , =0,..., V.
el 1}fm(%n) fm (N) » when —= <y S o =0
Therefore, from (@), we have
My
RN (wy, ) = tr(P1€2) + min () + 1" (L = P, )

+m€{0,1/N,2/N,...,1}
m=2

I X i 2%—1 . _2i+1 .
=tr(Pi)+ > > fu v |13 5 <am < oy (T = Pu)n

m=2 =0

@)+ S i [(%)annm P, )+ (1 - %)2,;(1% P

m=2 =0
20 —1 21+ 1
x 1 <~ < —
{ Yom < 2E

} WT(L — P (S.14)

where 1{-} denotes the usual indicator function. By the definition of m,(z) in (), we

have 2= <~ < 2L if and only if m,(3) +1 <m < m,(35+) for i = i,n+1,..., N

and

2i, ny—1 2, N+1 . . 2, N+1
sv— < T < 55— if and only if m, (=55—) + 1 <m < M, where

2041 1
i N = i =0,1,...,N: v} < = | N~ ——.
Ip,N = IIN {z Yn, My, ON } [ Vn, M, 2-‘

Combining the above fact with (), it is easy to obtain the expression of RN (w ) in

Lemma @ Moreover, we can obtain another expression of RMA(w* ) as follows:

R (w, ) = R (w)) + fj ([0 ®o = Pt al(P— P

N . 2 . .
i 2i—1 2i+1
Y (=) 1 < . S.15
Xizo(N 7”7’”) { oN = TN }) (8.15)

This completes the proof of Lemma @ ]

Note that m,(1/2) = m}*. Next, we present some elementary properties of m,,(z) in the

following lemma.

11



Lemma S.2. Suppose that Assumptions 3 and 5 hold. Then, m,(z) for z € (v, 1) defined
in Lemma @ satisfies the following properties.

(i) mn(2) is a nonincreasing function in z; lim, .. my,(z) = oo for any fived z € (7, ,1).

(it) If there exist constants k > 1, n <1, and K > 1 such that 0, 1,|/0n1, < 1 for any
n > K and any integer sequence {l,,} satisfying lim,, o 1, = 00, then m,(z1) < m,(29)

Jorany ;. <21 # 29 < 1.

Proof. The results of (i) are easily shown by Assumption 1 and arguments similar to those
in the proof of Lemma E Next, we shall prove (ii). Without loss of generality, we assume
21 < zg, from which it follows that m,(z1) > m,(22). Observe there exists an integer s > 0
such that #.- > $22-n°. Then, by the definition of m,({), we have

21 > 29
1—2z)n =~ (1 —2z)n

O (21) > ( 0% 2 1 Onmn(2)+1 = On, k5 (mn(22)+1)] - (S.16)

Thus, m,(21) < [k*(mn(22) + 1) ], which, along with m,,(21) > m,(22), yields that m,(z1) <
my(22). This completes the proof of Lemma @ O

S.1.8 Proof of Theorem H

Observe that

w' (P =P )p _ tr{(P,, — Pyi_1)2}

.U’T(Pm_Pm—l).u’—{_tr{(Pm_Pm—l)ﬂ} = ,_Y* 1 — f)/* ) (817)
which, along with (), yields that
RYA(wr ) — Ry (w)
my N ( i * ;
=) L [2i—1 2i + 1
= P, —P, 1) | :
> al(Py - Py 3o Al {20 < 2R
m=2 i=0 n,m
M, N i .
- ) (2i—1 2i + 1
T Pm o Pm, (N n,m 1 *
R 2T e
L | M
<— tr{(P, —Pp_1)Q} + — (P, —P,._
= ov 2 r{( 1) }+2Nm%;+lu ( 1p
1
= 5 [{(Po; = PR} + 1T (Pas, — Py )t



2N
where the first inequality is derived by the fact that when 2; Nl < Yo < 21‘;1 fori=0,...,N,
P 2 K 2
(v =) o Ly Gm) L
1= 2N Vovm 2N

which can be easily verified. Therefore, RM*(w;, ) — Ry (w}) < 5 RMS(m

n)-
) = B (wy)

When Conditions M2 and A1l hold, our task is to prove that RMA(w W, N
has the same order as RM*(w?). We consider two scenarios: M, > m,(2=t) and M, <

2N1

my(*55) but M, /my* > c for any sufficiently large n.

First, consider M,, > m,,(2=). Define t) = min{t € N: [kt| > m,(3=) 4+ 1}. Then

it follows from Theorem P I and Peng and Yang (2022) that lim, . tY = oo and |kt) ] ~

my, (25=1), respectively. Using the same arguments as that in (@) and (@), we have

S t{(Poy — P )2} — 7)1 {0 > 1 1/(2N))

mn (20 (2

B SRR R o LT PRV

m=2 m=2 1 + ]'/(nen,m)

> tr{(P (=1 — PtN)Q} —

2N1

1
——tr{(Ppv; — P~ )2
1+ 1/(n9n,tQ’) I'{( |kt | th ) }

1 5 5
Z —+—tr 1 Pm 2N—-1y — I — P . Q:|
1 2]\?—1 |:{ ( 2N - 1> ”(212VN1) I.ktrIYJ 2N t }

1

> C1 1+ (S 5
e —v - v

Tt 2N — 1) Va7l T

C1 01(5 2N —1 N
> —(V 2N—1y — UV ) —_—— {m ( —1 }
5 mn (25 [kt ] — n n
i e 2N —1+0 2N
~ = 1
KeN —1+06) "\ 2N n (5-18)

where the second inequality is derived by the fact

1 1
< < <
T 1/ 00y) = T4 0/l )) — 140/, oy )~ L4 6/ (2N — 1)

and the last line is due to v, an_1) ~ Vi), N ~m, (2= /k, and Lemma @ (ii). Since

S BS(ms) > BYA (s )~ A (w Ztr{P —Po )} (1)) {7 > 1-1/(2N) ],
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using (8.18) and tr(Pyn: Q) < RMS(m
R (wy,).

Next, consider M, < m,(2=L) but M, /m}* > c. Using () and the similar argu-
ments in (), we can also prove RYA(wy ) — Ry (wp) < RY*(wy). This completes
the proof of Theorem B under Conditions M2 and Al.

When Condition M1 or Conditions M2 and A2 hold, R)'*(w}, ) —RN*(wr;) = of RY'A (wr)}
directly follows from Theorems B—@ and the fact RMS(m?) > RMA( ~) = R (wr).

*) < RMA(w

n

1), we have RYA(wy ) — RMA(w) =

n

S.2 Proof of the Results in Examples 5.1-5.2

Using the expression of Ry (w}, ) in Lemma EI, we have that for any sufficiently large n,

LR ORCOE

= lnN+1m m 21+1)

My, 0_2 ZN 2 'LN 2 Pn
_ n, 1_ n, 2 2'
> {n(N)+( ) w3
Zn,N+1)+1 m:Mn—l—l

m=mn(—3%

Proof of the results in Example 5.1: When 3,, = m™ for a > 1/2, we have m, (%) ~

(25 — 1)2a( )za for i = i, ..., N —1 and m** ~ (%)i When M, = M is fixed as

n — 00, i, v = IV for any sufficiently large n. Therefore,

M 2 Pn o]
RMA( nN) o + m—2aN Z m—Qa.
n

n
m=M+1 m=M+1

When M,, — 0o as n — oo, the optimal risk of MA restricted to W, () satisfies

MA o al o) (2 (02 i\°
R ~— — = 1—-— s d
(Won) o +A Z /mn(%“) - (N) —i—( N) x x

i=in, N+1 2N
My, 2 y 2 y 2 Pn
o In N In,N —2a —20
+ — | =) +({1-= x dx + / xr“%dx
/mn(”"z;%“) { n ( N ) < N ) } .
o? 1 —2a+1 —2a+1
EF+H"1+H”2+QQ—1(M” —p, ). (S.1)
Since m** ~ (J%)i, it is easy to see that i, v ~ iy y = [H( A T ﬂ We first simplify

14



II,,; as follows:

% 2 ) e () ()

i=ip N+1
N . 2 . 12« . 12«
1 7 20— 1 21+ 1
- ]- - xr n - n
2a—1,Z( N){m<2N) m(2N> }
'L:'Ln,N"l‘l
022 2 /241 241y, 1 2 Nz‘l L2+l % 4+ 1\
E— my ~r - my
n N & 2N 2N 20— 1N < 2N 2N
1=1n, N 1=tn,N
_02 o (i, N 2ipn+1Y 1 N 2, v+ 1\
n n N " 2N 200 — 1 2N " 2N
20 (n)zalz %+ 1\ "= 2% +1\% o2
20 — 1 \ g2 N 4 2N 2N n
=iy N
L0 (in 2N +1\ 1 (i ? Qi+ 1\ 5.2)
n N " 2N 200 — 1 2N " 2N

Next, we simplify II,,5 as follows:
o (inn)’ ip N+ 1
Hn = — = Mn — Mp —L_ -
=5 (%) P (55))
1 inn | L1 /
—_ 1 — == Mi—e "
20 — 1 ( N ) { n T
(n )221 Z';N 2 M, 1 <n )21011 ) i;kz,zv 2 M, 1-2a
o? N m*  2a —1 \g? N mr*

n

0% (inn)" iy + 1 1 i\ 2 %y v+ 1) 2
| ’ 1 — = _— (D.
n(N)m”( ON )+2a—1( 2N> m"( ON > (8:3)

Combining (@), (@), and (@), we have that when M,, — 0o as n — oo,
1

2cv n o\ za1
MA (o —2a+1 —2a+1
j— ~y —_— n M - 9 4
SR W)~ g (25) 7 e+ e R =), (84)
where
by 2 = 2041\ 241 i+2a—1 i \* M1 (M)
mNTN £ 2N 2N 20 \ N ) m 2a N me '

When M,, — oo as n — o0, it is shown in Peng and Yang (2022) that the optimal risk
of MA with the weight set W, satisfies

1 1 /nyz! w 1 11 1
ZRMA(w*) o (_) _B 1 N2l =241y
n (W) A — % + ( P )

n " 2a \o? (£) 1+<%)20‘; 207 20 200 — 1

(S.5)
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When M,, = M is fixed as n — o0,

2 M 00

1 . e
;R%A<Wn):%+mz:202+m2a Z m= ~ Z m=2,

m=M++1 m=M-+1
Therefore, we consider different conditions on M,, as follows.

(i) When M,, = M is fixed as n — o0,

1
—RMA< nN)NERMA Z m-

n
m=M+1
(ii) When M,, — oo but M, /m;* — 0 as n — oo, we have iy y = N for any sufficiently

large n, and thus ¢, v = o(1), which, along with the fact that B(1;1 — 5=, 5=) = —~

sin( 5o )?
yields that

M—2a+1
20— 1"

1 1 * 1 —2a —2«
RN ) S R (wE) S (M )

(iii) When M, /my* > ¢ for some ¢ > 0, let us find the lower bound of RY'*(w ) —

RMA(wr). If M, > m,,(251), note that

S t{(Poy — Po )1 — 7)1 > 1— 1/(2N))

mn(2]§1\71) 2 m”(2g]1\71) 4
- o (1- ) 2 ot
— B2 +o0%/n) — e (Bt ) m=2 402 /n

- Emn (2]\2[]\_[ 1)J [mn (3 1)/42/Jn 204 g2/p ngjy(;J\fl)_ 2106)0+ 2 (%)21&

If m, (25=1) > M, > cm}*, we also have

S (P — P )21 — 7,150 > 1= 1/(2N))
ot/n co? n\ e
(7)™

2 ~ -
- L / J \_Cm**/QJ —2a + 02/71 22a+1§—2a + 2

) 1
As a result, RY'(w;, ) — RN (w}) can be lower bounded by szaiZsrrs (%)%, where
@ = min{c, (2N — 1)~ 2a }. Moreover, if lim,, o M, /m** = x € (0,00] and M, = o(p,) are

satisfied, it follows from (@) and (@) that

MA * 1 29 — 1 1 1 1 —2a+1
lim R ( ) k—20a+1 - i - B —;1__7_ + a
n—oo RMA(w* N) Yy + 402 | sin(5) 1+ k2@ 2a’ 2 2a
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where

N-1 . 1—L . 1 . 2 2
. 2 21 +1 2a 20+ 1\ 2a—1 [y 1 Uy 1—2
I 1— N 1— a
W=y 2 (2]\7) < 2N> T, (N)“ 2a< N) (8.6)

gk
Z—ZN

and i}y = [H% — 1]. It is easy to see that {¢} }%_; is a strictly decreasing sequence with
Y =1-— 522" Moreover, we can prove that
1 14+2a
20 — 1 K 1 w
lim Yy =2 #1750 (1 — ¢)2a dt + -
N—oo VN L ( ) 200 (14 K2)2 2a (1 + K22)?
1+4+K4e
2@ — 1 1 _ 1 1 _q
:Tﬂ/l t 20(1—t)20 dt
1452

20—1 ™ 1 1 1
= : - B —; 1 YRS Y
4a? | sin(5) 1+ k2 20" 2«

where the last equality follows from the fact that B(1;1 — o&, :L) =

5o Therefore, for
a’ 2a

sm(QL)

any fixed N > 1,

Ry (wy)
e RMA(wr ) <
Proof of the results in Example 5.2: When 3, = exp(—cm) for ¢ > 0, we have m,, (%) ~

2—16 log (%) fori =i, n,...,N —1and m* ~ 2% log (%) The optimal risk of MA satisfies

1 2 1 Pn
—RMA(wr) = — —|— + exp(—2cm
n (wn) mZ:Q L + exp(2cm) m%ﬂ ( )
% 1 exp(—2cM,,) — exp(—2cpy,) (S.7)
s + exp(2em) exp(2¢) — 1 ' '

We consider different conditions on M, as follows.

(i) When limsup,,_,, M, /m;* < 1, we have M,, < m}* for any sufficiently large n. Thus,

1 M, o?
—RMS * -9
R, (my)=———+ Z exp(—2cm) =

n
m=M,+1

M,o?  exp(—2cM,) — exp(—2cp,)
+ .
n exp(2c) — 1

(S.8)

By 2cm; ~ log (%) and lim, . log(M,)/m** = 0, we observe that

M,o?/n } log M,, —log(%) + 2cM,

M,
< —1+limsup — < 0,

lim sup log { / (2¢m)*) = limsup

n—00 eXP(—QCMn) n—00 QCm’;L* n—ooo  Mp*
which implies that ean# — 0 as n — oo. Moreover, as n — 00,
p(—2cMny)
exp(—2cp,)

exp(—2cM,,) = exp{—2¢(p, — M)} < exp{—2¢(m)* — M,)} — 0.
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Therefore, we have = RMS(my) ~ %. Since 2%21{% +exp(2em)}t < %Mn, from

(@), we have £ RMA(w}) ~ %. Therefore,
1 1 —9¢M,
LRism) ~ LRYA ) ~ SR 2
n n exp(2c) — 1

(ii)) When M,, > m>* for any sufficiently large n, note that as n — oo,

exp(—2cm;*) exp(—2cm¥) _ exp(2c) 0 (S.9)

m¥*o?/n T m*exp{—2c(m** + 1)} me

where the inequality is due to o?/n > exp{—2c(m}* + 1)} derived from (@) Therefore, we

have
lR%S(mZ) _ m*o? N exp(—2cm**) — exp(—2cpy,) N m*o?
n n exp(2c) — 1 n

Next, we investigate RMA(w?). From (@),

1 My, 1 Pn

Z exp(—2cm)

m=M,+1

_|_
— oz +exp(2cm)

) My, 1 Pn
Z exp(—2cm). (S.10)

m=M,+1

pEE RIS .
2 + exp(2cm) 75 + exp(2cm)

m=m}*+1

For the first term of (), it is easy to obtain

*k
my * %

1 /m" 1
_ ~ ———dx
L+ exp(2cm) o = +exp(2cx)

m=1 0
*k 2 1 2 1—|—U—28X QCm** Kk 2
_ Mo __U_log{ ”1 p(2 ") ~ T 9 , (S.11)
+e

n 2cn

where the last “~” is due to %2 exp(2cm’*) < 1 derived from (@) For the last two terms

of (), using (@), we have

M, 1 Pn
- + exp(—2cm)
m:mzﬁ*ﬂ 25 + exp(2cm) m:%ﬂ
Pn *% xk 2
exp(—2cm’*) — exp(—2cpy) m*o
< —2 = = _n-
- Z exp(—2em) exp(2c) — 1 ¢ n ’

m=m}*+1

ok

which, along with () and (), yields that £ RN (wr) ~ mnn"z. Therefore,

1 1 mt*o? 1 o? n
ZRMS(;) o — RMA(wt) o T T 2T <_> .
SR () ~ Ry (W) ~ 50 108 (3

18



(iii) When M,, < m** for any sufficiently large n but lim,_,., M,/m}* = 1, by using the
same arguments in (), we can show that 2%21 & 4 exp(2em)}t ~ M#‘ﬁ, which, along

with (5.7) and (8.8), yields that

n n

( n ) exp(—2cM,,) — exp(—2cpy,)
n 2cn '

1 _wms 1 A 1o
— *) o~ — *) ~~ ——1
R (my) ~ Ry (w) 0g xp(2d) — 1

Combining results (i)-(iii) and the fact RNS(mz?) > R\ (w} ) > RY*(w}), we obtain

n

the results of Example 5.2.

S.3 A Comparison of MA Techniques with Nested Dis-
crete Weight Sets

S.3.1 Question Q5

In addition to the proposed four questions in Section E, another natural question is to
compare the optimal risks of MS and MA restricted to W,,(N). Note that MA restricted to
Wi, (1) reduces to MS. Therefore, we can investigate a more general problem that compares
the optimal risks of MA techniques with weights belonging to two nested discrete weight
sets W, (d) and W, (dN), where d > 1 and N > 2 are fixed integers. Since W, (d) is a
subset of W, (dN), we have R (w7, ;) > RY'M(w}, ;). However, it remains unclear whether
expanding the discrete weight set for MA leads to a significant improvement in risk. Thus,

the following key question is proposed:
Q5. Is RYM(wy ;) — RYA(wp 4y) a substantial reduction relative to RY*(w} ) or actually

negligible? If both can happen, when is w;, ;\ substantially better than wy, ;7

S.3.2 An Answer to Question Q5

We first consider two conditions for the number of candidate models M,, as follows:
(1) bpa1, > (2dN — 1)/n for sufficiently large n a.s.;

(ii) M, > m** for sufficiently large n a.s.
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These two conditions are slightly different from Conditions M1 and M2. The first condition
(i) restricts M, not to be too large. Under Condition Al or A2, if lim, ., M,/m* = 0,

then there exist k > 1, n € (0, 1), and a positive integer s such that on F,
Qn,Mn Z en,Lk*Sm;‘l*j Z U_Sen,m;;* > 77_5/” Z (ZdN - 1)/”7

where the third inequality is due to (@) in the Appendix. Therefore, under some mild
conditions on 6, ,, (e.g., Condition Al or A2), the condition (i) is weaker than Condition
M1. The second condition (ii) is stronger than Condition M2, which is considered by Peng
and Yang (2022).

Next, we make a new condition on the slowly decaying order of {6, ,,}%_, as follows.

Condition C1 (Slowly Decaying {f,,,}%_,). There exist constants k > 1, 24l <6 <
n < 1 with knp < 1, and K > 0 such that for every integer sequence {l,} satisfied
1imn—>oo ln = 00,

0 < O \ktn)/Ong, <1

holds for any n > K a.s.

Condition C1 is stronger than Condition A1 since Condition C1 additionally requires that

o> Qflc]lv__ll, which restricts 0 to not close to 0. Note that when d = 1, Condition C1 restricts

o > ﬁ Condition C1 is still satisfied for the polynomial decay case, e.g., 0, ~ [,
a > 1/2 or slightly more generally for 6, ~ I, **(logl,)’, a > 1/2,3 € R, where {l,,} is an
integer sequence satisfied lim,, ., [, = o0.

Now, we turn our attention to answer Question Q5 in the following theorem.

Theorem 7 (Answer to Question Q5). Suppose that Assumptions 1-6 hold. Then, for

sufficiently large n,

(i) when Oy, > (2dN —1)/n, we have RYS(my,) = RN (w ) = -+ = RA (Wi 1) a.s.;

n n,2 n

(ii) when M, > m**, under Condition C1, we have
R%A(Wz,d) - R%A(Wz,dzv) = R%A(W:L,d) a.s.;
and under Condition A2, we have

R%A(W;d) - R%A(W;,dN) = O{R%A(W;d)} a.s.
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Theorem H(l) implies that when the number of candidate models M,, satisfies 8, a7, >
(2dN — 1)/n, the optimal risk of MA remains unchanged for sufficiently large n when the
discrete weight set is expanded from W, (1) to W, (dN). Theorem H(ii) implies that when
M,, is large enough and 0, ,,, decays slowly in m, expanding the discrete weight set of MA can
bring in a substantial reduction in risk. When M,, is large enough and 0, ,, decays fast in m,
the risk reduction of MA by expanding the discrete weight set is asymptotically negligible.

Next, we consider the case of d = 1, i.e., we compare the optimal risks of MS and MA
restricted to the discrete set W,,(IN), where N > 2 is a fixed integer. From Theorem H, we

have the following corollary on a comparison of R)'S(mj,) and R (w}, v ).
Corollary 4. Suppose that Assumptions 1-6 hold. Then, for sufficiently large n,
(i) when O, ar, > (2N —1)/n, we have RYS(my) = Ry (wh o) = - = RN (w) ) a.s.;

(it) when M, >m}*, under Condition C1 with d =1, R)'S(m}) — RYM(wy, ) < R)'S(m;,)

n ’

; and under Condition A2, RY®(m?) — R (wi ) = o{ RY'S(m})} a.s.

Example 5.1 (Continued). In the setting of Example 5.1, we consider M,, > m}* for
sufficiently large n and any fixed d > 1 and N > 2. By a simple calculation, RM*(w* ) —

1
RMA(w nan) is lower bounded by 22 (2d - 1) 2 — (3dN — 1)*%} (%)2. Moreover, if

lim, oo M,,/m’ = K, k € [1,00] and M,, = o(p,), we have

RMA( dN) de —2a+1 RMA(W ) H—2a+1
n 204 . n _
e TR

where 9% is defined in (@) which verifies that RN (w, ;) — RN (W ;) = of R (W )}
in Theorem H Figure @ plots lim, o RN (W7 4v)/RYA (Wi ) against different N or &,

where o = 0.8. Specifically,

« Figure @(a)f( b) display plots of lim, o RN (W7 ;) /Ry (Wr ) against N € {1,...,10}
ford =1,...,4, where (a): kK =0.2; (b): kK = 1.5.

« Figure @(c)f( ) display plots of lim,_,o Ry (W}, 4 )/ RN (W ;) against & € (0,4),
where (¢): d=1and N =2,3,8; (d): d=1,2,4 and N = 2.
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Figure S.1: Numerical illustration for Example 5.1 with o = 0.8. (a)—(b): plots of

(b): k= 1.5. (¢)~(d): plots of lim,_,o RN (W} 4 )/ RN (W ;) against & € (0,4), where (c):
d=1land N =2,3,8; (d): d=1,2,4and N = 2.

limy, o RYM (W) o) /RN (W7 ) against N € {1,...,10} ford = 1,...,4, where (a): k= 0.2;
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Figure @(b)—(d) verify that lim, . Ry (W} 4v) /By (W) ) <1 when N > 2 and & > 1.
Figure @(a) implies that lim, . RN (W 41 )/RYA (W} 4) < 1 may not hold for small N

when k < 1.

S.3.3 Proofs of the Main Results

Proof of Theroem B We consider the following two cases (i)—(ii).
(i) Onar, > (2dN — 1) /n for sufficiently large n. By the definition of m,,(2) in (), we

have 0, p, > (2dN — 1)/n > 0, (22211, which follows that M, < my (281) + 1 and

Yoo, > 1 — N For any h = 1,...,dN, it is easy to see that 7, defined in Lemma @
satisfies ins = [h} 5, — 5] = h. Then, from the expression of RY'*(w, ;) in Lemma @,

we obtain

RYA(wr ) = tr(Pa, Q) + p' (I, — Pag ) = RYS(m))

for sufficiently large n, which leads to R)'S(mj) = RMM(wy, ) = -+ = Ry (W} 1)
(ii) M, > my* for sufficiently large n. We first present an expression of RN (w} ;) —
RYA(w 4y) as follows. By () and the definition of m,(z) in Lemma EI, it is easy

to rewrite RY'A(w}, ;) — R (wp) as

R (wr ) — Ry (w)
2d—1 mn(55)

= | Z [,uT(Pm —Po)p+tr{(P,, — Pm—l)Q}] (% - ’Y:;m)Z

+ > [NT(Pm —Po)p+ tr{(P, — Pm—l)Q}} (% - 72,m>2 )

where 7, 4 = [2d7} ;. — 1]. Moreover, RN (w7 ;) — RN*(w?) can be further rewritten as
Ry (w) ) = ( )
ma(5q

2dN—-1
1=Tp,dN+1 m= mn(;;]%l) 1

M

[p,T(Pm —Po )+ tr{(P,, — Pm_1)ﬂ}] ( ] Ynm

+ Z [M(Pm —Po)p+ tr{(P, — Pm—l)Q}} <w = Ynm

+1
e (242 11
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where [a| denotes the integer part of a. Observe that [r, sv/N] = 7,4. Therefore, an

expression of RMA(w* ) — RMA(w? ) is as follows

RMA( nd) er\L/IA<WndN {RMA nd) RMA( } {RMA ndN) R%A(WZ)}
(

S NEED SRR FES SNPERHIL IS )]
| o (L2 _ Fy (T 1y )

d dN d dN

Mp

- ) [NT(Pm — Po)p + tr{ (P — Pm—l)g}}

T +1
m=mmn (S0 )+1

o (Irna/2  Traan/21Y ([roa/2] | Trean/21 o o Y1
( ) i)}

d dN d dN

We can easily verify that when my, () +1 < m < my(525), ¢ = Fnanv + 1,...,2dN — 2 or

Tn,dN+1
2dN

M ( )+1<m< M,,i=r,qa, we have

CW?ﬂT_%@>OW?ﬂT+%@—%%)zo

By using (), we can further rewrite RYA(wy ;) — RN (w ;y) as

R%A(Wz,d) - RMA(“’Z,dN)

n

My, [7n.a/2] [7n.an /2]
_ 3 W (P — Py [rna/2] _ [ran/21\ [y ity
m m—1 d AN ’y:;,m

T +1
m=rma (P )+1

(J+1)N-1 M (53x)

. i /21 | [i/2]
5SS e (1 ) (o B

J=rn,q i=max{jN,rn an+1} m=mpn (ZL)+1 n.m

2
2d—1 min{(j+1)N-1,2dN—-2}  mn(575)

; 77|
+Z > > u{(Pn P 1>Q}<Dc/z2] (d/]\2[1><2_2 I dN).

- 1 —
i=jN m=mn i+1 )+1 PYn,m

(S.1)

Next, we examine when Condition C1 holds, RY'*(w} ;) — R
From (EI), we have

n(Whan) =< RyIA (W ).

n

RMA( nd) RMA(W:,dN)

24



2dN—2 M (5ax)

> > > w{(Pa - ml)n}(

1=2dN—N = m"(2dN)+1

WZW
1 - f)/n m
ma (455)

il
- >, tu{Pa- Pm_l)ﬂ}i ( 1/ (dN) )

24N -1 dN
m=mn (=55 )+1

2dN—-3 m"(QdN I’Z/2‘| 1— [i/2]
+ 0y > w{(Pn - P} (1 i > 92— ﬁ
1=2dN—N = mn(;;r]%/v)Jrl hi
> tr{(P,, — P, 1)Q}— (2 — ——=
m:mn(Zdelfﬂ)-i-l ’
2dN

2dN—3 mn(35)

i _ L2
+ D Z r{(Py, — P 1)} (1 _ Lﬁ) <2 _ 1_dN>

1—
i=2dN-N =, (2 )41 Tn,m

m"(dgNl)

> e Y (BP0 (8.2)

2dN—-1—9
2dN )+1

2dN—3 ; _[i/2] mn(3x)
to (1- ”21)(2 —ﬁ_ﬁﬁ) >. u{(Pu P},

m=mpu(

where ¢ € (0,1) is a constant which will be specified later and the last inequality follows

from the fact that 1% < 75, < 2 when m,(2=) + 1 < m < m,(555). It is easy to see

that when 2dN — N <i < 2dN — 3,

[i/2] 1- 57 [(i+1)/2] 2 [i+1)/2] _ 1
(1_W)<2 1_—z+1>=(1‘ a )i e

2dN 2dN

which, along with (@), yields that

Ryt (wy.q) = By (W )

dN—1 2d—1

dN mn( 2d )

M (

1 20 1
P tr{(Pp — Pp_1)Q tr{(P,, — Pp,_1)Q
2 INT+v Z r{( 1) }+dN Z r{( 1)}
m=ma (2UR=0)+1 m=ma (4G )+1
1 20
2 N T3 9 Pz = P, asziee)) 8

o 20 2 — 1 2N — 1 — ¥
> 1 27 _ A I .
~d 1+19{m"( 2d ) m"( 24N )} (83)
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Observe that
M/ =22 2d—1 g 2d—1

2dN—1—-9 2dN—1—9\ ~ 24N :
S /(=5 1 2dN —1

2d—1
2dN—-17

Since Condition C1 requires § > we can find a small enough ¢ > 0 such that

2d_—1( 2d1>

2d 2d
52 2dN—1—9¢ (1 2dN—1— 19)'

2dN 2dN

Thus, by applying Lemma @(ii) and Lemma @ presented at the end of this section, we

2d — 1 2dN — 1 — 9 2d — 1 .
m"( 2d )_m”( 24N )xm"( 2d )xm”’
which, along with (@) and R)'S(m}) < tr(P,,:Q), leads to RY'M(w}, ;) — RYM(wi 4y) =<
RYS(my) =< Ry (w, ;). This completes the proof of Theorem H under Condition C1.
When Condition A2 holds, RN (wr ;) — RYM(wr 4y) = of YA (wp )} directly follows

from Theorem @ and the fact RMS(m?*) > RMA(wr 2 =R Awr ay) > BRMA(wr). [

have

Proof of the Results in Example 5.1 (Continued). First, let us find the lower bound
of R (w, ;) — R (W}, 4v). For any fixed d > 1 and N > 2, by (@) and letting ¥ = 1/2,

we have
| 20° 2d — 1 24N — 3/2
MA (v MA B
202 1 _1 n\ 2a
~ {(Qd— 1)"% — (4dN/3 — 1) zu} <F> .
Thus, RYA (w ) — RMA(w? ) is lower bounded by 2% {(2d— 1)~ — (2N —1)"3} ().

Next, if lim, oo M,/m* = Kk € [1,00] and M,, = o(p,) are satisfied, it follows from @

that
RMA g20t1 RMA (w* —2a+1

lim MA( Wdn) de — 2%;11 and  lim —nMS( "*N) = YN + £

oo RUA(WE ) Wn 4 nooo RAS(my) 2a
Since {¢}}¥_; is a strictly decreasing sequence with ¢} = 1 — “_22;+1. Therefore, for any
fixedd>1and N > 2,

. RMA( ndN) . RMA( nN)
B R, <L B TRy <
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Lemma S.3. Continued to Lemma @, we have

z1/(1—21)
z2/(1—22)"

and K > 1 such that 0, 1, |/0n1, > 0 for any n > K and any integer sequence {l,}

(iii) For two given 7, , < 21 < zp < 1, if there evist constants k > 1, § >

satisfying lim,, o 1, = 00, then my,(z1) — my,(29) < my,(21).

Proof. By using the condition of (iii) and the definition of m,(z), we have

21 < Z9
—z)n ~ (1 —2z)n

en,mn(zl)—H < (1 0 < 69n,mn(zz) < en,Lkmn(zz)b
which yields that m,,(z1) > [km,(22)]. Thus, we have

mn(z1) — mp(22) > |kmy(22) | — mn(2z2) > (K — 1)mp(22) — 1.

Therefore, m,,(z1) — my(22) < my(z1). We complete the proof of Lemma . O
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Figure S.2: Simulation results for Example 1 for the case of slowly decaying #,. Normalized
risk functions for AIC, BIC, LOO-CV, and MMA when 6%, = m=2* /0% with a; = 1 in row

(a) and a1 = 2 in row (b).
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Figure S.3: Simulation results for Example 1 for the case of fast decaying 6. Normalized

risk functions for AIC, BIC, LOO-CV, and MMA when 6%, = exp(—2aam)/o? with ag = 1

in row (a) and ay = 2 in row (b).
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Figure S.4: Simulation results for Example 2 for the case of slowly decaying 6;,. Normalized
risk functions for AIC, BIC, LOO-CV, JMA2, and JMA when 6, = ¢*m™2* with a; = 1 in

row (a) and oy = 2 in row (b).
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Figure S.5: Simulation results for Example 2 for the case of fast decaying 6. Normalized

risk functions for AIC, BIC, LOO-CV, JMA2, and JMA when 67, = ¢ exp(—2asm) with

az =1 in row (a) and as = 2 in row (b).
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Figure S.6: Simulation results for Example 3 for the case of slowly decaying 6;,. Normalized
risk functions for AIC, BIC, LOO-CV, and MMA when 6%, = m=2* /0% with a; = 1 in row

(a) and ay = 2 in row (b).
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Figure S.7: Simulation results for Example 3 for the case of fast decaying 6. Normalized
risk functions for AIC, BIC, LOO-CV, and MMA when 6%, = exp(—2asm)/o? with ay = 1

in row (a) and ay = 2 in row (b).

S.5 More Simulation Studies

We further design the following Example 4 to illustrate Corollary EI under Condition M1.
Example 4 (Small number of candidate models) The setting of this example is the
same as Peng and Yang (2022) except for the number of candidate models. We consider two

cases with different decaying orders of 6%, = 32 /o*:

o Case 1 (With 6, satisfying Condition B1). Here, §,, = m~®', and «; is set to be 1,
1.5, or 2.

« Case 2 (With 0, satisfying Condition B2). Here, §,, = exp(—aam), and s is set to
be 1, 1.5, or 2.
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Note that m}* ~ (%)ﬁ in Case 1 and m}* ~ ﬁ log (%) in Case 2. In order to illustrate
Corollary EI under Condition M1, M, should be set to be small compared to m,*. Therefore,
M, is set to be (%)ﬁf% in Case 1 and loglog (%) in Case 2. It is easy to see that
limy, 00 M, /m’* = 0, thus Condition M1 holds for these two cases. For Case 1, the sample
size n varies at 50, 500, 1000, 2000, 3000, and 4000. For Case 2, n varies at 50, 1000, 4000,
6000, 8000, and 10000.

Simulation results are summarized in Figures @ and @ In each figure, the simulation
results with three coefficient decaying orders are displayed in rows (a), (b), and (c). In both
the slowly decaying and fast decaying 6, cases, the performance gap between AIC (or LOO-

CV) and MMA becomes very close when n is large, which are consistent with the results of

Corollary El under Condition M1.
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Figure S.8: Simulation results for Example 4 for the case of slowly decaying 6 . Normalized

risk functions for AIC, BIC, LOO-CV, and MMA when §,, = m~®* with ay = 1 in row (a),

a; = 1.5 in row (b), and a; = 2 in row (c).
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Figure S5.9: Simulation results for Example 4 for the case of fast decaying ;. Normalized
risk functions for AIC, BIC, LOO-CV, and MMA when 5,, = exp(—asm) with as = 1 in

row (a), ag = 1.5 in row (b), and ay = 2 in row (c).
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