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ABSTRACT

This document contains some supplemental material for Cavaliere, Georgiev
and Zanelli (2024), CGZ hereafter. In particular, (i) we consider generalizations
of some of the results in CGZ to the near-I(1) and to the stationary cases; (ii) we
report additional Monte Carlo simulations.

S.1 ALTERNATIVE DATA GENERATING PROCESSES

The asymptotic theory in the paper is presented under the assumption that z,; is a
unit-root non-stationary process. Here we show that the choice of a bootstrap parame-
ter space is fundamental for bootstrap validity also under alternative stochastic specifi-
cations for x, ¢, e.g., a near-unit root and a stationary specification. More importantly,
a common definition of the bootstrap parameter space could be appropriate for all the
considered specifications of x, ;. Still, the functional forms of the limit distributions
are not identical across the specifications of z,; and, in the stationary case, we per-
form OLS estimation under the additional constraint & = 0 in (3.2). The implications
for bootstrap inference are discussed below.

S.1.1 NEAR-UNIT ROOT REGRESSOR

Consider a modification of Assumption 1 where in part (c) the limit process becomes

(X,2) = (/ ec(s')dW(s),Z>/, ¢ >0,
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for a Brownian motion (W, Z)" ~ BM (0, £2). Thus, X is an Ornstein-Uhlenbeck process
originating from a near-UR posited predicting variable x,, ;. The asymptotic distribu-
tion of # has a more complex structure than in the unit root case. Now n!/ 2(@ —6y) 5
M~1/2¢ 4 v, with v, == (0, cwgrwy,)" if Oy € int ©. On the other hand,

n'2(0 — 0p) 5 argmin||A — M~Y2¢ —w ||y, A:={NeR%:§'A>0} (S.1)

AEA

if g(0p) = 0. The limiting shift by v, is due to the fact that nl/QAxn,t in the near-unit
root case is not a sufficiently good proxy for the innovations driving x, ;. Eqgs. (3.5)-
(3.6) for the standard bootstrap hold in the near-unit root case if X in the definition
of M is understood as an Ornstein-Uhlenbeck process; therefore, 8y € 90 induces the
same kind of limiting bootstrap randomness as in the exact unit-root case. Additionally,
the bootstrap limit distribution does not replicate the shift in the limit distribution of
nt/ 2(9 —60p) induced by the vector v,, as a consequence of the conditional independence
of the bootstrap innovations and the regressor x,;—1. This fact is not related to the
position of 0y relative to © and requires separate treatment. Consider now the bootstrap
estimator of Corollary 4.1 with the choice g* = g — |g|**" for k > 0. In the case where
Zp,t Is near-unit root non-stationary, instead of (4.3) it holds that

(n/2(0 — 00), (5" — 0)| Do) B (M2 4 v, (M€]00)
if g(6p) > 0, and

(n'2(0 = 00), (n'/2(0" = 0)|Dn)) (mg min|[A — M~12€ = vellar,
AEA
(argmin||)\ - M_1/2§||M‘M>>
AEA

if g(6g) = 0, where X in the definition of M should again be read as an Ornstein-
Uhlenbeck process. This means that g* still does the job it is designed for (remove the
random shift from the half-plane in the limiting bootstrap distribution). Nevertheless,
bootstrap invalidity due to the limiting shift by v., not related to the position of fj in
O, remains to be tackled.

S.1.2 STATIONARY REGRESSOR

If 2y, 1 = x; is stationary, then the inclusion of Ax,, ; = Az; among the regressors of (3.2)
will, in general, compromise the consistency of 6 for the true value 6 in the predictive
regression (3.1). Assume, however, that n=' 31", & % M for #; := (1,2;) and a
non-random positive definite matrix M, and that the unconstrained OLS estimator of
6 from the predictive regression (3.1) is consistent at the n~Y2 rate and has asymptotic
N(0,w..M~1) distribution. Then, the constrained OLS estimator 8 of (3.1) subject
to g(f) > 0 (equivalently, the constrained OLS estimator of (3.2) subject to g(6) > 0,
5= 0) satisfies n1/2(9 —6o) it lse(60) = Uy = M=/2¢ with ¢ ~ N(0,w,,I2) in the case
where 6y € int ©, and

nM2(0 — 00) B g (00) = Ly = a;"gAmin IN=M"V2¢ 0, A={AeR?:¢A>0}
€
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in the case where g(6y) = 0. In the stationary case with a non-random limiting M, the
limiting behavior of the standard bootstrap is entirely analogous to the introductory
location model example, as the possibility that 8y € 90O is the only source of bootstrap
randomness in the limit. For 6 defined in the previous paragraph, it holds that n'/ 2(9 —

0) —>p M~Y2¢* with ¢* ~ N(0,w,,I2) in the case where 6 € int ©, such that the limit
bootstrap distribution is non-random in this case, and

0 A ={NeR?:gN> g1},

n'2(6" - 0) N (arg min||\ — M_l/QC*HM)
AEA

with (*|¢ ~ N(0,w,,I2) in the case where g(fy) = 0. We conclude that the same dis-
crepancy between A and Aj emerges in the case g(y) = 0 irrespective of the stochastic
properties of the regressor. Consider now the bootstrap estimator of Corollary 4.1 with
the choice g* = g — |g|'** for K > 0. For a stationary Zn, and a non-random M, the
original and the bootstrap estimators satisfy

(n!/2(8 = 60), (n'7*(6" = 8)|Dy)) 5 (£st(680), £et(60))

and bootstrap validity is restored as in Corollary 4.1, in particular because the random
shift from the half-plane in the limiting bootstrap distribution is again removed.

S.1.3 CONCLUDING REMARKS

An inferential framework that would be asymptotically valid in the unit root, near-unit
root, and stationary cases, allowing the researcher to remain agnostic to the stochastic
properties of the regressor, could be based on two main ingredients. First, the definition
of the bootstrap parameter space in a way such that it approximates sufficiently well the
geometry of the original parameter space; e.g., by setting g* = g—|g|' ™" in the definition
of ©* for some k > 0, see above. This definition is independent of the stochastic
properties of the regressor. Second, the use of an estimator (different from our choice
of OLS) that gives rise to limit distributions that (a) in the near-unit root case depend
on ¢ only through the process X (and thus, the matrix M), but are free from shifts
in the direction of v, and (b) allow for a common treatment of the contemporaneous
correlation between the innovations of the predictive regression and the shocks driving
Znt (vs. the inclusion or omission of Az, ; in the estimated eq. (3.2)). We conjecture
that constrained versions of both the IVX (extended instrumental variables) estimator
and the associated bootstrap schemes as discussed in Demetrescu et al. (2023) would
give rise to asymptotically valid bootstrap inference. A detailed discussion is beyond
the scope of this appendix due to our focus on issues attributable to the boundary of
the parameter space.

S.2 ADDITIONAL MONTE CARLO SIMULATIONS

In this section, we present additional numerical results in support of the theoretical
arguments provided in CGZ. In particular, Tables S.1 and S.2 refer to the same testing
procedure considered in Tables 1 and 2 in CGZ, respectively, but focus on the case



g = g5 := g — n""|g|. Furthermore, in Tables S.3 and S.4 we present the simulated
ERPs of bootstrap tests under local alternatives such that 6y € int(0©), using ¢* = ¢}
and g* = g3, respectively.
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TABLE S1: Empirical rejection probabilities (ERPs) of bootstrap tests under the null.

Nominal level: 0.05

6o = (0,0)’ 0o = (—0.75,0.75)’ 0o = (—1.50,1.50)"
b1 b by b b1 b
K K K
dist. n 0.05 0.10 0.20 0.40 0.05 0.10 0.20 0.40 0.05 0.10 0.20 0.40
& 100 || 4.2 | 4.9 5.3 5.5 5.6 6.9 7.0 7.3 8.3 9.6 6.3 6.4 6.6 7.3 9.6
400 || 3.9 | 4.8 5.1 5.3 5.3 5.5 5.7 6.0 7.1 9.2 5.3 5.3 5.3 5.7 8.6
800 || 3.7 | 4.7 5.0 5.2 5.2 5.2 5.3 5.6 6.7 9.4 5.2 5.2 5.2 5.3 8.4
& 100 || 4.2 | 4.9 5.3 5.6 5.7 7.1 7.3 7.5 8.4 9.9 6.2 6.4 6.6 7.2 9.5
400 || 3.8 | 4.6 5.0 5.1 5.2 5.7 6.0 6.3 7.3 9.4 5.3 5.3 5.3 5.7 8.7
800 || 3.6 | 4.5 4.8 4.9 4.9 5.1 5.2 5.5 6.7 9.3 5.1 5.1 5.1 5.3 8.6
& 100 || 4.3 | 4.9 5.3 5.6 5.7 7.1 7.2 7.4 8.5 9.9 6.4 6.5 6.7 7.4 9.8
400 || 3.7 | 4.6 4.9 5.1 5.1 5.5 5.8 6.1 7.2 9.3 5.2 5.2 5.2 5.6 8.6
800 || 3.7 | 4.6 5.0 5.1 5.2 5.1 5.2 5.4 6.5 9.1 5.1 5.1 5.1 5.3 8.4
Nominal level: 0.10
6o = (0,0)’ 0o = (—0.75,0.75)’ 6o = (—1.50,1.50)"
bl b2 b1 bz bl b2
K K K
dist. n 0.05 0.10 0.20 0.40 0.05 0.10 0.20 0.40 0.05 0.10 0.20 0.40
& 100 || 8.0 | 9.1 9.9 105 10.7 13.0 | 13.3 13.7 154 18.6 11.5 | 11.7 12.0 129 17.2
400 || 7.7 | 9.2 9.9 103 10.5 104 | 10.6 11.1 129 17.6 10.3 | 10.3 10.3 10.7 15.9
800 || 7.4 | 9.0 9.7 10.0 10.1 10.4 | 10.4 10.7 12.2 18.1 10.1 | 10.1 10.1 10.2 155
& 100 || 8.1 | 9.2 9.9 105 10.7 13.2 | 13.5 139 15.6 18.7 11.3 | 11.5 11.8 12.7 16.9
400 751 9.0 9.7 102 10.3 10.7 | 11.0 11.4 13.2 18.0 10.2 | 10.3 10.3 10.7 15.9
800 || 7.2 | 8.9 9.5 9.9 10.0 10.2 | 10.3 10.5 12.0 17.7 || 10.3 | 10.3 10.3 104 15.7
& 100 || 83 | 94 10.2 10.8 11.0 13.3 | 13.7 14.1 15.8 19.0 11.7 | 11.9 122 132 175
400 || 7.6 | 9.1 9.8 10.2 10.3 10.4 | 10.6 11.1 13.1 177 10.2 | 10.2 10.2 10.6 15.9
800 || 7.4 | 9.0 9.6 10.0 10.1 10.1 | 10.1 104 119 17.6 10.0 | 10.0 10.0 10.1 15.5

Note: bootstrap tests are based on a standard fixed-regressor wild bootstrap (b1) and on the proposed

corrected wild bootstrap method (b2) of Section 4, using g* = g — n~"|g|. ERPs are estimated using

50,000 Monte Carlo replications and 999 bootstrap repetitions. The column “dist.” shows the distri-
butions of g;: & ~ #dN(0,1), &, ~ ARCH(1) and £; = v0.5v; + v/0.5e4¢, where vy ~ #idN (0, 1) and

€s,t is the error term of the predictive variable xy ;.



TABLE S2: Empirical rejection probabilities (ERPs) of bootstrap tests under local alter-
natives.

Nominal level: 0.05

aop = (73,0)/ ap = (3,0)/ ap = (5,0)/
b1 bo b1 b2 by ba
K K K
dist. n 0.05 0.10 0.20 0.40 0.05 0.10 0.20 0.40 0.05 0.10 0.20 0.40

I3 100 || 21.0 | 21.1 21.3 21.5 21.5 || 40.6 | 40.8 40.9 41.0 41.0 || 68.0 | 68.0 68.0 68.0 68.0
400 || 189 | 19.1 19.3 195 19.5 || 38.5 | 38.7 38.8 388 388 || 649 | 649 649 649 64.9
800 || 18.6 | 188 19.0 19.1 19.1 || 37.6 | 37.8 379 37.9 379 || 64.0 | 640 64.0 640 64.0
&, 100 || 21.7 | 21.9 22.0 22.2 223 || 41.9 | 42.1 42.2 422 423 || 68.5 | 685 685 685 68.5
400 || 19.2 | 194 19.6 19.7 19.8 || 38.3 | 38.6 38.7 387 38.7 || 64.7 | 648 64.8 648 64.8
800 || 18.6 | 188 19.0 19.1 19.1 || 37.8 | 38.0 38.1 38.1 381 || 642 | 64.2 64.2 642 64.2
&y 100 || 20.6 | 20.7 209 21.2 21.3 || 40.8 | 41.0 41.1 41.1 41.1 || 67.3 | 67.3 673 673 67.3
400 || 19.0 | 19.1 193 194 194 || 38.1 | 383 384 385 385 | 65.0 | 65.0 650 65.0 65.0
800 || 18.3 | 185 18.7 188 189 || 37.7 | 38.0 38.0 38.1 38.1 || 63.5 | 63.5 63.5 63.5 63.5

Nominal level: 0.10

aop = (73,0)/ ap = (3,0)/ ap = (5, 0)/
b1 bz by b2 b1 b2
K K K
dist. n 0.05 0.10 0.20 0.40 0.05 0.10 0.20 0.40 0.05 0.10 0.20 0.40

I3 100 || 29.6 | 29.8 30.1 30.5 30.7 || 54.7 | 55.0 55.1 55.2 55.2 || 81.7 | 81.7 81.7 81.8 818
400 || 27.0 | 27.3 27.8 281 282 || 52.2 | 52,5 52.6 52.7 527 || 79.6 | 79.6 79.6 79.6 79.6
800 || 26.4 | 26.8 27.2 27.5 27.6 || 51.7 | 52.1 52.1 52.2 52.2 || 78.7 | 787 787 787 787
&, 100 || 30.2 | 30.4 30.7 31.2 314 || 55.7 | 55.9 55.9 56.0 56.1 || 82.0 | 82.0 82.0 82.0 82.0
400 || 27.1 | 27.4 279 282 283 || 51.8 | 52.0 52.1 522 522 | 79.3 | 793 793 793 793
800 || 26.6 | 26.9 274 27.7 27.7 | 51.5 | 51.8 519 519 519 || 786 | 786 786 78.6 78.6
&s 100 || 29.1 | 29.3 29.6 30.1 30.3 || 54.2 | 54.4 54.5 54.6 54.6 || 80.9 | 80.9 80.9 809 80.9
400 || 26.7 | 27.0 274 278 278 || 51.7 | 52.0 52.1 522 522 || 79.4 | 794 794 794 794
800 || 26.2 | 26.5 27.0 27.3 273 | 51.3 | 51.6 51.7 51.7 518 || 785 | 785 785 785 785

Note: bootstrap tests are based on a standard fixed-regressor wild bootstrap (b1) and on the proposed
corrected wild bootstrap method (b2) of Section 4, using g* = g — n™"|g|. ERPs are estimated using
50,000 Monte Carlo replications and 999 bootstrap repetitions. The column “dist.” shows the distri-
butions of &;: &, ~ #dN(0,1), £, ~ ARCH(1) and &5 = v0.5v; + v/0.5e4,¢, where v, ~ #idN(0,1) and

€x,¢ 1s the error term of the predictive variable y, ;.



TABLE S3: Empirical rejection probabilities (ERPs) of bootstrap tests under local alter-
natives.

Nominal level: 0.05

ag = (73, 1)/ ag = (2,2)/ ap = (3,4)/
b1 bo b1 b2 by ba
K K K
dist. n 0.25 0.50 1.0 2.0 0.25 050 1.0 2.0 0.25 050 1.0 2.0

I3 100 || 12.8 | 129 13.0 13.2 134 || 484 | 496 50.1 503 50.4 || 73.0 | 73.9 744 747 747
400 || 11.4 | 11.6 11.9 122 123 || 45.4 | 47.2 475 476 476 || 70.0 | 71.6 72.0 72.0 720
800 || 10.9 | 11.2 11.6 11.7 11.8 || 44.8 | 46.9 47.1 47.1 472 || 69.3 | 71.1 714 714 714
&, 100 || 13.1 | 13.2 13.3 13.5 13.6 || 49.6 | 50.8 51.3 51.6 51.6 || 73.2 | 741 747 750 75.0
400 || 11.4 | 11.6 11.8 121 12.2 || 46.1 | 48.0 483 483 483 | 70.2 | 71.8 722 723 723
800 || 11.0 | 11.3 11.7 11.9 11.9 || 45.2 | 47.2 474 474 474 | 69.6 | 71.5 717 717 T71.7
&y 100 || 12.3 | 124 12,5 12,7 129 || 48.1 | 49.3 499 50.1 50.1 || 724 | 73.2 738 741 741
400 || 11.4 | 11.6 11.9 122 123 || 46.0 | 47.8 48.2 482 483 | 69.9 | 71.5 72.0 72.0 720
800 || 11.1 | 11.4 11.8 12.0 12.1 || 45.0 | 46.9 471 47.1 47.1 |/ 694 | 71.3 716 71.6 71.6

Nominal level: 0.10

apg = (73, 1)/ apg = (2,2)/ ap = (3,4)/
b1 bz by b2 b1 b2
K K K
dist. n 0.25 0.50 1.0 2.0 0.25 050 1.0 2.0 0.25 050 1.0 2.0

I3 100 || 21.2 | 21.5 21.6 22.0 224 || 58.8 | 60.4 61.1 61.5 61.5 || 80.7 | 81.6 822 825 825
400 || 19.2 | 19.6 20.2 21.0 21.2 || 56.0 | 58.2 58.6 58.7 587 || 782 | 79.9 80.3 80.4 80.4
800 || 18.3 | 189 19.7 20.2 20.2 || 55.8 | 58.1 58.5 58.5 585 || 77.8 | 79.8 80.1 80.1 80.2
&, 100 || 21.8 | 22.0 22.1 22,5 23.0 | 59.6 | 61.1 61.8 62.1 622 || 81.0 | 81.9 82.5 829 829
400 || 19.1 | 19.5 20.1 20.7 21.0 || 56.8 | 59.0 59.5 59.6 59.6 || 78.6 | 80.4 80.8 80.8 80.9
800 || 18.9 | 19.5 20.2 20.7 20.8 || 56.0 | 58.4 58.7 58.8 588 || 780 | 79.9 80.2 80.3 80.3
&s 100 || 20.6 | 20.8 209 21.3 21.8 || 58.5 | 60.1 60.8 61.1 61.2 || 80.2 | 81.2 81.7 82.0 821
400 || 19.1 | 19.5 20.1 20.8 21.0 || 56.6 | 8.7 59.2 59.3 59.3 || 78.3 | 80.1 80.5 80.6 80.6
800 || 18.7 | 19.2 20.0 20.5 20.6 || 55.7 | 58.2 585 58.6 58.6 || 77.8 | 79.5 79.9 799 79.9

Note: bootstrap tests are based on a standard fixed-regressor wild bootstrap (b1) and on the proposed

|"**. ERPs are estimated using

corrected wild bootstrap method (b2) of Section 4, using g* = g — |g
50,000 Monte Carlo replications and 999 bootstrap repetitions. The column “dist.” shows the distri-
butions of e;: §; ~ #dN(0,1), &, ~ ARCH(1) and &3 = V0.5v; + V0.5e4,+, where vy ~ idN(0,1) and

€x,¢ 1s the error term of the predictive variable y, ;.



TABLE S4: Empirical rejection probabilities (ERPs) of bootstrap tests under local alter-
natives.

Nominal level: 0.05

ag = (73, 1)/ ag = (2,2)/ ap = (3,4)/
b1 bo b1 b2 by ba
K K K
dist. n 0.05 0.10 0.20 0.40 0.05 0.10 0.20 0.40 0.05 0.10 0.20 0.40

I3 100 || 12.8 | 13.0 13.2 13.6 13.7 || 48.4 | 49.6 50.1 504 50.4 || 73.0 | 74.0 745 747 747
400 || 11.4 | 11.6 12.0 122 123 || 45.4 | 470 474 476 476 || 70.0 | 71.4 719 720 720
800 || 10.9 | 11.1 11.5 11.7 11.8 || 44.8 | 46.5 47.0 47.1 472 | 69.3 | 70.8 71.3 714 714
&, 100 || 13.1 | 13.3 13,5 139 14.0 || 49.6 | 50.8 51.3 51.6 51.6 || 73.2 | 742 747 750 75.0
400 || 11.4 | 11.6 119 121 12.2 || 46.1 | 47.7 48.1 483 483 | 70.2 | 71.6 721 723 723
800 || 11.0 | 11.3 11.7 11.8 11.9 || 45.2 | 46.9 473 474 474 | 696 | 71.2 716 717 T71.7
&y 100 || 12.3 | 124 128 13.2 133 || 48.1 | 49.3 499 50.1 50.2 || 724 | 73.4 739 741 742
400 || 11.4 | 11.7 12.0 122 123 || 46.0 | 47.6 48.0 482 483 | 69.9 | 714 71.8 720 720
800 || 11.1 | 11.4 11.8 12.0 12.1 || 45.0 | 46.5 470 47.1 472 | 694 | 71.0 715 71.6 71.6

Nominal level: 0.10

apg = (73, 1)/ apg = (2,2)/ ap = (3,4)/
b1 bz by b2 b1 b2
K K K
dist. n 0.05 0.10 0.20 0.40 0.05 0.10 0.20 0.40 0.05 0.10 0.20 0.40

I3 100 || 21.2 | 21.5 219 227 23.0 || 58.8 | 60.2 60.9 61.4 61.5 || 80.7 | 81.6 821 824 825
400 || 19.2 | 19.6 20.3 21.0 21.2 || 56.0 | 57.7 58.3 58.6 587 || 782 | 79.6 80.1 80.4 80.4
800 || 18.3 | 18.8 19.6 20.1 20.2 || 55.8 | 57.7 582 585 585 || 77.8 | 794 79.9 80.1 80.1
&, 100 || 21.8 | 22.0 22.5 23.3 23.7 | 59.6 | 61.0 61.6 62.1 622 || 81.0 | 81.9 82.5 829 829
400 || 19.1 | 19.5 20.1 20.8 21.0 || 56.8 | 58.5 59.2 59.5 59.6 || 78.6 | 80.0 80.6 80.8 80.8
800 || 18.9 | 19.4 20.1 20.7 20.8 || 56.0 | 57.9 585 58.7 588 || 780 | 79.5 80.1 80.3 80.3
&s 100 || 20.6 | 20.8 21.3 222 226 || 585 | 59.9 60.6 61.1 61.2 || 80.2 | 81.1 81.7 82.0 821
400 || 19.1 | 19.5 20.2 20.8 21.0 || 56.6 | 58.3 58.9 59.2 593 || 783 | 79.7 80.3 80.5 80.6
800 || 18.7 | 19.1 19.9 20.5 20.6 || 55.7 | 57.7 583 58.6 58.6 || 77.8 | 79.2 79.7 799 79.9

Note: bootstrap tests are based on a standard fixed-regressor wild bootstrap (b1) and on the proposed
corrected wild bootstrap method (b2) of Section 4, using g* = g — n™"|g|. ERPs are estimated using
50,000 Monte Carlo replications and 999 bootstrap repetitions. The column “dist.” shows the distri-
butions of &;: &, ~ #dN(0,1), £, ~ ARCH(1) and &5 = v0.5v; + v/0.5e4,¢, where v, ~ #idN(0,1) and

€x,¢ 1s the error term of the predictive variable y, ;.



