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Abstract

This document contains some supplemental material for Cavaliere, Georgiev

and Zanelli (2024), CGZ hereafter. In particular, (i) we consider generalizations

of some of the results in CGZ to the near-I(1) and to the stationary cases; (ii) we

report additional Monte Carlo simulations.

S.1 Alternative data generating processes

The asymptotic theory in the paper is presented under the assumption that xn,t is a

unit-root non-stationary process. Here we show that the choice of a bootstrap parame-

ter space is fundamental for bootstrap validity also under alternative stochastic specifi-

cations for xn,t, e.g., a near-unit root and a stationary specification. More importantly,

a common definition of the bootstrap parameter space could be appropriate for all the

considered specifications of xn,t. Still, the functional forms of the limit distributions

are not identical across the specifications of xn,t and, in the stationary case, we per-

form OLS estimation under the additional constraint δ̂ = 0 in (3.2). The implications

for bootstrap inference are discussed below.

S.1.1 Near-unit root regressor

Consider a modification of Assumption 1 where in part (c) the limit process becomes

(X,Z)′ =

(∫ ·
ec(s−·)dW (s), Z

)′
, c > 0,
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for a Brownian motion (W,Z)′ ∼ BM(0,Ω). Thus, X is an Ornstein-Uhlenbeck process

originating from a near-UR posited predicting variable xn,t. The asymptotic distribu-

tion of θ̂ has a more complex structure than in the unit root case. Now n1/2(θ̂− θ0)
w→

M−1/2ξ + vc with vc := (0, cωxzω
−1
xx )
′ if θ0 ∈ intΘ. On the other hand,

n1/2(θ̂ − θ0)
w→ argmin

λ∈Λ
||λ−M−1/2ξ − vc||M , Λ := {λ ∈ R2 : ġ′λ ≥ 0} (S.1)

if g(θ0) = 0. The limiting shift by vc is due to the fact that n1/2∆xn,t in the near-unit

root case is not a sufficiently good proxy for the innovations driving xn,t. Eqs. (3.5)–

(3.6) for the standard bootstrap hold in the near-unit root case if X in the definition

of M is understood as an Ornstein-Uhlenbeck process; therefore, θ0 ∈ ∂Θ induces the

same kind of limiting bootstrap randomness as in the exact unit-root case. Additionally,

the bootstrap limit distribution does not replicate the shift in the limit distribution of

n1/2(θ̂− θ0) induced by the vector vc, as a consequence of the conditional independence

of the bootstrap innovations and the regressor xn,t−1. This fact is not related to the

position of θ0 relative to Θ and requires separate treatment. Consider now the bootstrap

estimator of Corollary 4.1 with the choice g∗ = g − |g|1+κ for κ > 0. In the case where

xn,t is near-unit root non-stationary, instead of (4.3) it holds that

(n1/2(θ̂ − θ0), (n
1/2(θ̂

∗ − θ̂)|Dn))
w→w

(
M−1/2ξ + vc, (M

−1/2ξ|M)
)

if g(θ0) > 0, and

(n1/2(θ̂ − θ0), (n
1/2(θ̂

∗ − θ̂)|Dn))
w→w

(
argmin

λ∈Λ
||λ−M−1/2ξ − vc||M ,(
argmin

λ∈Λ
||λ−M−1/2ξ||M

∣∣∣M))
if g(θ0) = 0, where X in the definition of M should again be read as an Ornstein-

Uhlenbeck process. This means that g∗ still does the job it is designed for (remove the

random shift from the half-plane in the limiting bootstrap distribution). Nevertheless,

bootstrap invalidity due to the limiting shift by vc, not related to the position of θ0 in

Θ, remains to be tackled.

S.1.2 Stationary regressor

If xn,t = xt is stationary, then the inclusion of ∆xn,t = ∆xt among the regressors of (3.2)

will, in general, compromise the consistency of θ̂ for the true value θ0 in the predictive

regression (3.1). Assume, however, that n−1
∑n

t=1 x̃tx̃
′
t

p→ M for x̃t := (1, xt)
′ and a

non-random positive definite matrix M , and that the unconstrained OLS estimator of

θ from the predictive regression (3.1) is consistent at the n−1/2 rate and has asymptotic

N(0, ωzzM
−1) distribution. Then, the constrained OLS estimator θ̂ of (3.1) subject

to g(θ̂) ≥ 0 (equivalently, the constrained OLS estimator of (3.2) subject to g(θ̂) ≥ 0,

δ̂ = 0) satisfies n1/2(θ̂− θ0)
w→ ℓst(θ0) = ℓ̃st :=M−1/2ζ with ζ ∼ N(0, ωzzI2) in the case

where θ0 ∈ intΘ, and

n1/2(θ̂ − θ0)
w→ ℓst(θ0) = ℓst := argmin

λ∈Λ
||λ−M−1/2ζ||M , Λ := {λ ∈ R2 : ġ′λ ≥ 0}
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in the case where g(θ0) = 0. In the stationary case with a non-random limiting M , the

limiting behavior of the standard bootstrap is entirely analogous to the introductory

location model example, as the possibility that θ0 ∈ ∂Θ is the only source of bootstrap

randomness in the limit. For θ̂ defined in the previous paragraph, it holds that n1/2(θ̂
∗−

θ̂)
w∗
→p M

−1/2ζ∗ with ζ∗ ∼ N(0, ωzzI2) in the case where θ0 ∈ intΘ, such that the limit

bootstrap distribution is non-random in this case, and

n1/2(θ̂
∗ − θ̂)

w∗
→w

(
argmin
λ∈Λ∗

ℓ

||λ−M−1/2ζ∗||M
)∣∣∣ℓ, Λ∗ℓ := {λ ∈ R2 : ġ′λ ≥ −ġ′ℓ},

with ζ∗|ℓ ∼ N(0, ωzzI2) in the case where g(θ0) = 0. We conclude that the same dis-

crepancy between Λ and Λ∗ℓ emerges in the case g(θ0) = 0 irrespective of the stochastic

properties of the regressor. Consider now the bootstrap estimator of Corollary 4.1 with

the choice g∗ = g − |g|1+κ for κ > 0. For a stationary xn,t and a non-random M , the

original and the bootstrap estimators satisfy

(n1/2(θ̂ − θ0), (n
1/2(θ̂

∗ − θ̂)|Dn))
w→p (ℓst(θ0), ℓst(θ0))

and bootstrap validity is restored as in Corollary 4.1, in particular because the random

shift from the half-plane in the limiting bootstrap distribution is again removed.

S.1.3 Concluding remarks

An inferential framework that would be asymptotically valid in the unit root, near-unit

root, and stationary cases, allowing the researcher to remain agnostic to the stochastic

properties of the regressor, could be based on two main ingredients. First, the definition

of the bootstrap parameter space in a way such that it approximates sufficiently well the

geometry of the original parameter space; e.g., by setting g∗ = g−|g|1+κ in the definition

of Θ∗ for some κ > 0, see above. This definition is independent of the stochastic

properties of the regressor. Second, the use of an estimator (different from our choice

of OLS) that gives rise to limit distributions that (a) in the near-unit root case depend

on c only through the process X (and thus, the matrix M), but are free from shifts

in the direction of vc, and (b) allow for a common treatment of the contemporaneous

correlation between the innovations of the predictive regression and the shocks driving

xn,t (vs. the inclusion or omission of ∆xn.t in the estimated eq. (3.2)). We conjecture

that constrained versions of both the IVX (extended instrumental variables) estimator

and the associated bootstrap schemes as discussed in Demetrescu et al. (2023) would

give rise to asymptotically valid bootstrap inference. A detailed discussion is beyond

the scope of this appendix due to our focus on issues attributable to the boundary of

the parameter space.

S.2 Additional Monte Carlo simulations

In this section, we present additional numerical results in support of the theoretical

arguments provided in CGZ. In particular, Tables S.1 and S.2 refer to the same testing

procedure considered in Tables 1 and 2 in CGZ, respectively, but focus on the case
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g∗ = g∗2 := g − n−κ|g|. Furthermore, in Tables S.3 and S.4 we present the simulated

ERPs of bootstrap tests under local alternatives such that θ0 ∈ int(Θ), using g∗ = g∗1
and g∗ = g∗2, respectively.
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Table S1: Empirical rejection probabilities (ERPs) of bootstrap tests under the null.

Nominal level: 0.05

θ0 = (0, 0)′ θ0 = (−0.75, 0.75)′ θ0 = (−1.50, 1.50)′

b1 b2 b1 b2 b1 b2
κ κ κ

dist. n 0.05 0.10 0.20 0.40 0.05 0.10 0.20 0.40 0.05 0.10 0.20 0.40

ξ1 100 4.2 4.9 5.3 5.5 5.6 6.9 7.0 7.3 8.3 9.6 6.3 6.4 6.6 7.3 9.6

400 3.9 4.8 5.1 5.3 5.3 5.5 5.7 6.0 7.1 9.2 5.3 5.3 5.3 5.7 8.6

800 3.7 4.7 5.0 5.2 5.2 5.2 5.3 5.6 6.7 9.4 5.2 5.2 5.2 5.3 8.4

ξ2 100 4.2 4.9 5.3 5.6 5.7 7.1 7.3 7.5 8.4 9.9 6.2 6.4 6.6 7.2 9.5

400 3.8 4.6 5.0 5.1 5.2 5.7 6.0 6.3 7.3 9.4 5.3 5.3 5.3 5.7 8.7

800 3.6 4.5 4.8 4.9 4.9 5.1 5.2 5.5 6.7 9.3 5.1 5.1 5.1 5.3 8.6

ξ3 100 4.3 4.9 5.3 5.6 5.7 7.1 7.2 7.4 8.5 9.9 6.4 6.5 6.7 7.4 9.8

400 3.7 4.6 4.9 5.1 5.1 5.5 5.8 6.1 7.2 9.3 5.2 5.2 5.2 5.6 8.6

800 3.7 4.6 5.0 5.1 5.2 5.1 5.2 5.4 6.5 9.1 5.1 5.1 5.1 5.3 8.4

Nominal level: 0.10

θ0 = (0, 0)′ θ0 = (−0.75, 0.75)′ θ0 = (−1.50, 1.50)′

b1 b2 b1 b2 b1 b2
κ κ κ

dist. n 0.05 0.10 0.20 0.40 0.05 0.10 0.20 0.40 0.05 0.10 0.20 0.40

ξ1 100 8.0 9.1 9.9 10.5 10.7 13.0 13.3 13.7 15.4 18.6 11.5 11.7 12.0 12.9 17.2

400 7.7 9.2 9.9 10.3 10.5 10.4 10.6 11.1 12.9 17.6 10.3 10.3 10.3 10.7 15.9

800 7.4 9.0 9.7 10.0 10.1 10.4 10.4 10.7 12.2 18.1 10.1 10.1 10.1 10.2 15.5

ξ2 100 8.1 9.2 9.9 10.5 10.7 13.2 13.5 13.9 15.6 18.7 11.3 11.5 11.8 12.7 16.9

400 7.5 9.0 9.7 10.2 10.3 10.7 11.0 11.4 13.2 18.0 10.2 10.3 10.3 10.7 15.9

800 7.2 8.9 9.5 9.9 10.0 10.2 10.3 10.5 12.0 17.7 10.3 10.3 10.3 10.4 15.7

ξ3 100 8.3 9.4 10.2 10.8 11.0 13.3 13.7 14.1 15.8 19.0 11.7 11.9 12.2 13.2 17.5

400 7.6 9.1 9.8 10.2 10.3 10.4 10.6 11.1 13.1 17.7 10.2 10.2 10.2 10.6 15.9

800 7.4 9.0 9.6 10.0 10.1 10.1 10.1 10.4 11.9 17.6 10.0 10.0 10.0 10.1 15.5

Note: bootstrap tests are based on a standard fixed-regressor wild bootstrap (b1) and on the proposed

corrected wild bootstrap method (b2) of Section 4, using g∗ = g − n−κ|g|. ERPs are estimated using

50,000 Monte Carlo replications and 999 bootstrap repetitions. The column “dist.” shows the distri-

butions of εt: ξ1 ∼ iidN(0, 1), ξ2 ∼ ARCH(1) and ξ3 =
√
0.5vt +

√
0.5εx,t, where vt ∼ iidN(0, 1) and

εx,t is the error term of the predictive variable xn,t.

5



Table S2: Empirical rejection probabilities (ERPs) of bootstrap tests under local alter-

natives.

Nominal level: 0.05

a0 = (−3, 0)′ a0 = (3, 0)′ a0 = (5, 0)′

b1 b2 b1 b2 b1 b2
κ κ κ

dist. n 0.05 0.10 0.20 0.40 0.05 0.10 0.20 0.40 0.05 0.10 0.20 0.40

ξ1 100 21.0 21.1 21.3 21.5 21.5 40.6 40.8 40.9 41.0 41.0 68.0 68.0 68.0 68.0 68.0

400 18.9 19.1 19.3 19.5 19.5 38.5 38.7 38.8 38.8 38.8 64.9 64.9 64.9 64.9 64.9

800 18.6 18.8 19.0 19.1 19.1 37.6 37.8 37.9 37.9 37.9 64.0 64.0 64.0 64.0 64.0

ξ2 100 21.7 21.9 22.0 22.2 22.3 41.9 42.1 42.2 42.2 42.3 68.5 68.5 68.5 68.5 68.5

400 19.2 19.4 19.6 19.7 19.8 38.3 38.6 38.7 38.7 38.7 64.7 64.8 64.8 64.8 64.8

800 18.6 18.8 19.0 19.1 19.1 37.8 38.0 38.1 38.1 38.1 64.2 64.2 64.2 64.2 64.2

ξ3 100 20.6 20.7 20.9 21.2 21.3 40.8 41.0 41.1 41.1 41.1 67.3 67.3 67.3 67.3 67.3

400 19.0 19.1 19.3 19.4 19.4 38.1 38.3 38.4 38.5 38.5 65.0 65.0 65.0 65.0 65.0

800 18.3 18.5 18.7 18.8 18.9 37.7 38.0 38.0 38.1 38.1 63.5 63.5 63.5 63.5 63.5

Nominal level: 0.10

a0 = (−3, 0)′ a0 = (3, 0)′ a0 = (5, 0)′

b1 b2 b1 b2 b1 b2
κ κ κ

dist. n 0.05 0.10 0.20 0.40 0.05 0.10 0.20 0.40 0.05 0.10 0.20 0.40

ξ1 100 29.6 29.8 30.1 30.5 30.7 54.7 55.0 55.1 55.2 55.2 81.7 81.7 81.7 81.8 81.8

400 27.0 27.3 27.8 28.1 28.2 52.2 52.5 52.6 52.7 52.7 79.6 79.6 79.6 79.6 79.6

800 26.4 26.8 27.2 27.5 27.6 51.7 52.1 52.1 52.2 52.2 78.7 78.7 78.7 78.7 78.7

ξ2 100 30.2 30.4 30.7 31.2 31.4 55.7 55.9 55.9 56.0 56.1 82.0 82.0 82.0 82.0 82.0

400 27.1 27.4 27.9 28.2 28.3 51.8 52.0 52.1 52.2 52.2 79.3 79.3 79.3 79.3 79.3

800 26.6 26.9 27.4 27.7 27.7 51.5 51.8 51.9 51.9 51.9 78.6 78.6 78.6 78.6 78.6

ξ3 100 29.1 29.3 29.6 30.1 30.3 54.2 54.4 54.5 54.6 54.6 80.9 80.9 80.9 80.9 80.9

400 26.7 27.0 27.4 27.8 27.8 51.7 52.0 52.1 52.2 52.2 79.4 79.4 79.4 79.4 79.4

800 26.2 26.5 27.0 27.3 27.3 51.3 51.6 51.7 51.7 51.8 78.5 78.5 78.5 78.5 78.5

Note: bootstrap tests are based on a standard fixed-regressor wild bootstrap (b1) and on the proposed

corrected wild bootstrap method (b2) of Section 4, using g∗ = g − n−κ|g|. ERPs are estimated using

50,000 Monte Carlo replications and 999 bootstrap repetitions. The column “dist.” shows the distri-

butions of εt: ξ1 ∼ iidN(0, 1), ξ2 ∼ ARCH(1) and ξ3 =
√
0.5vt +

√
0.5εx,t, where vt ∼ iidN(0, 1) and

εx,t is the error term of the predictive variable xn,t.
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Table S3: Empirical rejection probabilities (ERPs) of bootstrap tests under local alter-

natives.

Nominal level: 0.05

a0 = (−3, 1)′ a0 = (2, 2)′ a0 = (3, 4)′

b1 b2 b1 b2 b1 b2
κ κ κ

dist. n 0.25 0.50 1.0 2.0 0.25 0.50 1.0 2.0 0.25 0.50 1.0 2.0

ξ1 100 12.8 12.9 13.0 13.2 13.4 48.4 49.6 50.1 50.3 50.4 73.0 73.9 74.4 74.7 74.7

400 11.4 11.6 11.9 12.2 12.3 45.4 47.2 47.5 47.6 47.6 70.0 71.6 72.0 72.0 72.0

800 10.9 11.2 11.6 11.7 11.8 44.8 46.9 47.1 47.1 47.2 69.3 71.1 71.4 71.4 71.4

ξ2 100 13.1 13.2 13.3 13.5 13.6 49.6 50.8 51.3 51.6 51.6 73.2 74.1 74.7 75.0 75.0

400 11.4 11.6 11.8 12.1 12.2 46.1 48.0 48.3 48.3 48.3 70.2 71.8 72.2 72.3 72.3

800 11.0 11.3 11.7 11.9 11.9 45.2 47.2 47.4 47.4 47.4 69.6 71.5 71.7 71.7 71.7

ξ3 100 12.3 12.4 12.5 12.7 12.9 48.1 49.3 49.9 50.1 50.1 72.4 73.2 73.8 74.1 74.1

400 11.4 11.6 11.9 12.2 12.3 46.0 47.8 48.2 48.2 48.3 69.9 71.5 72.0 72.0 72.0

800 11.1 11.4 11.8 12.0 12.1 45.0 46.9 47.1 47.1 47.1 69.4 71.3 71.6 71.6 71.6

Nominal level: 0.10

a0 = (−3, 1)′ a0 = (2, 2)′ a0 = (3, 4)′

b1 b2 b1 b2 b1 b2
κ κ κ

dist. n 0.25 0.50 1.0 2.0 0.25 0.50 1.0 2.0 0.25 0.50 1.0 2.0

ξ1 100 21.2 21.5 21.6 22.0 22.4 58.8 60.4 61.1 61.5 61.5 80.7 81.6 82.2 82.5 82.5

400 19.2 19.6 20.2 21.0 21.2 56.0 58.2 58.6 58.7 58.7 78.2 79.9 80.3 80.4 80.4

800 18.3 18.9 19.7 20.2 20.2 55.8 58.1 58.5 58.5 58.5 77.8 79.8 80.1 80.1 80.2

ξ2 100 21.8 22.0 22.1 22.5 23.0 59.6 61.1 61.8 62.1 62.2 81.0 81.9 82.5 82.9 82.9

400 19.1 19.5 20.1 20.7 21.0 56.8 59.0 59.5 59.6 59.6 78.6 80.4 80.8 80.8 80.9

800 18.9 19.5 20.2 20.7 20.8 56.0 58.4 58.7 58.8 58.8 78.0 79.9 80.2 80.3 80.3

ξ3 100 20.6 20.8 20.9 21.3 21.8 58.5 60.1 60.8 61.1 61.2 80.2 81.2 81.7 82.0 82.1

400 19.1 19.5 20.1 20.8 21.0 56.6 58.7 59.2 59.3 59.3 78.3 80.1 80.5 80.6 80.6

800 18.7 19.2 20.0 20.5 20.6 55.7 58.2 58.5 58.6 58.6 77.8 79.5 79.9 79.9 79.9

Note: bootstrap tests are based on a standard fixed-regressor wild bootstrap (b1) and on the proposed

corrected wild bootstrap method (b2) of Section 4, using g∗ = g − |g|1+κ. ERPs are estimated using

50,000 Monte Carlo replications and 999 bootstrap repetitions. The column “dist.” shows the distri-

butions of εt: ξ1 ∼ iidN(0, 1), ξ2 ∼ ARCH(1) and ξ3 =
√
0.5vt +

√
0.5εx,t, where vt ∼ iidN(0, 1) and

εx,t is the error term of the predictive variable xn,t.
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Table S4: Empirical rejection probabilities (ERPs) of bootstrap tests under local alter-

natives.

Nominal level: 0.05

a0 = (−3, 1)′ a0 = (2, 2)′ a0 = (3, 4)′

b1 b2 b1 b2 b1 b2
κ κ κ

dist. n 0.05 0.10 0.20 0.40 0.05 0.10 0.20 0.40 0.05 0.10 0.20 0.40

ξ1 100 12.8 13.0 13.2 13.6 13.7 48.4 49.6 50.1 50.4 50.4 73.0 74.0 74.5 74.7 74.7

400 11.4 11.6 12.0 12.2 12.3 45.4 47.0 47.4 47.6 47.6 70.0 71.4 71.9 72.0 72.0

800 10.9 11.1 11.5 11.7 11.8 44.8 46.5 47.0 47.1 47.2 69.3 70.8 71.3 71.4 71.4

ξ2 100 13.1 13.3 13.5 13.9 14.0 49.6 50.8 51.3 51.6 51.6 73.2 74.2 74.7 75.0 75.0

400 11.4 11.6 11.9 12.1 12.2 46.1 47.7 48.1 48.3 48.3 70.2 71.6 72.1 72.3 72.3

800 11.0 11.3 11.7 11.8 11.9 45.2 46.9 47.3 47.4 47.4 69.6 71.2 71.6 71.7 71.7

ξ3 100 12.3 12.4 12.8 13.2 13.3 48.1 49.3 49.9 50.1 50.2 72.4 73.4 73.9 74.1 74.2

400 11.4 11.7 12.0 12.2 12.3 46.0 47.6 48.0 48.2 48.3 69.9 71.4 71.8 72.0 72.0

800 11.1 11.4 11.8 12.0 12.1 45.0 46.5 47.0 47.1 47.2 69.4 71.0 71.5 71.6 71.6

Nominal level: 0.10

a0 = (−3, 1)′ a0 = (2, 2)′ a0 = (3, 4)′

b1 b2 b1 b2 b1 b2
κ κ κ

dist. n 0.05 0.10 0.20 0.40 0.05 0.10 0.20 0.40 0.05 0.10 0.20 0.40

ξ1 100 21.2 21.5 21.9 22.7 23.0 58.8 60.2 60.9 61.4 61.5 80.7 81.6 82.1 82.4 82.5

400 19.2 19.6 20.3 21.0 21.2 56.0 57.7 58.3 58.6 58.7 78.2 79.6 80.1 80.4 80.4

800 18.3 18.8 19.6 20.1 20.2 55.8 57.7 58.2 58.5 58.5 77.8 79.4 79.9 80.1 80.1

ξ2 100 21.8 22.0 22.5 23.3 23.7 59.6 61.0 61.6 62.1 62.2 81.0 81.9 82.5 82.9 82.9

400 19.1 19.5 20.1 20.8 21.0 56.8 58.5 59.2 59.5 59.6 78.6 80.0 80.6 80.8 80.8

800 18.9 19.4 20.1 20.7 20.8 56.0 57.9 58.5 58.7 58.8 78.0 79.5 80.1 80.3 80.3

ξ3 100 20.6 20.8 21.3 22.2 22.6 58.5 59.9 60.6 61.1 61.2 80.2 81.1 81.7 82.0 82.1

400 19.1 19.5 20.2 20.8 21.0 56.6 58.3 58.9 59.2 59.3 78.3 79.7 80.3 80.5 80.6

800 18.7 19.1 19.9 20.5 20.6 55.7 57.7 58.3 58.6 58.6 77.8 79.2 79.7 79.9 79.9

Note: bootstrap tests are based on a standard fixed-regressor wild bootstrap (b1) and on the proposed

corrected wild bootstrap method (b2) of Section 4, using g∗ = g − n−κ|g|. ERPs are estimated using

50,000 Monte Carlo replications and 999 bootstrap repetitions. The column “dist.” shows the distri-

butions of εt: ξ1 ∼ iidN(0, 1), ξ2 ∼ ARCH(1) and ξ3 =
√
0.5vt +

√
0.5εx,t, where vt ∼ iidN(0, 1) and

εx,t is the error term of the predictive variable xn,t.
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