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low frequency contamination in har inference

S.A Results on Low Frequency Bias for the Sample Autocovari-

ance and the Periodogram

In Section S.A.1 we define the long memory SLS processes. In Section S.A.2 and S.A.3 we present results
on the low frequency bias for the sample autocovariance and the periodogram, respectively.

S.A.1 Long Memory Segmented Locally Stationary Processes

Define the backward difference operator ∆Vt = ∆1Vt = Vt − Vt−1 and ∆lVt recursively. Long memory
features can be expressed as a “pole” in the spectral density at frequency zero. That is, for a stationary
process, long memory implies that f (ω) ∼ ω−2ϑ as ω → 0 where ϑ ∈ (0, 1/2) is the long memory
parameter. In what follows, l is some non-negative integer.

Definition S.1. A sequence of stochastic processes {Vt,T } is called long memory segmented locally station-
ary with m0 + 1 regimes, transfer function A0 and trend µ· if there exists a representation

∆lVt = µj (t/T ) +
� π

−π
exp (iωt)A0

j,t,T (ω) dξ (ω) ,
(
t = T 0

j−1 + 1, . . . , T 0
j

)
, (S.1)

for j = 1, . . . , m0 + 1, where by convention T 0
0 = 0 and T 0

m0+1 = T , (i) and (iii) of Definition 1 hold, and
(ii) of Definition 1 is replaced by

(ii) There exist two constants L2 > 0 and D < 1/2 (which depend on j) and a piecewise continuous
function A : [0, 1] × R → C such that, for each j = 1, . . . , m0 + 1, there exists a 2π-periodic function
Aj : (λ0

j−1, λ
0
j ] × R → C with Aj (u, −ω) = Aj (u, ω),

A (u, ω) = Aj (u, ω) for λ0
j−1 < u ≤ λ0

j , (S.2)

sup
1≤j≤m0+1

sup
T 0

j−1<t≤T 0
j , ω

∣∣∣A0
j,t,T (ω) −Aj (t/T, ω)

∣∣∣ ≤ L2T
−1 |ω|−D , (S.3)

and

sup
0≤v≤u≤1, u ̸=λ0

j (j=1,..., m0+1,), ω

|A (u, ω) −A (v, ω)| ≤ L2 |u− v| |ω|−D . (S.4)

The spectral density of {Vt,T } is given by fj (u, ω) = |1−exp (−iω) |−2l|Aj (u, ω) |−2 for j = 1, . . . , m0 +1.
We say that the process {Vt,T } has local memory parameter ϑ (u) ∈ (−∞, l + 1/2) at time u ∈ [0, 1] if it
satisfies (S.1)-(S.4), and its generalized spectral density fj (u, ω) (j = 1, . . . , m0 +1) satisfies the following
condition,

fj (u, ω) =
∣∣∣1 − e−iω

∣∣∣−2ϑj(u)
f∗

j (u, ω) , (S.5)

with f∗
j (u, ω) > 0 and ∣∣∣f∗

j (u, ω) − f∗
j (u, 0)

∣∣∣ ≤ L4f
∗
j (u, ω) |ω|ν , ω ∈ [−π, π] , (S.6)
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where L4 > 0 and ν ∈ (0, 2].

Definition S.1 extends Definition 1 and Assumption 1 by requiring the bound on the smoothness
of A (·, ω) to depend also on |ω|−D thereby allowing a singularity at ω = 0. Casini (2023) showed that
fj (u, ω) = |Aj (u, ω)|2 for j = 1, . . . , m0 +1. Using similar arguments, we obtain the form fj (u, ω) given
in (S.5). See Roueff and von Sachs (2011) for a definition of long memory local stationarity. Definition
S.1 extends their definition to allow for m0 discontinuities. We have assumed that breaks in the long
memory parameter occur at the same locations as the breaks in the spectrum. This can be relaxed but
would provide no added value in this paper.

Example S.1. A time-varying AR fractionally integrated moving average (p, ϑ, q) process with m0 struc-
tural breaks satisfies Definition S.1 with ϑj : [0, 1] → (−∞, l + 1/2), σj : [0, 1] → R+, ϕj = [ϕ1, . . . , ϕp]′ :
[0, 1] → Rq and θj = [θ1, . . . , θq]′ : [0, 1] → Rp are left-Lipschitz functions for each j = 1, . . . , m0 + 1
such that 1 −

∑p
k=1 ϕj,k (u) zk does not vanish for all u ∈ [0, 1] and z ∈ C such that |z| ≤ 1. Using the

latter condition, the local transfer function Aj (u; ·) defines for each j a causal autoregressive fractionally
integrated moving average (ARFIMA(p, ϑ (u) − l, q) process whose spectral density satisfies the condi-
tions (S.5) and (S.6) with ν = 2. Using Lemma 3 in Roueff and von Sachs (2011), condition (S.4) holds
with D > sup1≤j≤m0+1 supλ0

j−1<u≤λ0
j , ω ϑj (u) − l.

Definition S.1 implies that ρV (u, k) ≜ Corr(V⌊T u⌋, V⌊T u⌋+k) ∼ Ck2ϑj(u)−1 for λ0
j−1 < u < λ0

j and
large k where C > 0. This means that the rescaled time-u autocorrelation function (ACF(u)) has a power
law decay which implies

∑∞
k=−∞ |ρV (u, k)| = ∞ if ϑj (u) ∈ (0, 1/2).

S.A.2 The Sample Autocovariance Under Nonstationarity

We now establish some asymptotic properties of the sample autocovariance under nonstationarity. We
consider the case k ≥ 0 only; the case k < 0 is similar.

Theorem S.1. Assume that {Vt,T } satisfies Definition 1. Under Assumptions 1-2,

Γ̂ (k) ≥
� 1

0
c (u, k) du+ d∗ + oa.s. (1) , (S.7)

where d∗ = 2−1∑
j1 ̸=j2 rj1rj2(µj2 − µj1)2. Further, as k → ∞, Γ̂ (k) ≥ d∗ P-a.s. If in addition it holds

that µj (t/T ) = µj for j = 1, . . . , m0 + 1, then

Γ̂ (k) =
� 1

0
c (u, k) du+ d∗

Sta + oa.s. (1) ,

where d∗
Sta = 2−1∑

j1 ̸=j2 rj1rj2 (µj2 − µj1)2 and, as k → ∞, Γ̂ (k) = d∗
Sta + oa.s. (1).

S.A.3 The Periodogram Under Nonstationarity

Classical LRV estimators are weighted averages of periodogram ordinates around the zero frequency.
Thus, it is useful to study the behavior of the periodogram as the frequency ω approaches zero. We now
establish some properties of the asymptotic bias of the periodogram under nonstationarity. We consider
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the Fourier frequencies ωl = 2πl/T ∈ (−π, π) for an integer l ̸= 0 (mod T ) and exclude ωl = 0 for
mathematical convenience.

Assumption S.1. (i) For each j = 1, . . . , m0 + 1 there exists a Bj ∈ R such that∣∣∣∣∣∣∣
m0+1∑
j=1

⌊T λ0
j⌋∑

t=⌊T λ0
j−1⌋+1

µj (t/T ) exp (−iωlt)

∣∣∣∣∣∣∣
2

≥

∣∣∣∣∣∣∣
m0+1∑
j=1

Bj

⌊T λ0
j⌋∑

t=⌊T λ0
j−1⌋+1

exp (−iωlt)

∣∣∣∣∣∣∣
2

, ωl ∈ (−π, π) ,

where Bj1 ̸= Bj2 for j1 ̸= j2; (ii) |Γ (u, k)| = Cu,kk
−m for all u ∈ [0, 1] and all k ≥ C3T

κ for some
C3 < ∞ , Cu,k < ∞ (which depends on u and k), 0 < κ < 1/2, and m > 2.

Part (i) is easily satisfied (e.g., the special case with µj (t/T ) = µj). Part (ii) is satisfied if {Vt} is
strong mixing with mixing parameters of size −2ν/ (ν − 1/2) for some ν > 1 such that supt≥1 E |Vt|4ν < ∞.
This is less stringent than the size condition −3ν/ (ν − 1) for some ν > 1 sufficient for Assumption 2-(i).

Theorem S.2. Assume that {Vt,T } satisfies Definition 1. Under Assumptions 1-2 and S.1,

E (IT (ωl)) = 2π
� 1

0
f (u, ωl) du (S.8)

+ 1
Tω2

l

∣∣∣∣∣∣
B1 −Bm0+1 −

m0∑
j=1

(Bj −Bj+1) exp
(
−2πilλ0

l

)∣∣∣∣∣∣
2

+ o (1) .

Under Assumptions 1-2 and S.1-(ii), if µj (t/T ) = µj for each j = 1, . . . , m0 + 1, then

E (IT (ωl)) = 2π
� 1

0
f (u, ωl) du

+ 1
Tω2

l

∣∣∣∣∣∣
µj − µm0+1 −

m0∑
j=1

(µj − µj+1) exp
(
−2πilλ0

j

)∣∣∣∣∣∣
2

+ o (1) .

In either case, if Tω2
l → 0 as T → ∞ then E (IT (ωl)) → ∞ for many values in {ωl} as ωl → 0.

The theorem suggests that for small frequencies ωl close to 0, the periodogram attains very large
values. This follows because the first term of (S.8) is bounded for all ωj . Since B1, . . . , Bm0+1 are fixed,
the order of the second term of (S.8) is O((Tω2

j )−1). Note that as ωl → 0 there are some values l for

which the corresponding term involving |·|2 on the right-hand side of (S.8) is equal to zero. In such cases,
E (IT (ωl)) ≥ 2π

� 1
0 f (u, ωl) du > 0. For other values of {l} as ωl → 0, the second term of (S.8) diverges

to infinity. Thus, considering the behavior of {E (IT (ωl))} as ωl → 0, it generally takes unbounded values
except for some ωl for which E (IT (ωl)) is bounded below by 2π

� 1
0 f (u, ωl) du > 0. A SLS process with

long memory has an unbounded local spectral density f (u, ω) as ω → 0 for some u ∈ [0, 1]. Since f (·, ·)
cannot be negative, it follows that

� 1
0 f (u, ω) du is also unbounded as ω → 0. Theorem S.2 suggests that

nonstationarity consisting of time-varying first moment results in a periodogram sharing features of a long
memory series.
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S.B Mathematical Appendix

S.B.1 Proofs of the Results in Sections 3 and S.A

S.B.1.1 Proof of Theorem S.1

Let V j = (Trj)−1∑⌊T λ0
j⌋

t=⌊T λ0
j−1⌋+1 Vt, µ2,j (u) = E(V⌊T u⌋)2 for T 0

j−1 ≤ Tu ≤ T 0
j and µ2,j = r−1

j

� λ0
j

λ0
j−1

µ2,j (u) du.
By Assumption 1-2-(i), the latter implying ergodicity, it follows for fixed k ≥ 0 that

Γ̂ (k) =
m0+1∑
j=1

rj
1
Trj

⌊T λ0
j⌋∑

t=⌊T λ0
j−1⌋+1+k

VtVt−k −

m0+1∑
j=1

rj
1
Trj

⌊T λ0
j⌋∑

t=⌊T λ0
j−1⌋+1

Vt


2

=
m0+1∑
j=1

� λ0
j

λ0
j−1

c (u, k) du+
m0+1∑
j=1

rj
1
Trj

⌊T λ0
j⌋∑

t=⌊T λ0
j−1⌋+1+k

E (Vt)E (Vt−k)

−

m0+1∑
j=1

rj
1
Trj

⌊T λ0
j⌋∑

t=⌊T λ0
j−1⌋+1

Vt


2

+O
(
T−1

)
+ oa.s. (1)

=
� 1

0
c (u, k) du+

m0+1∑
j=1

rj
1
Trj

⌊T λ0
j⌋∑

t=⌊T λ0
j−1⌋+1+k

E (Vt)E (Vt−k)

−

m0+1∑
j=1

rjV j

2

+O
(
T−1

)
+ oa.s. (1)

=
� 1

0
c (u, k) du+

m0+1∑
j=1

rj
1
Trj

⌊T λ0
j⌋∑

t=⌊T λ0
j−1⌋+1+k

µ2 (t/T ) −

m0+1∑
j=1

rjV j

2

+O
(
T−1

)
+ oa.s. (1) ,

where we have used E (Vt−k) − E (Vt) = O (k/T ) by local stationarity in the third equality. Note that by
ergodicity and an approximation to Riemann sums, we have

m0+1∑
j=1

rjV j −
m0+1∑
j=1

rjµj =
m0+1∑
j=1

rjV j −
m0+1∑
j=1

rjE
(
V j

)
+

m0+1∑
j=1

rjE
(
V j

)
−

m0+1∑
j=1

rjµj

= oa.s. (1) +O
(
T−1

)
. (S.9)

Basic manipulations show that∑
j2 ̸=j1

rj1rj2

(
µj2 − µj1

)2

=
∑

j2 ̸=j1

rj1rj2

(
µ2

j2 + µ2
j1 − 2µj2µj1

)
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=
∑

1≤j2≤m0+1
rj2µ

2
j2 (1 − rj2) +

∑
1≤j1≤m0+1

rj1µ
2
j1 (1 − rj1) − 2

∑
j1 ̸=j2

rj1rj2µj2µj1

= 2
∑

1≤j≤m0+1
rjµ

2
j − 2

∑
1≤j≤m0+1

r2
jµ

2
j − 2

∑
j1 ̸=j2

rj1rj2µj2µj1 . (S.10)

Note that

(Trj − k)
⌊T λ0

j⌋∑
t=⌊T λ0

j−1⌋+1+k

µ2 (t/T ) ≥

 ⌊T λ0
j⌋∑

t=⌊T λ0
j−1⌋+1+k

µ (t/T )


2

. (S.11)

Thus,

m0+1∑
j=1

rj
1
Trj

⌊T λ0
j⌋∑

t=⌊T λ0
j−1⌋+1+k

µ2 (t/T ) =
m0+1∑
j=1

rj
1

Trj (Trj − k) (Trj − k)
⌊T λ0

j⌋∑
t=⌊T λ0

j−1⌋+1+k

µ2 (t/T )

≥
m0+1∑
j=1

rj
1

Trj (Trj − k)

 ⌊T λ0
j⌋∑

t=⌊T λ0
j−1⌋+1+k

µ (t/T )


2

=
∑

1≤j≤m0+1
rjµ

2
j + o (1) . (S.12)

Using (S.9)-(S.12) we have,

Γ̂ (k) =
� 1

0
c (u, k) du+

m0+1∑
j=1

rj
1
Trj

⌊T λ0
j⌋∑

t=⌊T λ0
j−1⌋+1+k

µ2 (t/T ) −

m0+1∑
j=1

rjV j

2

+ oa.s. (1)

≥
� 1

0
c (u, k) du+

m0+1∑
j=1

rjµ2,j −

m0+1∑
j=1

rjV j

2

+O
(
T−1

)
+ oa.s. (1)

=
� 1

0
c (u, k) du+ 2−1 ∑

j1 ̸=j2

rj1rj2

(
µj2 − µj1

)2
+O

(
T−1

)
+ oa.s. (1) . (S.13)

The claim that Γ̂ (k) ≥ d P-a.s. as k → ∞ follows from Assumption 2-(i) since this implies that c (u, k) → 0
as k → ∞ and from the fact that the second term on the right-hand side of (S.13) does not depend on k.
If in addition it holds that µj (t/T ) = µj for j = 1, . . . , m0 + 1, then (S.11) holds with equality and the
result follows as a special case of (S.13). □
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S.B.1.2 Proof of Theorem S.2

Lemma S.1. Assume that {Vt,T } satisfies Definition 1. Under Assumptions 1-2 and S.1-(ii),

∑
j1 ̸=j2

1
T

⌊
T λ0

j1

⌋∑
t=
⌊

T λ0
j1−1

⌋
+1

⌊
T λ0

j2

⌋∑
s=
⌊

T λ0
j2−1

⌋
+1

E ((Vt − µ (t/T )) (Vs − µ (s/T ))) exp (−iωl (t− s)) = o (1) .

Proof. Let rj1,j2 = max {rj1 , rj2} and rj1,j2 = min {rj1 , rj2} . We consider the case of adjacent regimes
(i.e., j2 = j1 + 1) which also provides an upper bound for non-adjacent regimes due to the short memory
property. For any k = s− t = 1, . . . ,

⌊
Trj1,j2

⌋
there are k pairs in the above sum. The double sum above

(over t and s) can be split into

T−1
⌊CT κ⌋∑

k=1

∣∣∣Γ{1:⌊CT κ⌋} (·, k)
∣∣∣+ T−1

⌊hT ⌋∑
k=⌊CT κ⌋+1

∣∣∣Γ{⌊CT κ⌋+1:⌊hT ⌋} (·, k)
∣∣∣ (S.14)

+ T−1

⌊
T rj1,j2

⌋
−1∑

k=⌊hT ⌋+1

∣∣∣∣Γ{⌊hT ⌋+1:
⌊

T rj1,j2

⌋
−1
} (·, k)

∣∣∣∣+ T−1
⌊T rj1,j2⌋∑

k=
⌊

T rj1,j2

⌋
∣∣∣∣Γ{rj1,j2

:rj1,j2

} (·, k)
∣∣∣∣

where C > 0, 0 < h < 1 with ⌊hT ⌋ <
⌊
Trj1,j2

⌋
−1, and ΓS (·, k) is the sum of the autocovariances at lag k

computed at the time points corresponding to k ∈ S. Note that the term |exp (−iωl (±k))| can be bounded
by some constant. The sums run over only k > 0 because by symmetry Γu (k) = Γu−k/T (−k). Consider
the first sum in (S.14). This is of order O

(
T−1T 2κ

)
which goes to zero given κ < 1/2. The second sum is

also negligible using the following arguments. By Assumption S.1-(ii), |Γ (u, k)| = Cu,kk
−m with m > 2

and choosing C large enough yields that the second sum of (S.14) converges to zero. In the third sum, the
number of summands grows at rate O (T ) and for each lag k there are O (T ) autocovariances. However,
by Assumption S.1-(ii) each autocovariance is O (T−m) . Thus, the bound is O

(
T−1T 2−m

)
which goes to

zero as T → ∞. The difference between the arguments used for the third sum and fourth sums is that
now we do not have O (T ) autocovariances for each lag k. Thus, the bound for the fourth sum cannot be
greater than the bound for the third sum. Thus, the fourth sum also converges to zero. □

Proof of Theorem S.2. We have,

IT (ωl) =

∣∣∣∣∣∣∣
1√
T

m0+1∑
j=1

⌊T λ0
j⌋∑

t=⌊T λ0
j−1⌋+1

exp (−iωlt)Vt

∣∣∣∣∣∣∣
2

=

∣∣∣∣∣∣∣
1√
T

m0+1∑
j=1

⌊T λ0
j⌋∑

t=⌊T λ0
j−1⌋+1

(Xt − µ (t/T )) exp (−iωlt) + 1√
T

m0+1∑
j=1

⌊T λ0
j⌋∑

t=⌊T λ0
j−1⌋+1

µ (t/T ) exp (−iωlt)

∣∣∣∣∣∣∣
2

.
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From Assumption S.1,

∣∣∣∣∣
m0+1∑
j=1

⌊T λ0
j⌋∑

t=⌊T λ0
j−1⌋+1

µ (t/T ) exp (−iωlt)
∣∣∣∣∣
2

≥

∣∣∣∣∣∣∣
m0+1∑
j=1

Bj

⌊T λ0
j⌋∑

t=⌊T λ0
j−1⌋+1

exp (−iωlt)

∣∣∣∣∣∣∣
2

=

∣∣∣∣∣∣∣
m0+1∑
j=1

Bj exp
(
−iωl

(⌊
Tλ0

j−1

⌋
+ 1

)) ⌊T λ0
j⌋−⌊T λ0

j−1⌋−1∑
t=0

exp (−iωlt)

∣∣∣∣∣∣∣
2

=

∣∣∣∣∣∣ exp (−iωl)
1 − exp (−iωl)

m0+1∑
j=1

Bj exp
(
−iωl

(⌊
Tλ0

j−1

⌋)) (
1 − exp

(
−iωl

(⌊
Tλ0

j

⌋
−
⌊
Tλ0

j−1

⌋)))∣∣∣∣∣∣
2

=

∣∣∣∣∣∣ exp (−iωl)
1 − exp (−iωl)

m0+1∑
j=1

Bj

(
exp

(
−iωl

(⌊
Tλ0

j−1

⌋))
− exp

(
−iωl

⌊
Tλ0

j

⌋))∣∣∣∣∣∣
2

,

using the formula for the first n-th terms of a geometric series
∑n−1

k=0 ar
k = a

∑n−1
k=0 r

k = a (1 − rn) / (1 − r) .
Then, using summation by parts,

exp (−iωj)
1 − exp (−iωj)

m0+1∑
j=1

Bj

(
exp

(
−iωl

(⌊
Tλ0

j−1

⌋))
− exp

(
−iωl

⌊
Tλ0

j

⌋))

= exp (−iωj)
1 − exp (−iωj)

B1 −Bm0+1 −
m0∑
j=1

(Bj −Bj+1) exp
(
−iωl

⌊
Tλ0

j

⌋) .
By Lemma S.1, it is sufficient to consider the cross-products within each regime j,

E (IT (ωl)) ≥
m0+1∑
j=1

rj
1
Trj

E
⌊T λ0

j⌋∑
t=⌊T λ0

j−1⌋+1

⌊T λ0
j⌋∑

s=⌊T λ0
j−1⌋+1

(Vt − µ (t/T )) (Vs − µ (s/T )) exp (−iωl (t− s))

+
∑∑
j1 ̸=j2

1
T
E

⌊
T λ0

j1

⌋∑
t=
⌊

T λ0
j1−1

⌋
+1

⌊
T λ0

j2

⌋∑
s=
⌊

T λ0
j2−1

⌋
+1

(Vt − µ (t/T )) (Vs − µ (s/T )) exp (−iωl (t− s))

+

∣∣∣∣∣∣ 1√
T

exp (−iωl)
1 − exp (−iωl)

m0+1∑
j=1

Bj

(
exp

(
−iωl

(⌊
Tλ0

j−1

⌋))
− exp

(
−iωl

⌊
Tλ0

j

⌋))∣∣∣∣∣∣
2

+ o (1)

=
m0+1∑
j=1

E 1
T

⌊T λ0
j⌋∑

t=⌊T λ0
j−1⌋+1

(Vt − µ (t/T ))2 + 2
Trj

⌊T rj⌋−1∑
k=1

⌊T λ0
j⌋∑

t=⌊T λ0
j−1⌋+k+1

Γt/T (k) exp (−iωlk)
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+

∣∣∣∣∣∣ 1√
T

exp (−iωl)
1 − exp (−iωl)

m0+1∑
j=1

Bj

(
exp

(
−iωl

(⌊
Tλ0

j−1

⌋))
− exp

(
−iωl

⌊
Tλ0

j

⌋))∣∣∣∣∣∣
2

+ o (1) .

Next, using the definition of f (u, ωl) , e−2iωl = 1 by Euler’s formula and letting ωl → 0 we have,

E (IT (ωl)) ≥
m0+1∑
j=1

(� λ0
j

λ0
j−1

c (u, 0) du+ 2
∞∑

k=1

� λ0
j

λ0
j−1

c (u, k) exp (−iωlk) du
)

+ 1
T

1
|1 − exp (−iωl)|2

∣∣∣∣∣∣
B1 −Bm0+1 − (1 + o (1))

m0∑
j=1

(Bj −Bj+1) exp
(
−2πilλ0

j

)∣∣∣∣∣∣
2

+ o (1)

= 2π
m0+1∑
j=1

� λ0
j

λ0
j−1

f (u, ωl) du

+ 1
T

1
|1 − exp (−iωl)|2

∣∣∣∣∣∣
B1 −Bm0+1 − (1 + o (1))

m0∑
j=1

(Bj −Bj+1) exp
(
−2πilλ0

j

)∣∣∣∣∣∣
2

+ o (1)

= 2π
� 1

0
f (u, ωl) du+ 1

Tω2
l

∣∣∣∣∣∣
B1 −Bm0+1 −

m0∑
j=1

(Bj −Bj+1) exp
(
−2πilλ0

j

)∣∣∣∣∣∣
2

+ o (1) .

(S.15)

By Assumption 1-(ii), the first term of (S.15) is bounded for all frequencies ωj . Since B1, . . . , Bm0+1 are
fixed, if Tω2

l → 0 then the order of the second term of (S.15) is O((Tω2
l )−1). Note that as ωl → 0 there are

some values of l for which the corresponding term involving |·|2 on the right-hand side of (S.15) is equal to
zero [see the argument in Mikosch and Stărica (2004)]. In such a case, E (IT (ωl)) ≥ 2π

� 1
0 f (u, ωl) du > 0.

For the other values of {l} as ωl → 0, the second term of (S.15) diverges to infinity. The outcome is that
there are frequencies close to ωl = 0 for which E (IT (ωl)) → ∞. □

S.B.1.3 Proof of Theorem 1

We consider the case k ≥ 0. The case k < 0 follows similarly. Consider any u ∈ (0, 1) such that
T 0

j /∈ S (u, k, n2,T ) for all j = 1, . . . , m0. Theorem S.B.3 in Casini (2023) showed that

E [ĉT (u, k)] = c (u0, k) + 1
2 (n2,T /T )2

[
∂2

∂2u
c (u, k)

]
+ o

(
(n2,T /T )2

)
+O (1/n2,T ) . (S.16)

Since n2,T → ∞ and n2,T /T → 0, E [ĉT (u, k)] = c (u0, k) + o (1) . The same aforementioned theorem
shows that n2,T Var [ĉT (u, k)] = OP (1). This combined with (S.16) yields part (i) of the theorem.

Next, we consider case (ii-a) with nj,L (u, k, n2,T ) /n2,T → γ ∈ (0, 1). We have,

ĉT (u, k) = n−1
2,T

n2,T∑
s=0

V⌊T u⌋+k/2−n2,T /2+s+1V⌊T u⌋+k/2−n2,T /2+s+1−k −
(
n−1

2,T

n2,T∑
s=0

V⌊T u⌋−n2,T /2+s+1

)2
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= n−1
2,T

T 0
j −(⌊T u⌋+k/2−n2,T /2+1)∑

s=0
V⌊T u⌋+k/2−n2,T /2+s+1V⌊T u⌋+k/2−n2,T /2+s+1−k

+ n−1
2,T

n2,T∑
s=T 0

j −(⌊T u⌋+k/2−n2,T /2)
V⌊T u⌋+k/2−n2,T /2+s+1V⌊T u⌋+k/2−n2,T /2+s+1−k

−
(
n−1

2,T

T 0
j −(⌊T u⌋+k/2−n2,T /2+1)∑

s=0
V⌊T u⌋+k/2−n2,T /2+s+1

+ n−1
2,T

n2,T∑
s=T 0

j −(⌊T u⌋+k/2−n2,T /2)
V⌊T u⌋−n2,T /2+s+1

)2

= n−1
2,T

T 0
j −(⌊T u⌋+k/2−n2,T /2+1)∑

s=0

(
V⌊T u⌋+k/2−n2,T /2+s+1V⌊T u⌋+k/2−n2,T /2+s+1−k

− E
(
V⌊T u⌋+k/2−n2,T /2+s+1

)
E
(
V⌊T u⌋+k/2−n2,T /2+s+1−k

))

+ n−1
2,T

n2,T∑
s=T 0

j −(⌊T u⌋+k/2−n2,T /2)

(
V⌊T u⌋+k/2−n2,T /2+s+1V⌊T u⌋+k/2−n2,T /2+s+1−k

− E
(
V⌊T u⌋+k/2−n2,T /2+s+1

)
E
(
V⌊T u⌋+k/2−n2,T /2+s+1−k

))

+ n−1
2,T

T 0
j −(⌊T u⌋+k/2−n2,T /2+1)∑

s=0
E
(
V⌊T u⌋+k/2−n2,T /2+s+1

)
E
(
V⌊T u⌋+k/2−n2,T /2+s+1−k

)

+ n−1
2,T

n2,T∑
s=T 0

j −(⌊T u⌋+k/2−n2,T /2)
E
(
V⌊T u⌋+k/2−n2,T /2+s+1

)
E
(
V⌊T u⌋+k/2−n2,T /2+s+1−k

)

−
(
n−1

2,T

T 0
j −(⌊T u⌋+k/2−n2,T /2+1)∑

s=0
V⌊T u⌋−n2,T /2+s+1 (S.17)

+ n−1
2,T

n2,T∑
s=T 0

j −(⌊T u⌋+k/2−n2,T /2)
V⌊T u⌋−n2,T /2+s+1

)2
+ oP (1)

≥ γc
(
λ0

j , k
)

+ (1 − γ) c (u, k) + γµj

(
λ0

j

)2
+ (1 − γ)µj+1 (u)2

−
(
γµj

(
λ0

j

)
+ (1 − γ)µj+1 (u)

)2
+ oP (1)

= γc
(
λ0

j , k
)

+ (1 − γ) c (u, k) + γ (1 − γ)
(
µj

(
λ0

j

)
− µj+1 (u)

)2
+ oP (1) . (S.18)

Consider the case (ii-b) with nj,L (u, k, n2,T ) /n2,T → 0. The other sub-case follows by symmetry. Eq.
(S.17) continues to hold. The first term, third term and the first summation of the last term on the
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right-hand side of (S.17) are negligible. Thus, using ergodicity, implied by Assumptions 2-2-(i),

ĉT (u, k) = c (u, k) + n−1
2,T

n2,T∑
s=T 0

j −(⌊T u⌋+k/2−n2,T /2)
E
(
V⌊T u⌋+k/2−n2,T /2+s+1

)
E
(
V⌊T u⌋+k/2−n2,T /2+s+1

)
− µj+1 (u)2 + oP (1)

= c (u, k) + µj+1 (u)2 − µj+1 (u)2 + oP (1) = c (u, k) + oP (1) ,

where we have used the smoothness of E(Vt) implied by local stationarity. The second claim of the lemma
follows from Assumption 2-(i) since this implies that supu∈[0, 1] c (u, k) → 0 as k → ∞ and the fact that

the third term on the right-hand side of (S.18) does not depend on k. Thus, Γ̂DK (k) ≥ d∗
T + oP (1) where

d∗
T = (n2,T /T ) γ (1 − γ) (µj

(
λ0

j

)
−µj+1 (u))2 > 0 and d∗

T → 0 since n2,T /T → 0. The factor n2,T /T in d∗
T

follows because the neighborhood (λ0
j − n2,T /T, λ

0
j + n2,T /T ) includes O(n2,T /nT ) blocks which are then

averaged out. □

S.B.1.4 Proof of Theorem 2

Consider first any u ∈ (0, 1) such that T 0
j /∈ S (u, 0, nT ) for all j = 1, . . . , m0. Theorem 3.3 in Casini and

Perron (2024) shows that

E (IL,T (u, ωl)) =
∣∣∣∣∣ 1
√
nT

nT −1∑
s=0

V⌊T u⌋−nT /2+s+1,T exp (−iωls)
∣∣∣∣∣
2

= f (u, ωl) + 1
6

(
nT

T

)2 ∂2

∂u2 f (u, ωl) + o

((
nT

T

)2
)

+O

( log (nT )
nT

)
. (S.19)

By Assumption 1 the absolute value of the first term on the right-hand side is bounded for all frequencies
ωl. By Assumption 3-(iii)

∣∣(∂2/∂u2) f (u, ωl)
∣∣ is bounded and, since nT /T → 0, the second term converges

to zero. Similarly, the third and fourth terms are negligible. Thus, E (IL,T (u, ωl)) is bounded below by
f (u, ωl) > 0 as ωl → 0 which establishes part (i). Now we consider part (ii). We begin with case (a). We
only focus on the sub-case nj,L (u, 0, nT ) /nT → γ with γ ∈ (0, 1). We have

IL,T (ωl) =∣∣∣∣∣ 1
√
nT

T 0
j −(⌊T u⌋−nT /2+1)∑

s=0
V⌊T u⌋−nT /2+s+1,T exp (−iωls) +

nT −1∑
s=T 0

j −(⌊T u⌋−nT /2)
V⌊T u⌋−nT /2+s+1,T exp (−iωls)

∣∣∣∣∣
2

= 1
nT

∣∣∣∣
T 0

j −(⌊T u⌋−nT /2+1)∑
s=0

(
V⌊T u⌋−nT /2+s+1,T − µ ((⌊Tu⌋ − nT /2 + s+ 1) /T )

)
exp (−iωls)

+
nT −1∑

s=T 0
j −(⌊T u⌋−nT /2)

(
V⌊T u⌋−nT /2+s+1,T − µ ((⌊Tu⌋ − nT /2 + s+ 1) /T )

)
exp (−iωls)

+
nT −1∑
s=0

µ ((⌊Tu⌋ − nT /2 + s+ 1) /T ) exp (−iωls)
∣∣∣∣2. (S.20)
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Using Assumption 3, we have∣∣∣∣∣
nT −1∑
s=0

µ ((⌊Tu⌋ − nT /2 + s+ 1) /T ) exp (−iωls)
∣∣∣∣∣
2

≥

∣∣∣∣∣∣∣Bj

T 0
j −(⌊T u⌋−nT /2+1)∑

s=0
exp (−iωls) +Bj+1

nT −1∑
s=T 0

j −(⌊T u⌋−nT /2)
exp (−iωls)

∣∣∣∣∣∣∣
2

. (S.21)

Note that

Bj

T 0
j −(⌊T u⌋−nT /2+1)∑

s=0
exp (−iωls) +Bj+1

nT −1∑
s=T 0

j −(⌊T u⌋−nT /2)
exp (−iωls)

= Bj

T 0
j −(⌊T u⌋−nT /2+1)∑

s=0
exp (−iωls) (S.22)

+Bj+1 exp
(
−iωl

(
T 0

j − (⌊Tu⌋ − nT /2)
)) nT −1−(T 0

j −(⌊T u⌋−nT /2))∑
s=0

exp (−iωls) .

Focusing on the second term on the right-hand side above,

n−1
T

∣∣∣∣∣∣∣Bj+1

nT −1∑
s=T 0

j −(⌊T u⌋−nT /2)
exp (−iωls)

∣∣∣∣∣∣∣
2

= n−1
T

∣∣∣∣∣∣∣Bj+1 exp
(
−iωl

(
T 0

j − (⌊Tu⌋ − nT /2)
)) nT −1−(T 0

j −(⌊T u⌋−nT /2))∑
s=0

exp (−iωls)

∣∣∣∣∣∣∣
2

= n−1
T

∣∣∣∣∣∣Bj+1 exp
(
−iωl

(
T 0

j − (⌊Tu⌋ − nT /2)
)) 1 − exp

(
−iωl

(
nT −

(
T 0

j − (⌊Tu⌋ − nT /2)
)))

1 − exp (−iωl)

∣∣∣∣∣∣
2

= n−1
T

∣∣∣∣∣∣Bj+1
exp

(
−iωl

(
T 0

j − (⌊Tu⌋ − nT /2)
))

− exp (−iωlnT )
1 − exp (−iωl)

∣∣∣∣∣∣
2

. (S.23)

We show that the above equation diverges to infinity as ωl → 0 with nTω
2
l → 0. If nTωl → a ∈ (0, ∞)

then Re (exp (−iωlnT )) ̸= 1 and the order is determined by the denominator. As in the proof of Theorem
S.2, |1 − exp(−iωl)|2 = ω2

l . Since nTω
2
l → 0, the right-hand side above diverges. If nTωl → 0, we apply

L’Hôpital’s rule to obtain

n−1
T

∣∣∣∣∣∣Bj+1
−i
(
T 0

j − (⌊Tu⌋ − nT /2)
)

+ inT

i

∣∣∣∣∣∣
2
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= n−1
T B2

j+1

(
−
(
T 0

j − (⌊Tu⌋ − nT /2)
)2

+ n2
T −

(
T 0

j − (⌊Tu⌋ − nT /2)
)
nT

)
= O

(
n2

T /nT

)
= O (nT ) ,

which shows that the right-hand side of (S.23) diverges. A similar argument can be applied to the first
term on the right-hand side of (S.22) and to the product of the latter term and the complex conjugate of
the second term on the right-hand side of (S.22).

It remains to consider case (b) and the sub-case nj,L (u, 0, nT ) /nT → 0. The other sub-case follows
by symmetry. We have (S.20) and (S.21). Note that,∣∣∣∣∣ 1

√
nT

Bj+1

nT −1∑
s=T 0

j −(⌊T u⌋−nT /2)
exp (−iωls)

∣∣∣∣∣
2

=

∣∣∣∣∣∣∣
1

√
nT

Bj+1

nT −1∑
s=0

exp (−iωls) − 1
√
nT

Bj+1

T 0
j −(⌊T u⌋−nT /2)−1∑

s=0
exp (−iωls)

∣∣∣∣∣∣∣
2

=

∣∣∣∣∣∣∣−
1

√
nT

Bj+1

T 0
j −(⌊T u⌋−nT /2)−1∑

s=0
exp (−iωls)

∣∣∣∣∣∣∣
2

→ 0.

Thus, we have

E (ILT (ωl)) = 1
nT

∣∣∣∣∣
T 0

j −(⌊T u⌋−nT /2+1)∑
s=0

(
V⌊T u⌋−nT /2+s+1,T − µ ((⌊Tu⌋ − nT /2 + s+ 1) /T )

)
exp (−iωls)


+

nT −1∑
s=T 0

j −(⌊T u⌋−nT /2)

(
V⌊T u⌋−nT /2+s+1,T − µ ((⌊Tu⌋ − nT /2 + s+ 1) /T )

)
exp (−iωls)

∣∣∣∣∣
2

+ o (1) .

Note that the first sum above involves at most C < ∞ summands. So the first term is negligible. The
expectation of the product of the first term and the conjugate of the second term is negligible by using
arguments similar to the proof in Lemma S.1 with nT in place of T . Thus, the limit of E (IT (ωl)) is equal
to the right-hand side of (S.19) plus additional o (1) terms. □

S.B.2 Proofs of the Results in Section 4

We first introduce the multiple Fejér kernel as in Velasco and Robinson (2001),

Ψ(n)
T (x1, . . . , xn) = 1

(2π)n−1 T

T∑
t1···tn=1

exp

i
n∑

j=1
tjxj

 ,
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with xn = −
∑n−1

j=1 xj . Velasco and Robinson (2001) discussed the following properties. Ψ(n)
T (x1, . . . , xn)

is integrable in Πn−1 and integrates to one for all T . For δ > 0 and T ≥ 1, we have

�
Dc

∣∣∣Ψ(n)
T (x1, . . . , xn)

∣∣∣ dx1 . . . dxn−1 = O

(
logn−1 T

T sin δ/2

)
, (S.24)

where Dc is the complement in Πn−1 of the set D = {x ∈ Πn−1 : |xj | ≤ δ, j = 1, . . . , n − 1}. For
j = 1, . . . , n− 1,

�
Π

· · ·
�

Π
|xj ||Ψ(n)

T (x1, . . . , xn) |dx1 · · · dxn = O
(
T−1 logn−1 T

)
. (S.25)

Recall that the Dirichlet kernel is defined as DT (x) =
∑T

t=1 exp (itx). It satisfies the following two
relations,

|DT (x)| ≤ min
{
T, 2 |x|−1

}
;

�
Π

|DT (x)| dx = O (log T ) . (S.26)

Eq. (S.24)-(S.25) follow from∣∣∣Ψ(n)
T (x1, . . . , xn)

∣∣∣ ≤ 1
(2π)n−1 T

|DT (x1)| |DT (x2)| · · · |DT (xn)|dx1 · · · dxn. (S.27)

S.B.2.1 Preliminary Lemmas

Lemma S.2. (Bhattacharya and Rao, 1975, pp. 97-98, 113). Let Q1 and Q2 be probability measures on
R2 and B2 the class of all Borel subsets of R2. Let ϕ be a positive number. Then there exists a kernel
probability measure Gϕ such that

sup
B∈B2

|Q1 (B) − Q2 (B)| ≤ 2
3 ∥(Q1 − Q2) • Gϕ∥ + 4

3 sup
B∈B2

Q2
(
(∂B)2ϕ

)
,

where Gϕ satisfies

Gϕ (B (0, r)c) = O

((
ϕ

r

)3)
, (S.28)

and its Fourier transform Ĝϕ satisfies

Ĝϕ (t) = 0 for ∥t∥ ≥ 8 × 24/3/π1/3ϕ. (S.29)

Here (∂B)2ϕ is a neighborhood of radius 2ϕ of the boundary of B, ∥·∥ is the variation norm, and • means
convolution.

Lemma S.3. Let Assumptions 4, 6-7 hold. For s ≥ 2 with ϵT (2s) → 0, we have

Tr ((ΣV Wb1)s) = T (2π)2s−1
df∑

j=0
Lj (s) b1+j−s

1,T +O
(
Tb1−s

1,T ϵT (2s)
)
,
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where ϵT (2s) = (Tb1,T )−1 log2s−1 T , Lj (s) = (1/j)!µj (Ks)
(
dj/dωj

)
(f (u, 0) du)s with |Lj (s) | < ∞ and

Lj (s) differs from zero only for j even (j = 0, . . . , df ).

Proof of Lemma S.3. Let r2s+1 = r1 and note that

Tr ((ΣV Wb1)s)

=
∑

1≤r1,...,r2s≤T

s∏
j=1

E
(
Vr2j−1Vr2j

)
w (b1,T (r2j − r2j+1))

=
∑

1≤r1,...,r2s≤T

s∏
j=1

�
Π
f (r2j−1/T, ω2j−1) ei(r2j−1−r2j)ω2j−1

�
Π
K̃b1 (ω2j) ei(r2j−r2j+1)ω2jdω

=
T −1∑

k2, k4,..., k2s=−T +1

T∑
r1=|k2|+1

T∑
r3=|k4|+1

· · ·
T∑

r2s−1=|k2s|+1

s∏
j=1

�
Π
f (r2j−1/T, ω2j−1) eik2j(ω2j−1−ω2j)

×
�

Π
K̃b1 (ω2j) ei((−k2j−k2j+2)ω2j)dω

=
T −1∑

k2, k4,..., k2s=−T +1

s∏
j=1

(T − |k2j |)
�

Π

� 1

0
f (u2j−1, ω2j−1) eik2j(ω2j−1−ω2j)

×
�

Π
K̃b1 (ω2j) ei((−k2j−k2j+2)ω2j)dudω +O

(
T−1

)
=

∑
1≤r1,...,r2s≤T

s∏
j=1

(T − |k2j |)
�

Π

� 1

0
f (u2j−1, ω2j−1)

�
Π
K̃b1 (ω2j) exp

i
2s∑

j=1
ωj (rj − rj+1)

 dudω +O
(
T−1

)
= T (2π)2s−1

�
Π2s

Hb1 (ω, µ) K̃b1 (ω) Ψ(2s)
T (µ) dωdµ+O

(
T−1

)
, (S.30)

where Ψ(2s)
T (µ) = Ψ(2s)

T (µ1, . . . , µ2s) ,

Hb1 (ω, µ) =
� 1

0
· · ·

� 1

0
f (u1, ω − µ2 − . . .− µ2s) K̃b1 (ω − µ3 − . . .− µ2s)

× f (u3, ω − . . .− µ2s) K̃b1 (ω − µ4 − . . .− µ2s) . . . f (u2s−1, ω − µ2s) du,

dµ = dµ2, . . . , dµ2s, dω = dω1, . . . , ω2s, du = du1, du3, . . . , du2s−1, and we have made the change in
variables 

µ1 = ω1 − ω2

µ2 = ω2 − ω1

· · ·
µ2s = ω2s − ω2s−1


ω2s−1 = ω − µ2s

ω2s−2 = ω − µ2s − µ2s−1

· · ·
ω1 = ω − µ2s − . . .− µs = ω − µ1

with
∑2s

j=1 µj = 0, setting ω = ω2s, and expressing all the ωj in terms of ω and µj , j = 2, . . . , 2s.
Let

B =
∣∣∣∣∣Tr ((ΣV Wb1)s) − T (2π)2s−1

�
Π

(� 1

0
f (u, ω) du

)s

K̃s−1
b1

(ω) dω
∣∣∣∣∣ .
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Using (S.30) we have

B ≤ T (2π)2s−1
�

Π2s

∣∣∣∣∣Hb1 (ω, µ) −
(� 1

0
f (u, ω) du

)s

K̃s−1
b1

(ω)
∣∣∣∣∣ ∣∣∣K̃b1 (ω) Ψ(2s)

T (µ)
∣∣∣ dωdµ+O

(
T−1

)
.

(S.31)

We split the integral in (S.31) into two sets, for small and for large µj . Define the set M = {µ ∈ Π2s−1 :
supj |µj | ≤ b1,T / (2s)}. Since K (ω) takes small values for |ω| > πb1,T , for all u all functions f (u, ω) are
boundedly differentiable in ω in the set M. We use the following inequality,

|A1 · · ·Ar −B1 · · ·Br| ≤
r−1∑
q=0

|B1 · · ·Bq| |Bq+1 −Aq+1| |Aq+2 · · ·Ar| , (S.32)

and supω |K̃b1 (ω) | = O(b−1
1,T ) to bound the integral in (S.31) over M by

O
(
Tb−s+1

1,T

) s−1∑
q=0

�
Π

�
M

� 1

0
|f (u2q+1, ω − µ2+2q − . . .− µ2s) − f (u2q+1, ω)|

∣∣∣K̃b1 (ω) Ψ(2s)
T (µ)

∣∣∣ du2q+1dµdω

(S.33)

+O
(
Tb−s+1

1,T

) s−2∑
q=0

�
Π

�
M

∣∣∣K̃b1 (ω − µ3+2q − . . .− µ2s) − K̃b1 (ω)
∣∣∣ ∣∣∣Ψ(2s)

T (µ)
∣∣∣ dµdω. (S.34)

We apply the mean value theorem in (S.33) to yield,

O
(
Tb1−s

1,T

)�
Π

∣∣∣K̃b1 (ω)
∣∣∣ dω 2s∑

q=0

�
M

|µq||Ψ(2s)
T (µ) |dµ

≤ O
(
Tb1−s

1,T

)�
Π

∣∣∣K̃b1 (ω)
∣∣∣ dω 2s∑

q=0

�
Π2s−1

|µq||Ψ(2s)
T (µ) |dµ

= O
(
b1−s

1,T log2s−1 T
)
,

where the equality follows from (S.25). Using the Lipschitz property of K (cf. Assumption 7), the
expression in (S.34) is of order O(b−s

1,T log2s−1 T ).
Let Mc denote the complement of M in Π2s−1. We now study the contribution to B corresponding

to the set Mc. This is bounded by

T (2π)2s−1
�

Π

�
Mc

∣∣∣Hb1 (ω, µ) K̃b1 (ω)
∣∣∣ ∣∣∣Ψ(2s)

T (µ)
∣∣∣ dωdµ (S.35)

+ T (2π)2s−1
�

Π

∣∣∣∣∣
(� 1

0
f (u, ω) du

)s

K̃s
b1 (ω)

∣∣∣∣∣ dω
�

Mc

∣∣∣Ψ(2s)
T (µ)

∣∣∣ dµ. (S.36)
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The expression in (S.36) is O(b−s
1,T log2s−1 T ) using (S.24) and

�
Π

∣∣∣∣∣
(� 1

0
f(u, ω)du

)
sK̃s

b1 (ω)
∣∣∣∣∣ dω = O

(
b−s

1,T

)
.

Applying (S.27) the expression in (S.35) is bounded by

�
M′

s∏
j=1

� 1

0

∣∣∣f (u2j−1, ω2j−1) K̃b1 (ω2j)DT (ω2j − ω2j−1)DT (ω2j+1 − ω2j)
∣∣∣ du2j−1dω2jdω2j−1, (S.37)

where M′ = {|ω2 − ω1| > νT }∪{|ω3 − ω2| > νT }∪. . .∪{|ω2s − ω2s−1| > νT } with νT = b1,T / (2s) and 2s+1
is to be interpreted as 1. Note that the integral in (S.37) differs from zero only if |ω2| , |ω4| , . . . , |ω2s| ≤
b1,Tπ. Without loss of generality, we consider only the case where just one of the events in M′ is satisfied,
|ω2j − ω2j−1| > νT , say, the other cases can be handled similarly.

From (S.26) it follows that |DT (ω2j − ω2j−1)| = O(b−1
1,T ) since |ω2j − ω2j−1| > νT = b1,T / (2s), and�

Π |DT (ω2j − ω2j−1)K̃b1(ω2j)|dω2j = O(b−1
1,T log T ). For ϵ > 0, consider the following decomposition

�
Π

� 1

0
|f (u2j−1, ω2j−1)DT (ω2j−1 − ω2j−2)| du2j−1dω2j−1 (S.38)

=
�

|ω2j−1|≤ϵ

� 1

0
|f (u2j−1, ω2j−1)DT (ω2j−1 − ω2j−2)| du2j−1dω2j−1

+
�

|ω2j−1|>ϵ

� 1

0
|f (u2j−1, ω2j−1)DT (ω2j−1 − ω2j−2)| du2j−1dω2j−1.

By Assumption 4 f(u2j−1, ω2j−1) is bounded if |ω2j−1| ≤ ϵ. Then, the integral over |ω2j−1| ≤ ϵ above is
of order O (log T ). On the other hand, if |ω2j−1| > ϵ (and recall that |ω2j−1| ≤ b1,Tπ), we yield as T → ∞
|ω2j−1 − ω2j−2| > ϵ/2, say. Then, |DT (ω2j−1 − ω2j−2)| = O (1) by (S.26) and the second summand of
(S.38) is finite in view of the integrability of f (u, ω) by Assumption 5. It follows that (S.38) is O (log T ).
There are other s− 1 integrals of this type that can be handled in the same way. The remaining integral
is of the form

�
Π

�
Π

� 1

0

∣∣∣K̃b1 (ω2s) f (u2s−1, ω1)DT (ω1 − ω2s)
∣∣∣ du2s−1dω1dω2s = O (log T ) ,

where ω1 = ω2s+1 and we have used the same argument as in (S.38) to show that the integral in ω1
is O (log T ) for all ω2s and that

�
Π |K̃b1(ω2s)|dω2s = O (1). Thus, (S.37) is O(b−s

1,T log2s−1 T ) and B =
O(b1−s

1,T log2s−1 T + b−s
1,T log2s−1 T + T−1) = O(Tb1−s

1,T ϵT (2s)).
Define Rb1 (s) =

∑df

j=0 Lj (s) b1+j−s
1,T . Using the Lipschitz property of f(df ) (u, ω) for all u,

∣∣∣∣�
Π
K̃s

b1 (ω)
(� 1

0
f (u, ω) du

)s

dω −Rb1 (s)
∣∣∣∣

≤
�

Π

∣∣∣K̃b1 (ω)
∣∣∣s−1

∣∣∣∣∣∣
(� 1

0
f (u, ω) du

)s

−
df∑

j=0

1
j!

(
d

dω

)j
(� 1

0
f (u, 0) du

)s

ωj

∣∣∣∣∣∣
∣∣∣K̃b1 (ω)

∣∣∣ dω
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= O

(
sup
ω∈Π

∣∣∣K̃b1 (ω)
∣∣∣s−1

∣∣∣∣�
Π

|ω|df +ϱ
∣∣∣∣ ∣∣∣K̃b1 (ω)

∣∣∣ dω) = O
(
b

df +ϱ−s+1
1,T

)
,

where we have used supω∈Π |K̃b1 (ω) | = O(b−1
1,T ).

Note that Lj (s) differs from zero for j even because Lj (s) depends on µj(Ks). □
Lemma S.4. Let Assumptions 4 and 6-7 hold. For s ≥ 1 with ϵT (2s+ 2) → 0, we have

1′ (ΣV Wb1)s ΣV 1 = T (2π)2s+1
(� 1

0
f (u, 0) du

)s+1 (
K̃b1 (0)

)s
+O

(
b−1−s

1,T log2s+1 T + T−1
)
.

Proof of Lemma S.4. We first write 1′(ΣV Wb1)sΣV 1 using an argument similar to the one used to derive
(S.30), the only difference being that we also have the summation over two additional indexes. We write∑

0≤r1,..., r2s+2≤T

E
(
Vr2s+1Vr2s+2

)
Πs

j=1

{
E
(
Vr2j−1Vr2j

)
w (b1,T (r2j − r2j+1))

}
=
∑

r

�
Π
f (r2s+1/T, ω2s+1) ei(r2s+1−r2s+2)ω2s+1Πs

j=1

×
{
f (r2j−1/T, ω2j−1) ei(r2j−1−r2j)ω2j−1

�
Π
K̃b1 (λ2j) ei(r2j−r2j+1)λ2j

}
dλdω

= T (2π)2s+1
�

Π2s+1
Sb1 (µ) Ψ(2s+2)

T (µ) dµ+O
(
T−1

)
, (S.39)

using a change of variable, where Ψ(2s+2)
T (µ) = Ψ(2s+2)

T (µ1, . . . , µ2s+1, −
∑2s+1

j=1 µj),

Sb1 (µ) =
� 1

0
· · ·

� 1

0
f (u1, µ1) K̃b1 (µ1 + µ2) . . . K̃b1 (µ1 + . . .+ µ2s) f (u2s+1 , µ1 + . . .+ µ2s+1) du,

and dµ = dµ1 . . . dµ2s+1, du = du1 . . . du2s+1 and dω = dω1 . . . dω2s+1. Proceeding as in the proof of
Lemma S.3, we divide the range of integration in (S.39), Π2s+1, into two sets, M and its complement Mc,
where M = {|µj | ≤ πb1,T / (2s+ 2) , j = 1, . . . , 2s+ 1}. We have

∣∣∣∣�
M
Sb1 (µ) Ψ(2s+2)

T (µ) dµ−
�

M

(� 1

0
f (u, 0) du

)s+1

K̃s
b1 (0) Ψ(2s+2)

T (µ) dµ
∣∣∣∣

= O
(
b−s−1

1,T

)�
Π2s+1

2s∑
j=2

|µj |
∣∣∣Ψ(2s+2)

T (µ)
∣∣∣ dµ

= O
(
b−s−1

1,T T−1 log2s+1 T
)
, (S.40)

using (S.25), (S.32), Assumptions 4 and 7. On the other hand, the contribution from Mc is less than or
equal to

�
Mc

|Sb1 (µ)|
∣∣∣Ψ(2s+2)

T (µ)
∣∣∣ dµ+O

(
b−s−1

1,T T−1 log2s+1 T
)
, (S.41)

where we have used (S.24). Using the same argument used for (S.37), the integral in (S.41) is less than
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or equal to

1
T (2π)2s+1

�
M′

s∏
j=1

� 1

0

� 1

0
[f (u2j−1, ω2j−1) K̃b1 (ω2j)DT (ω2j − ω2j−1) (S.42)

×DT (ω2j+1 − ω2j) f (u2s+1, ω2s+1)DT (ω1)DT (−ω2s−1)] dudω,

where

M′ = {|ω1| > πb1,T / (2s+ 2)} ∪ {|ω2 − ω1| > πb1,T / (2s+ 2)} ∪ . . . ∪ {|ω2s−1 − ω2s| > πb1,T / (2s+ 2)} ,

and (S.42) is nonzero only if |ω2| , |ω4| , . . . , |ω2s| ≤ πb1,T .
If |ωj+1 − ωj | > πb1,T / (2s+ 2) for at least one index j ∈ {1, . . . , 2s} we can obtain a bound

of order (T−1b−s−1
1,T log2s+1 T ) for (S.42) as in Lemma S.3. The same bound is obtained for the case

|ω1| > πb1,T / (2s+ 2) with a similar argument. Combining these results with (S.39)-(S.41) concludes the
proof. □

Lemma S.5. Let Assumptions 4, 6-7 and 11-12 hold. For s ≥ 2 with ϵT b2,T
(2s) → 0, we have

Tr
((

Σ
Ṽ
Wb1

)s)
= Tb2,T (2π)2s−1

 df∑
j=0

Lj (s) b1+j−s
1,T + b2

2,T

df∑
j=0

(
(L2,j (s) + L3,j (s)) b1+j−s

1,T

)
+O

(
Tb2,T b

1−s
1,T ϵT b2,T

(2s) + b−s
1,T

log2s (Tb2,T )
Tb2,T

)
,

where ϵT b2,T
(2s) = (Tb2,T )−1 log2s−1 (Tb2,T ), Lj (s) = (1/j)!µj(Ks)

� 1
0 K

s
2 (x) dx

(
dj/dωj

)
(
� 1

0 f (u, 0) du)s

with |Lj (s) | < ∞, Lj (s) differs from zero only for j even, L2,j (s) depends on ∂2

∂u2

�
C̃ f (u, ω) du, K2,

K̃b1 and s with |L2,j (s) | < ∞, and L3,j (s) depends on ∆f (·), K̃b1 and s with |L3,j (s) | < ∞.

Proof of Lemma S.5. Let r2s+1 = r1 and note that

Tr
((

Σ
Ṽ
Wb1

)s)
=

� 1

0
· · ·

� 1

0

∑
1≤r1,...,r2s≤T

s∏
j=1

E
(
Ṽr2j−1 (uj) Ṽr2j (uj)

)
w (b1,T (r2j − r2j+1)) du

=
� 1

0
· · ·

� 1

0

∑
1≤r1,...,r2s≤T

s∏
j=1

K2

(
(Tuj − (r2j−1 − (r2j − r2j−1) /2)) /T

b2,T

)

×
�

Π
f (r2j−1/T, ω) ei(r2j−1−r2j)ω2j−1dω

�
Π
K̃b1 (ω2j) ei(r2j−r2j+1)ω2jdωdu

=
⌊T b2,T ⌋−1∑

k2, k4,..., k2s=−⌊T b2,T ⌋+1

� 1

0
· · ·

� 1

0

�
Π2

s∏
j=1

(Tb2,T − |k2j |) f (u2j−1, ω2j−1) ei(ω2j−1−ω2j)k2j

× K̃b1 (ω2j) ei(−k2j−k2j+2)ω2jdωdu+O
(
b2

2,T

)
+O

(
log (Tb2,T )
Tb2,T

)

= Tb2,T (2π)2s−1
�

Π2s

(
Hb1 (ω, µ)

� 1

0
Ks

2 (x) dx+H2,b1 (ω, µ) +H3,b1 (ω, µ)
)

(S.43)
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× K̃b1 (ω) Ψ(2s)
T b2,T

(µ) dωdµ+O
(
b2

2,T b
−s
1,T log2s−1 (Tb2,T )

)
+O

(
b−s

1,T

log2s (Tb2,T )
Tb2,T

)
,

where Hb1 (ω, µ) , dω and dµ are defined as in (S.30), Ψ(2s)
T b2,T

(µ) = Ψ(2s)
T b2,T

(µ1, . . . , µ2s) ,

H2,b1 (ω, µ) = b2
2,T

(� 1

0
x2K2 (x) dx

)(� 1

0
Ks−1

2 (x) dx
)

×
∑
j∈J

∂2

∂u2
j

�
C̃

· · ·
�

C̃
f (u1, ω − µ2 − . . .− µ2s) K̃b1 (ω − µ3 − . . .− µ2s)

× f (u3, ω − . . .− µ2s) K̃b1 (ω − µ4 − . . .− µ2s) . . . f (u2s−1, ω − µ2s) du1 · · · du2s−1,

with J = {1, 3, . . . , 2s− 1}, and H3,b1 (ω, µ) depends on the discontinuity points, i.e.,

H3,b1 (ω, µ) = b2
2,T

(� 1

0
Ks−1

2 (x) dx
)(

1
{
u1 = λ0

j , j = 1, . . . , m0
}

∆f,j (ω − µ2 − . . .− µ2s)
)

× K̃b1 (ω − µ3 − . . .− µ2s) f (u3, ω − . . .− µ2s) K̃b1 (ω − µ4 − . . .− µ2s) . . . f (u2s−1, ω − µ2s)
...

+ b2
2,T

(� 1

0
Ks−1

2 (x) dx
)
f (u1, ω − µ2 − . . .− µ2s) K̃b1 (ω − µ3 − . . .− µ2s)

× f (u3, ω − . . .− µ2s) K̃b1 (ω − µ4 − . . .− µ2s) . . .

× 1
{
u2s−1 = λ0

j , j = 1, . . . , m0
}

∆f,j (ω − µ2s) ,

with

∆f,j (ω) =
� 1

0

(
∂

∂u−
f
(
λ0

j , ω
)� 1−s

0
xK2 (x) dx+ ∂

∂u+
f
(
λ0

j , ω
)� 1

1−s
xK2 (x) dx

)
ds. (S.44)

Let

B =
∣∣∣∣∣Tb2,T (2π)2s−1

� 1

0
Ks

2 (x) dx
�

Π2s

(
Hb1 (ω, µ) K̃b1 (ω) Ψ(2s)

T b2,T
(µ) −

(� 1

0
f (u, ω) du

)s

K̃s
b1 (ω)

)
dωdµ

∣∣∣∣∣ .
Using (S.43) we have

B ≤ Tb2,T (2π)2s−1
� 1

0
Ks

2 (x) dx
�

Π2s

∣∣∣∣∣Hb1 (ω, µ) −
(� 1

0
f (u, ω) du

)s

K̃s−1
b1

(ω)
∣∣∣∣∣ ∣∣∣K̃b1 (ω) Ψ(2s)

T b2,T
(µ)
∣∣∣ dωdµ.
(S.45)

We split the integral in (S.45) into two sets, for small and for large µj . Define the set M = {µ ∈ Π2s−1 :

S-19



alessandro casini, taosong deng and pierre perron

supj |µj | ≤ b1,T / (2s)}. Proceeding as in (S.33)-(S.34), we have

O
(
Tb2,T b

−s+1
1,T

) s−1∑
q=0

�
Π

�
M

� 1

0
|f (u, ω − µ2+2q − . . .− µ2s) − f (u, ω)|

∣∣∣K̃b1 (ω) Ψ(2s)
T b2,T

(µ)
∣∣∣ dudωdµ

(S.46)

+O
(
Tb2,T b

−s+1
1,T

) s−2∑
q=0

�
Π

�
M

∣∣∣K̃b1 (ω − µ2+2q − . . .− µ2s) − K̃b1 (ω)
∣∣∣ ∣∣∣Ψ(2s)

T b2,T
(µ)
∣∣∣ dωdµ.

(S.47)

We apply the mean value theorem in (S.46) and use (S.25) to yield,

O
(
Tb2,T b

−s+1
1,T

)�
Π

∣∣∣K̃b1 (ω)
∣∣∣ dω 2s∑

q=0

�
M

|µq|
∣∣∣Ψ(2s)

T b2,T
(µ)
∣∣∣ dµ

≤ O
(
Tb2,T b

−s+1
1,T

)�
Π

∣∣∣K̃b1 (ω)
∣∣∣ dω 2s∑

q=0

�
Π2s−1

|µq|
∣∣∣Ψ(2s)

T b2,T
(µ)
∣∣∣ dµ

= O
(
b−s+1

1,T log2s−1 (Tb2,T )
)
.

On the other hand, using the Lipschitz property of K (cf. Assumption 7), the expression in (S.47) is of
order O(b−s

1,T log2s−1(Tb2,T )).
Let Mc denote the complement of M in Π2s−1. The contribution to B corresponding to the set Mc

is bounded by

Tb2,T (2π)2s−1
�

Π

�
Mc

∣∣∣Hb1 (ω, µ) K̃b1 (ω)
∣∣∣ ∣∣∣Ψ(2s)

T b2,T
(µ)
∣∣∣ dωdµ (S.48)

+ Tb2,T (2π)2s−1
�

Π

∣∣∣∣∣
(� 1

0
f (u, ω) du

)s

K̃s
b1 (ω)

∣∣∣∣∣ dω
�

Mc

∣∣∣Ψ(2s)
T b2,T

(µ)
∣∣∣ dµ. (S.49)

The expression in (S.49) is O(b−s
1,T log2s−1(Tb2,T )) using (S.24) and

�
Π

∣∣∣∣∣
(� 1

0
f (u, ω)

)s

K̃s
b1 (ω)

∣∣∣∣∣ dω = O
(
b−s

1,T

)
.

The expression in (S.48) is bounded by

�
M′

s∏
j=1

� 1

0

∣∣∣f (u2j−1, ω2j−1) K̃b1 (ω2j)DT b2,T
(ω2j − ω2j−1)DT b2,T

(ω2j+1 − ω2j)
∣∣∣ du2j−1dω2jdω2j−1,

(S.50)

where M′ is defined after (S.37).
From (S.26) it follows that |DT b2,T

(ω2j − ω2j−1) | = O(b−1
1,T ) since |ω2j − ω2j−1| > νT = b1,T / (2s),

and
�

Π |DT b2,T
(ω2j − ω2j+1) K̃b1 (ω2j) |dω2j = O(b−1

1,T log(Tb2,T )). For ϵ > 0, consider the following de-
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composition

�
Π

� 1

0

∣∣∣f (u2j−1, ω2j−1)DT b2,T
(ω2j−1 − ω2j−2)

∣∣∣ du2j−1dω2j−1 (S.51)

=
�

|ω2j−1|≤ϵ

� 1

0

∣∣∣f (u2j−1, ω2j−1)DT b2,T
(ω2j−1 − ω2j−2)

∣∣∣ du2j−1dω2j−1

+
�

|ω2j−1|>ϵ

� 1

0

∣∣∣f (u2j−1, ω2j−1)DT b2,T
(ω2j−1 − ω2j−2)

∣∣∣ du2j−1dω2j−1.

By Assumption 4 f(u2j−1, ω2j−1) is bounded if |ω2j−1| ≤ ϵ. Then the integral over |ω2j−1| ≤ ϵ above is of
order O(log(Tb2,T )). On the other hand, if |ω2j−1| > ϵ we have |DT b2,T

(ω2j−1 − ω2j−2)| = O (1) by (S.26)
and the second summand of (S.51) is finite in view of the integrability of f (u, ω) by Assumption 5. It
follows that (S.51) is O(log(Tb2,T )). There are other s − 1 integrals of this type that can be handled in
the same way. The remaining integral is of the form

�
Π

�
Π

� 1

0

∣∣∣K̃b1 (ω2s) f (u2s−1, ω1)DT b2,T
(ω1 − ω2s)

∣∣∣ du2s−1dω1dω2s = O (log (Tb2,T )) ,

where ω1 = ω2s+1 and we have used the same argument as in (S.51) to show that the integral in ω1 is
O(log(Tb2,T )) for all ω2s and that

�
Π |K̃b1 (ω2s) |dω2s = O (1). Thus, (S.50) is O(b−s

1,T log2s−1 Tb2,T ) and

B = O(b1−s
1,T log2s−1(Tb2,T ) + b−s

1,T log2s−1(Tb2,T )) = O(Tb2,T b
1−s
1,T ϵT b2,T

(2s)).
Next, let

B2 = Tb2,T (2π)2s−1
�

Π2s

∣∣∣H2,b1 (ω, µ) − b2
2,T Λ2

(
f ′′, C̃, s

)
K̃s−1

b1
(ω)
∣∣∣ ∣∣∣K̃b1 (ω) Ψ(2s)

T b2,T
(µ)
∣∣∣ dωdµ,

where Λ2(f ′′, C̃, s) depends on f (u, ω) , the second partial derivative of f (u, ω) in u at the continuity
points in C̃ and s. By Assumption 12, for j ∈ J and uj ∈ C̃ (∂2/∂u2

j )f (uj , ωj) has similar smoothness
properties in ωj to those of f (uj , ωj). Thus, the proof used above to bound B can be repeated which
then results in B2 = O(Tb3

2,T b
1−s
1,T ϵT b2,T

(2s)).
Let

B3 = Tb2,T (2π)2s−1
�

Π2s

∣∣∣H3,b1 (ω, µ) − b2
2,T Λ3

(
f ′,

{
λ0

j , j = 1, . . . , m0
}
, s
)
K̃s−1

b1
(ω)
∣∣∣

×
∣∣∣K̃b1 (ω) Ψ(2s)

T b2,T
(µ)
∣∣∣ dωdµ,

where Λ3(f ′, {λ0
j , j = 1, . . . , m0}, s) depends on f (u, ω) ,∆f (·) and s. By Assumption 12, (∂/∂u−) f (u, ω)

and (∂/∂u+) f (u, ω) for u a discontinuity point have similar smoothness properties in ω to those of
f (u, ω). Thus, the proof used above to bound B can be repeated which then results in B3 = O(Tb3

2,T b
1−s
1,T

ϵT b2,T
(2s)).
The rest of the proof follows from the same arguments used in the last part of the proof of Lemma

S.3. □
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Lemma S.6. Let Assumptions 4, 6-7 and 11-12 hold. For s ≥ 1 with ϵT (2s+ 2) → 0, we have

1′
(
Σ

Ṽ
Wb1

)s
Σ

Ṽ
1 = Tb2,T (2π)2s+1

((� 1

0
f (u, 0) du

)s+1 � 1

0
Ks+1

2 (x) dx

+ b2
2,T

(
Λ̃2
(
f ′′, C̃, s

)
+ Λ̃3

(
f ′,

{
λ0

j , j = 1, . . . , m0
}
, s
)))(

K̃b1 (0)
)s

+O

(
b1−s

1,T log2s+1 (Tb2,T ) + b−s
1,T

log2s+1 (Tb2,T )
Tb2,T

)
,

where Λ2(f ′′, C̃, s) depends on f (u, ω) , the second partial derivative of f (u, ω) in u at the continuity
points in C̃ and s, and Λ̃3(f ′, {λ0

j , j = 1, . . . , m0}, s) depends on f (u, ω) , ∆f (·) and s.

Proof of Lemma S.6. We first write 1′(Σ
Ṽ
Wb1)sΣ

Ṽ
1 using an argument similar to the one used to derive

(S.39),

� 1

0

∑
1≤r1,..., r2s+2≤T

E
(
Ṽr2s+1 (us+1) Ṽr2s+2 (us+1)

)� 1

0
· · ·

� 1

0
Πs

j=1

×
{
E
(
Ṽr2j−1 (uj) Ṽr2j (uj)

)
w (b1,T (r2j − r2j+1))

}
du

= Tb2,T

⌊T b2,T ⌋−1∑
k2s+2=−⌊T b2,T ⌋+1

� 1

0

�
Π
f (us+1/T, ω2s+1) e−ik2s+2ω2s+1Πs

j=1

� 1

0
· · ·

� 1

0

×

f (u2j−1/T, ω2j−1)
⌊T b2,T ⌋−1∑

k2, k4,..., k2s=−⌊T b2,T ⌋+1

Tb2,T − |k2j |
Tb2,T

�
Π
K̃b1 (ω2j) ei(k2j+k2j+1)ω2j

 dωdu
= Tb2,T (2π)2s+1

�
Π2s+1

(
Sb1 (µ)

� 1

0
Ks+1

2 (x) dx+ S2,b1 (µ) + S3,b1 (µ)
)

Ψ(2s+2)
T b2,T

(µ) dµ (S.52)

+O
(
b2

2,T b
−s
1,T log2s−1 (Tb2,T )

)
+O

(
b−s

1,T

log2s (Tb2,T )
Tb2,T

)
,

where Ψ(2s+2)
T b2,T

(µ), Sb1 (µ) and dµ = dµ1 . . . dµ2s+1 are defined as in (S.39),

S2,b1 (µ) = b2
2,T

(� 1

0
x2K2 (x) dx

)� 1

0
Ks

2 (x) dx
∑
j∈J

∂2

∂u2
j

�
C̃

· · ·
�

C̃
f (u1, µ1) K̃b1 (µ1 + µ2) . . .

× K̃b1 (µ1 + . . .+ µ2s) f (u2s+1 , µ1 + . . .+ µ2s+1) du,

with J = {1, 3, . . . , 2s+ 1} and S3,b1 (ω, µ) depends on the discontinuity points, i.e.,

S3,b1 (µ) = b2
2,T

� 1

0
Ks

2 (x) dx
(
1
{
u1 = λ0

j , j = 1, . . . , m0
}

∆f,j (µ1)
)
K̃b1 (µ1 + µ2)

. . . K̃b1 (µ1 + . . .+ µ2s) f (u2s−1, µ1 + . . .+ µ2s+1)
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...

+ b2
2,T

� 1

0
Ks

2 (x) dxf (u1, ω − µ2 − . . .− µ2s) K̃b1 (ω − µ3 − . . .− µ2s)

× K̃b1 (µ1 + . . .+ µ2s) 1
{
u2s−1 = λ0

j , j = 1, . . . , m0
}

∆f,j (µ1 + . . .+ µ2s+1) ,

with ∆f,j (ω) defined in (S.44). Proceeding as in the proof of Lemma S.4, we divide the range of integration
of the integral involving Sb1 (µ) in (S.52), Π2s+1, into two sets, M and its complement Mc, where M =
{|µj | ≤ πb1,T / (2s+ 2) , j = 1, . . . , 2s+ 1}. We have

∣∣∣∣�
M
Sb1 (µ) Ψ(2s+2)

T b2,T
(µ) dµ−

�
M

(� 1

0
f (u, 0) du

)s+1

K̃s
b1 (0) Ψ(2s+2)

T b2,T
(µ) dµ

∣∣∣∣
= O

(
b−s−1

1,T

)�
Π2s+1

2s∑
j=2

|µj |
∣∣∣Ψ(2s+2)

T b2,T
(µ)
∣∣∣ dµ

= O
(
b−s−1

1,T (Tb2,T )−1 log2s+1 (Tb2,T )
)
, (S.53)

using (S.25), (S.32), Assumptions 4 and 7. On the other hand, the contribution from Mc is less than or
equal to

Tb2,T (2π)2s+1
�

Mc

|Sb1 (µ)|
∣∣∣Ψ(2s+2)

T b2,T
(µ)
∣∣∣ dµ+O

(
b−s

1,T log2s+1 (Tb2,T )
)
, (S.54)

where we have used (S.24). Using the same argument used for (S.50), the expression in (S.54) is less than
or equal to

�
M′

s∏
j=1

� 1

0

� 1

0

∣∣∣f (u2j−1, λ2j−1) K̃b1 (λ2j)DT b2,T
(λ2j − λ2j−1) (S.55)

×DT b2,T
(λ2j+1 − λ2j) f (u2s+1, λ2s+1) DT b2,T

(λ1)DT b2,T
(−λ2s−1)

∣∣∣ du2s+1du2j−1dλ,

where M′ = {|λ1| > πb1,T / (2s+ 2)}∪{|λ2 − λ1| > πb1,T / (2s+ 2)}∪. . .∪{|λ2s−1 − λ2s| > πb1,T / (2s+ 2)}
and (S.55) is nonzero only if |λ2| , |λ4| , . . . , |λ2s| ≤ πb1,T .

If |λj+1 − λj | > πb1,T / (2s+ 2) for at least one index j ∈ {1, . . . , 2s} we can obtain a bound of order
((Tb2,T )−1b−s−1

1,T log2s+1(Tb2,T )) for (S.55) as in Lemma S.5.
Next, we have

Tb2,T (2π)2s+1
∣∣∣∣�

Π2s

(Sb2 (µ) + Sb3 (µ)) Ψ(2s+2)
T b2,T

(µ) dµ (S.56)

− b2
2,T

�
Π2s

(
Λ̃2
(
f ′′, C̃, s

)
+ Λ̃3

(
f ′,

{
λ0

j , j = 1, . . . , m
}
, s
))
K̃s

b1 (0) Ψ(2s+2)
T b2,T

(µ) dµ
∣∣∣∣.

By Assumption 12, (∂2/∂u2)f (u, ω) for u ∈ C̃, (∂/∂u−) f (u, ω) and (∂/∂u+) f (u, ω) for u a disconti-
nuity point have similar smoothness properties in ω to those of f (u, ω). Thus, the proof used above to
bound (S.53) can be repeated which then results in (S.56) being O(b2

2,T b
−s−1
1,T log2s+1(Tb2,T ). □
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Lemma S.7. Let Assumptions 4, 5 (p > 1), 6-7 and 10 (0 < q < 1) hold. Then, ||ΣV Wb1 || ≤ C1ν2,T where

C1 depends on f (·, ·) and K, 0 < C1 < ∞ and ν2,T = max{b−1
1,T log2 T, T (2−p)/2pb

−1/2
1,T log2 T )} → ∞.

Proof of Lemma S.7. We have

∥ΣV Wb1∥ = sup
∥x∥=1

∣∣∣∣∣∣
T∑

j,h=1
xjxh

T∑
t=1

T∑
s=1

�
Π2
f (t/T, λ) K̃b1 (ω) eitλe−isωei(hω−jλ)dλdω

∣∣∣∣∣∣+O
(
T−1

)

= sup
∥x∥=1

∣∣∣∣∣∣
T∑

t=1
f (t/T, λ) eitλ

∑
j,h

xjxh

�
Π2
K̃b1 (ω)DT (−ω) ei(hω−jλ)dλdω

∣∣∣∣∣∣+O
(
T−1

)

≤ sup
∥x∥=1

∣∣∣∣∣∣
�

ω≤ϵ

�
λ

T∑
t=1

f (t/T, λ) eitλDT (−ω)
∑
j,h

xjxhK̃b1 (ω) ei(hω−jλ)dλdω

∣∣∣∣∣∣
+ sup

∥x∥=1

∣∣∣∣∣∣
�

ω>ϵ

�
λ

T∑
t=1

f (t/T, λ) eitλDT (−ω)
∑
j,h

xjxhK̃b1 (ω) ei(hω−jλ)dλdω

∣∣∣∣∣∣+O
(
T−1

)
≜ A1 + o (1) +O

(
T−1

)
. (S.57)

Let L2,T : R → R be the periodic extension with period 2π of

L2,T (ω) =
{
T, |ω| ≤ 1/T,
1/|ω|, 1/T ≤ |ω| ≤ |π|.

Lemma S.A.1-2 in Casini and Perron (2024) showed that∣∣∣∣∣
T∑

t=1
f (t/T, λ) e−itλ

∣∣∣∣∣ ≤ L2,T (λ) , (S.58)

and
�

Π L2,T (λ) dλ ≤ CL log T for T > 1 and CL > 0 being a constant independent of T . Let XT (ω) =∑T
j=1 xje

ijω. Then, the contribution to A1 from |λ| ≤ ϵ is bounded by

sup
∥x∥=1

�
ω≤ϵ

�
λ

∣∣∣∣∣
T∑

t=1
f (t/T, λ) eitλ

∣∣∣∣∣ |DT (−ω)| |XT (ω)| |XT (λ)|
∣∣∣K̃b1 (ω)

∣∣∣ dλdω
≤ sup

∥x∥=1
b−1

1,T sup
ω∈Π

|K (ω) |
�

Π
L2,T (λ)

(�
Π

|DT (−ω)| |XT (ω)| |XT (λ)|
)
dλdω

≤ sup
∥x∥=1

b−1
1,T sup

ω∈Π
|K (ω) |

(�
Π
L2,T (λ)2 dλ

)1/2 (�
Π

|XT (λ)|2 dλ
)1/2

×
(�

Π
|DT (−ω)|2 dω

)1/2 (�
Π

|XT (ω)|2 dω
)1/2

≤ 2πC2b
−1
1,T sup

ω∈Π
|K (ω) | log2 T, (S.59)
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where 0 < C2 < ∞ and we have used supω∈Π |K (ω) | = O(b−1
1,T ), (

�
ω |XT (ω) |2dω) = 2π and (S.58). For

|λ| > ϵ the contribution to A1 is bounded by

sup
∥x∥=1

�
ω≤ϵ

T∑
t=1

(�
Π

(f (t/T, λ))p dλ

)1/p (�
Π

|eitλXT (λ) |
p

p−1dλ

)(p−1)/p ∣∣∣DT (−ω)XT (ω) K̃b1 (ω)
∣∣∣ dωdω

≤ C2 sup
∥x∥=1

T∑
t=1

(�
Π

|eitλXT (λ) |
p

p−1dλ

)(p−1)/p �
ω≤ϵ

∣∣∣DT (−ω)XT (ω) K̃b1 (ω)
∣∣∣ dω

≤ C2 sup
∥x∥=1

T∑
t=1

(�
Π

|eitλ|
p

p−1dλ

)(p−1)/p �
ω≤ϵ

(�
Π

|XT (λ) |
p

p−1dλ

)(p−1)/p

×
(�

Π
|DT (−ω)| dω

)(�
Π

|XT (ω)|2 dω
)1/2 (�

Π

∣∣∣K̃b1 (ω)
∣∣∣2 dω)1/2

≤
√

2πC2

(
sup

ω
|K (ω) |

)1/2
∥K∥1 (2π)(p−1)/p T

2−p
2p b−1

1,T log2 T, (S.60)

where 0 < C2 < ∞ and we have used supx,λ |XT (λ)| ≤
√
T and

(�
Π

|XT (λ) |
p

p−1dλ

)(p−1)/p

=
(�

Π
|XT (λ) |2+ 2−p

p−1dλ

)(p−1)/p

=
(�

Π
|XT (λ) |2|XT (λ) |

2−p
p−1dλ

)(p−1)/p

≤
(�

Π
|XT (λ) |2T

1
2

( 2−p
p−1

)
dλ

)(p−1)/p

≤ (2π)(p−1)/p T
2−p
2p .

From (S.59)-(S.60) we have A1 ≤ C1ν2,T for some C1 such that 0 < C1 < ∞. □

Lemma S.8. Let Assumptions 4, 5 (for some p > 1), 6, 7 and b1,T + T−1b−1
1,T log3 T → 0 hold. Then,

there exists c2 > 0 such for ∥t∥ > c1mT with c1 > 0 we have |ψ (t)| ≤ exp
{
−c2m

2
T

}
, where mT =

min{(Tb1,T )−1/2 log T, T (p−1)/p} → ∞.

Proof of Lemma S.8. The proof is similar to the proof of Lemma 15 in Velasco and Robinson (2001) with
the difference that reference to Lemma 16 there is changed to reference to Lemma S.7. □

Lemma S.9. Let Assumptions 4, 5 (p > 1), 6-7, 10 (0 < q < 1) and 11-12 hold. Then, ||Σ
Ṽ
Wb1 || ≤ C1ν2,T

where C1 depends on f (u, ω) and K, 0 < C1 < ∞ and ν2,T = max{b−1
1,T log (Tb2T ) , (Tb2,T )(2−p)/2p

b
−1/2
1,T )} → ∞.

Proof of Lemma S.9. The proof is similar to the proof of Lemma S.7. □

Lemma S.10. Let Assumptions 4, 5 (p > 1), 6-7, 11-12 and b1,T + (Tb1,T b2,T )−1 log3 T → 0 hold. Then,
there exists a c4 > 0 such for ∥t∥ > c3m2,T with c3 > 0 we have |ψ (t1, t2)| ≤ exp(−c4m

2
2,T ), where

m2,T = min{(Tb2,T b1,T )1/2/ log(Tb2,T ), (Tb2,T )(p−1)/p} → ∞.
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Proof of Lemma S.10. Following Bentkus and Rudzkis (1982) and Velasco and Robinson (2001) we first
study the characteristic function of ĴDK,T . Define τ (t2) = E(exp(it2v2)) = τ ′ (t2) exp(−it2Υ2,T ), where

τ ′ (t2) =

∣∣∣∣∣∣I − 2it2√
Tb2,T /b1,T V2,TJT

Σ
Ṽ
Wb1

∣∣∣∣∣∣
−1/2

=
T∏

j=1

1 − 2it2
λ̃j√

Tb2,T /b1,T V2,TJT

−1/2

,

and λ̃j are the eigenvalues of Σ
Ṽ
Wb1 . Note that

1 =Var (v2) = b1,T

Tb2,T

1
V2

2,TJ
2
T

2Tr
[
(Σ

Ṽ
Wb1)2

]
= b1,T

Tb2,T

2
V2

2,TJ
2
T

T∑
j=1

λ̃2
j ,

where we have used the normality of {Vt} and the relationship between the trace and the eigenval-
ues. Rearranging yields

∑T
j=1 λ̃

2
j = 2−1b−1

1,TTb2,T V2
2,TJ

2
T = O(b−1

1,TTb2,T ). Further, we have maxj |λ̃j | =
sup∥x∥=1 |Σ

Ṽ
Wb1x, x| = ||Σ

Ṽ
Wb1 ||. We can apply Lemma S.9 to yield

max
j

∣∣∣λ̃j

∣∣∣ ≤ C1ν2,T , ν2,T = max
{
b−1

1,T log (Tb2T ) , (Tb2,T )(2−p)/2pb
−1/2
1,T

}
→ ∞,

where C1 > 0 is such that C1 < ∞. Let gj = λ̃j(C1ν2,T )−1 and note that for T large enough we have
|gj | ≤ 1. Using

∑T
j=1 g

2
j = (2C2

1ν
2
2,T )V2

2,TJ
2
T b

−1
1,TTb2,T we yield

|τ (t2)| ≤
T∏

j=1

(
1 + 4t2

C2
1ν

2
2,T

b−1
1,TTb2,T V2

2,TJ
2
T

)−(1/4)g2
j

=
(

1 + t22
ν2

2,T

b−1
1,TTb2,T

4C2
1

V2
2,TJ

2
T

)−(1/8)C−2
1 V2

2,T J2
T b−1

1,T T b2,T ν−2
2,T

=
(

1 + t22
ν2

2,T

b−1
1,TTb2,T

[
C2 +O

(
b2

1,T + ϵT b2,T
(2)
)])−(1/2)

(
C−1

2 +O
(

b2
1,T +ϵT b2,T

(2)
))

T b2,T b−1
1,T ν−2

2,T

,

where C2 = C2
1/(π34(

� 1
0 f (u, 0) du)2 ∥K∥2

2 ∥K2∥2
2) and we have applied (1 + at) ≥ (1 + t)a which is valid

for t ≥ 0 and 0 ≤ a ≤ 1. Thus, for all η > 0, we have

|τ (t2)| ≤
(
1 + η2

1

)−η2
(

T b2,T b−1
1,T ν−2

2,T

)
, (S.61)

for |t2| > η
√
Tb2,T b

−1
1,T ν

−1
2,T and for η1 > 0 and η2 > 0 depending on η.

Next, we consider the joint characteristic function ψT (t1, t2). Its modulus is equal to

|ψT (t1, t2)| = |τ (t2)| exp
(

−1
2 t

2
1ξ

′
2,T R

(
I − 2it2Σ

Ṽ
Q2,T

)−1
Σ

Ṽ
ξ2,T

)
, (S.62)

where R (A) stands for the real part of A. From Anderson (1958, p. 161) R(Σ−1
Ṽ

− 2it2Q2,T )−1 =
R(I−2it2Q2,T )−1Σ

Ṽ
is positive definite since t2Q2,T is real. Then ξ′

2,T R(I−2it2Σ
Ṽ
Q2,T )−1Σ

Ṽ
ξ2,T > 0 for
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all t2 ∈ R. Thus, |t2| ≤ d
√
Tb2,T b

−1
1,T /ν2,T for all d > 0 and ξ′

2,T R(I − 2it2Σ
Ṽ
Q2,T )−1Σ

Ṽ
ξ2,T > ϵ for some

ϵ > 0 depending on d because ||Σ
Ṽ
Q2,T || = O(Tb2,T b

−1
1,T )−1/2||Σ

Ṽ
Wb1 || = (O(Tb2,T b

−1
1,T )−1/2ν2,T ), and

||ξ2,T || = (
√
Tb2,TJT )−1√

12 + 12 + . . .+ 12 = 1/
√
b2,TJT , with JT → 2π

� 1
0 f (u, 0) du, 0 < f (u, 0) < ∞

for all u by Assumption 4. Then, for |t1|
√

2 > d1
√
Tb2,T b

−1
1,T /ν2,T and |t2|

√
2 ≤ d1

√
Tb2,T b

−1
1,T /ν2,T and

some ϵ1 > 0 depending on d1,

exp
(

−1
2 t

2
1ξ

′
2,T R

(
I − 2it2Σ

Ṽ
Q2,T

)−1
Σ

Ṽ
ξ2,T

)
≤ exp

(
−1

2 t
2
1ϵ1

)
≤ exp

(
−1

4d
2
1ϵ1

Tb2,T b
−1
1,T

ν2
2,T

)
. (S.63)

From (S.61)-(S.63), there exists a d2 > 0 such that |ψT (t) | ≤ exp(−d2(Tb2,T b
−1
1,T /ν

2
2,T )) for {t : ||t|| >

d1
√
Tb2,T b

−1
1,T /ν2,T } ⊂ B1 ∪ B2 where B1 = {t ∈ R2 : |t2| > (d1/

√
2)
√
Tb2,T b

−1
1,T /ν2,T } and B2 = {t ∈

R2 : |t2| ≤ (d1/
√

2)
√
Tb2,T b

−1
1,T /ν2,T and |t1| > (d1/

√
2)
√
Tb2,T b

−1
1,T /ν2,T }, and the lemma follows because

Tb2,T b
−1
1,T /ν

2
2,T = m2

2,T → ∞. □

S.B.2.2 Additional Lemmas Used for the Proofs of Theorems 3-4

We first present a result about the limit of JT and a result about the bias of ĴHAC,T .

Lemma S.11. Let Assumption 4 with df = 1 and ϱ = 0 hold. Then, JT −2π
� 1

0 f (u, 0) du = O
(
T−1 log T

)
.

If in addition Assumption 2-(i) holds, then the order is O(T−1).

Lemma S.12. Let Assumptions 4, 6, 8, and 9 hold. Then,

E
(
ĴHAC,T

)
− 2π

� 1

0
f (u, 0) du− 2π

� 1
0 f

(df ) (u, 0) du
df ! µdf

(K) bdf

1,T = O
(
T−1 log T + b

df +ϱ
1,T

)
.

We now study the cumulants of the normalized spectral estimate h2.

Lemma S.13. Let Assumptions 4, 6-7 hold. For s > 2 with ϵT (s) = b
df +ϱ
1,T + T−1b1,T log2s−1 T → 0, we

have

κT (0, s) ≜ κT (0, s)
(
T

b1,T

)(s−2)/2

=
df∑

j=0
Ξj (0, s) bj

1,T +O (ϵT (s)) ,

where Ξj (0, s) is bounded and depends on K and f (j) (u, 0) (j = 0, . . . , df ).

A few examples of Ξj (0, s) are Ξ0 (0, s) = (4π)(s−2)/2 (s− 1)!
�

ΠK
s (ω) dω ∥K∥−s

2 and Ξ1(2, s) = 0.
If (∂/∂ω)(

� 1
0 f (u, ω) du)|ω=0 = 0 then Ξj(0, s) = 0 for j ≥ 1. In order to develop an Edgeworth expansion

to approximate the distribution of h, we need to study the cross-cumulants of h.

Lemma S.14. Let Assumptions 4 and 6-7 hold. For s > 0 with ϵT (s+ 2) → 0, we have

κT (2, s) ≜ κT (2, s) (Tb1,T )s/2 =
df∑

j=0
Ξj(2, s)bj

1,T +O (ϵT (s+ 2)) ,
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where Ξj(2, s) is bounded and depends on K and f (j) (u, 0) (j = 0, . . . , df ).

For example, we have Ξ0(2, s) = (4π)s/2 s!Ks (0) ∥K∥−s
2 and Ξ1(2, s) = 0. Using Lemmas S.13-S.14

we can substitute out BT and VT in ZT and, by only focusing on the leading terms, we define the following
linear stochastic approximation,

Z̃T ≜ h1
(
1 − 2−1c1b

df

1,T − 2−1√
4π ∥K2∥h2 (Tb1,T )−1/2

)
.

Lemma S.15. Let Assumptions 4, 5 (p > 1), 6-8 and 10 (q = 1/(1 + 2df )) hold. Then, ZT has the same

Edgeworth expansion as Z̃T uniformly for convex Borel sets up to order O((Tb1,T )−1/2).

Note that the condition q = 1/(1+2df ) is sufficient for the consistency of ĴHAC,T . Indeed, for df = 2
it implies that b1,T = T−1/5 which coincides with the MSE-optimal bandwidth choice for the quadratic
spectral kernel [cf. Andrews (1991)].1

S.B.2.3 Proof of Lemma S.11

Note that JT =
∑T −1

k=−T +1 ΓT (k) where ΓT (k) = T−1∑T
t=|k|+1 E(VtVt−|k|). We have

JT =
T −1∑

k=−T +1

1
T

T∑
t=|k|+1

�
Π
f (t/T, ω) eikωdω

=
T −1∑

k=−T +1

T − |k|
T

� 1

|k|/T

�
Π
f (u, ω) eikωdωdu+O

(
T−1

)
= 2π

� 1

0

�
Π
f (u, ω) Ψ(2)

T (ω) dωdu+O
(
T−1

)
.

Since
�

Π Ψ(2)
T (ω) dω = 1, we can apply the mean value theorem for f (u, ω) in a small interval [−ϵ, ϵ] , ϵ >

0, for some |η| ≤ 1 depending on ω,∣∣∣∣∣JT − 2π
� 1

0
f (u, 0) du

∣∣∣∣∣ ≤ 2π
(�

|ω|≤ϵ
+
�

|ω|>ϵ

) � 1

0

�
Π

|f (u, ω) − f (u, 0)|
∣∣∣Ψ(2)

T (ω)
∣∣∣ dωdu+O

(
T−1

)
= O

(�
|ω|≤ϵ

� 1

0
|ω| |f (1) (u, ωη) |

∣∣∣Ψ(2)
T (ω)

∣∣∣ dudω
+
(� 1

0
(||f (u, ω) ||1 + f (u, 0)) du

)
T−1

)
+O

(
T−1

)
= O

(
T−1 log T

)
+O

(
T−1

)
,

where we have used Assumption 4,∣∣∣Ψ(2)
T (ω)

∣∣∣ ≤ 1
2πT |DT (ω)| |DT (−ω)| ≤ 1

πT

∣∣∣ω−2
∣∣∣ ,

1Note that the MSE bounds under nonstationarity in Section 8 in Andrews (1991), which are used to determine
the optimal bandwidth, are not correctly stated [cf. Casini (2022)].
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from (S.26)-(S.27) and |Ψ(2)
T (ω) | ≤ O

(
(T )−1) if |ω| > ϵ.

For the second result in the lemma, note that

JT =
T −1∑

k=−T +1
T−1

T∑
t=|k|+1

E
(
VtVt−|k|

)
= −

T −1∑
k=−T +1

T−1
|k|∑

t=1
E
(
VtVt−|k|

)
+

T −1∑
k=−T +1

T−1
T∑

t=1
E
(
VtVt−|k|

)
.

Then,∣∣∣∣∣JT − 2π
� 1

0
f (u, 0) du

∣∣∣∣∣ ≤

∣∣∣∣∣∣
T −1∑

k=−T +1
T−1

T∑
t=1

E
(
VtVt−|k|

)
− 2π

� 1

0
f (u, 0) du

∣∣∣∣∣∣+
∣∣∣∣∣∣

T −1∑
k=−T +1

T−1
k∑

t=1
E
(
VtVt−|k|

)∣∣∣∣∣∣ ,
= O

(
T−1

)
,

using Assumption 2-(i). □

S.B.2.4 Proof of Lemma S.12

We can write ĴHAC,T = 2π
�

Π K̃b1 (ω) IT (ω) dω. Note that

E (IT (ω)) =
� 1

0

�
Π
f (u, λ) Ψ(2)

T (ω − λ) dλdu+O
(
T−1

)
.

Thus, we obtain

E
(
ĴHAC,T

)
= 2π

�
Π
K̃b1 (ω)

� 1

0

�
Π
f (u, α+ ω) Ψ(2)

T (α) dαdudω +O
(
T−1

)
.

Then, using
�

Π Ψ(2)
T (ω) dω = 1 and

�
Π K̃b1 (ω) dω = 1 we have

E
(
ĴHAC,T

)
− 2π

� 1

0
f (u, 0) du− 2πbdf

1,Tµdf
(K)

� 1

0

f(df ) (u, 0)
df ! du

= 2π
�

Π
K̃b1 (ω)

� 1

0

�
Π

Ψ(2)
T (α) (f (u, ω + α) − f (u, ω)) dαdudω

+
�

Π
K̃b1 (ω)

� 1

0

f (u, ω) − f (u, 0) − b
df

1,Tµdf
(K) f

(df ) (u, 0)
df !

 dudω +O
(
T−1

)
≜ A1 +A2 +O

(
T−1

)
.

For ϵ > 0, we introduce the sets A = {|α| , |ω| ≤ ϵ/2} and its complement Ac, both defined in Π2. Let
A11 and A12 be the contributions to A1 corresponding to A and Ac, respectively. Then, applying the
mean value theorem we have

|A11| = 2π
�

|ω|≤ϵ/2

∣∣∣K̃b1 (ω) dω
∣∣∣ dω �

|α|≤ϵ/2

∣∣∣Ψ(2)
T (α)

∣∣∣ |α| dα
� 1

0
sup
|ω|≤ϵ

∣∣∣f (1) (u, ω)
∣∣∣ du

= O
(
T−1 log T

)
,
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where we have used (S.26)-(S.27) and Assumption 4. Let B1 = {|α| > ϵ/2} and B2 = {|ω| > ϵ/2, |α| ≤ ϵ/2}
and note that Ac ⊂ {B1 ∪ B2}. The contribution to A12 from B1 is∣∣∣∣∣

�
|α|>ϵ/2

Ψ(2)
T (α)

�
Π
K̃b1 (ω)

� 1

0
(f (u, ω + α) − f (u, ω)) dudωdα

∣∣∣∣∣
= O

(
T−1

�
Π2

� 1

0

∣∣∣K̃b1 (ω) (f (u, ω + α) − f (u, ω))
∣∣∣ dudωdα)

= O

(
T−1

(
1 +

�
|ω|≤ϵ

� 1

0

∣∣∣K̃b1 (ω) f (u, ω)
∣∣∣ dudω))

= O

(
T−1

�
Π

∣∣∣K̃b1 (ω)
∣∣∣ dω) , (S.64)

using (S.26)-(S.27) and Assumption 4. Since K̃b1 (ω) is of reduced magnitude for ω > ϵ/2, the contribution
to A12 from B2 is, for large T ,∣∣∣∣∣

�
|ω|>ϵ/2

�
|α|≤ϵ/2

K̃b1 (ω) Ψ(2)
T (α)

� 1

0
(f (u, ω + α) − f (u, ω)) dudαdω

∣∣∣∣∣ = 0, (S.65)

This implies that A12 = O
(
T−1) .

As for A2 we apply a Taylor’s expansion of f (u, ω) around ω = 0 and we split the integral into two
parts for |ω| ≤ ϵ and |ω| > ϵ, denoted as A21 and A22, respectively. We have for |η| ≤ 1 depending on ω,

A21 =
�

|ω|≤ϵ
K̃b1 (ω)

� 1

0

df −1∑
j=1

f (j) (u, 0) ω
j

j! + f(df ) (u, ηω) ω
df

df ! − f(df ) (u, 0)
df ! µdf

(K) bdf

1,T

 dudω
=

df −1∑
j=1

�
Π
ωjK̃b1 (ω) dω

� 1

0
f (j) (u, 0) 1

j!du

+ d−1
f

�
|ω|≤b1,T π

ωdf K̃b1 (ω)
� 1

0

(
f(df ) (u, ηω) − f(df ) (u, 0)

)
dudω

= O

(�
|ω|≤b1,T π

∣∣∣K̃b1 (ω)
∣∣∣ |ω|df +ϱ dω

)
= O

(
b

df +ϱ
1,T

)
,

where we have used Assumption 8 and the fact that as b1,T → 0 the integration is within [−ϵ, ϵ] and that

by Assumption 4 f(df ) (u, 0) is Lipschitz continuous of order ϱ for all u ∈ [0, 1]. We can use the same
argument used for A12 to show that A22 = 0. □

S.B.2.5 Proof of Lemma S.13

From the definition of QT , we have

κT (0, s) = 2s−1 (s− 1)! (VTJT )−s (T/b1,T )−s/2 Tr((ΣV Wb1)s),

S-30



low frequency contamination in har inference

for s > 1. By Lemma S.3,

κT (0, s) = κT (0, s) (b1,TT )(s−2)/2 = 2s−1 (s− 1)! (2π)2s−1

(VTJT )s

 df∑
j=0

Lj (s) bj
1,T +O (ϵT (2s))

 . (S.66)

Using again Lemma S.3 with s = 2 to evaluate V2
T yields

V2
T

J2
T

4π2 = 1
4π2Tb1,T Var

(
ĴHAC,T

)
= 1

4π2Tb1,T Var
(

V′Wb1

T
V
)

= 2b1,T

4π2T
Tr
(
W 2

b1Σ2
V

)
= 2b1,T

4π2T

T (2π)3
df∑

j=0
Lj (2) bj−1

1,T + Tb−1
1,T ϵT (2)


= 4π

df∑
j=0

Lj (2) bj
1,T + ϵT (2) ,

where we have use the normality of Vt. Lemma S.3 implies that 0 < L0 (2) < ∞ and Lj (2) are fixed
constants independent of T . Then

(
VT

JT

2π

)−s

= (4π)−s/2
df∑

j=0
Hj (s) bj

1,T +O (ϵT (s)) , (S.67)

where H0 (s) = L0 (2)−s/2 and so on. Denoting c (0, s) = (4π)(s−2)/2 (s − 1)! and using (S.66)-(S.67) we

yield the following expression for the cumulants, κT (0, s) = c (0, s)
∑df

j=0 Pj (s) bj
1,T + O (ϵT (s)), where

Pj (s) =
∑j

t=0Ht (s)Lj−t (s) are constants not depending on T with P1 (s) = 0, P2 (s) = H0 (s)L2 (s) +
J2 (s)L0 (s), and so on. Setting Ξj (0, s) = c (0, s)Pj (s) the lemma follows. □

S.B.2.6 Proof of Lemma S.14

Note that for s > 0 we have

κT (2, s) = 2ss!ξ′
T (ΣV QT )s ΣV ξT = 2ss! 1

TJT

b
s/2
1,T

T s/2Vs
TJ

s
T

1′ (Wb1ΣV )s ΣV 1.

From Lemma S.4,

κT (2, s) = (Tb1,T )s/2 2ss! 1
TJT

b
s/2
1,T

T s/2Vs
TJ

s
T

1′ (Wb1ΣV )s ΣV 1

= (Tb1,T )s/2 2ss! 1
TJT

b
s/2
1,T

T s/2Vs
TJ

s
T

(
T (2π)2s+1

(� 1

0
f (u, 0) du

)s+1 (
K̃b1 (0)

)s

+ O
(
b−1−s

1,T log2s+1 T
))

=
( 2π
JT VT

)s 2π
� 1

0 f (u, 0) du
JT

(4π)s s!
(� 1

0
f (u, 0) du

)s

K (0)s +O (ϵT (s+ 2)) ,

S-31



alessandro casini, taosong deng and pierre perron

where we have used the fact that K̃b1 (0) = b−1
1,TK (0). Using Lemma S.11 and eq. (S.67), we yield

κT (2, s) =
( 2π
JT VT

)s (
1 +O

(
T−1 log T

))
(4π)s s!

(� 1

0
f (u, 0) du

)s

K (0)s +O (ϵT (s+ 2))

= (4π)−s/2 (4π)s s!
(� 1

0
f (u, 0) du

)s

K (0)s
df∑

j=0
Hj (s) bj

1,T +O (ϵT (s+ 2)) ,

where theHs (j) are as in the proof of Lemma S.13. The lemma follows by setting Ξj(2, s) = (4π)−s/2 (4π)s s!
(
� 1

0 f (u, 0) du)sK (0)sHj (s). □

S.B.2.7 Proof of Theorem 3

We first construct the approximation for ψT (t). It follows from Velasco and Robinson (2001) and
Taniguchi and Puri (1996) that only the cumulants κT (0, s) and κT (2, s) are nonzero, and that the
cumulant generating function is given by

logψT (t) = 1
2 ∥it∥2 +

τ+1∑
s=3

(Tb1,T )(2−s)/2

s!
∑

|r|=s

s!
r1!r2!κT (r1, r2) (it1)r1 (it2)r2 +RT (τ) , (S.68)

where r = (r1, r2)′ with r1 ∈ {0, 2} and |r| = r1 + r2, and

RT (τ) = (Tb1,T )−τ/2
(
R0,τ+2 (it2)τ+2 +R2,τ (it1)2 (it2)τ

)
, τ even,

RT (τ) = (Tb1,T )−τ/2 1
(τ + 2)!

(
κT (0, τ + 2) (it2)τ+2 + (τ + 2) (τ + 1)

2 κT (2, τ) (it1)2 (it2)τ
)

+ (Tb1,T )−τ/2
(
R0,τ+3 (it2)τ+3 +R2,τ+1 (it1)2 (it2)τ+1

)
, τ odd,

where the R0,j and R2,j are bounded. Using Lemmas S.13-S.14, we have

logψT (t) = 1
2 ∥it∥2 +

τ+1∑
s=3

(Tb1,T )(2−s)/2

s!

(
κT (0, s) (it2)s + s (s− 1)

2 κT (2, s− 2) (it1)2 (it2)s−2
)

+RT (τ)

= 1
2 ∥it∥2 +

τ+1∑
s=3

(Tb1,T )(2−s)/2
(
BT (s, t) +

{
(it2)s + (it1)2 (it2)s−2

}
O (ϵT (s))

)
+RT (τ) ,

where

BT (s, t) = 1
s!

df∑
j=0

bj
1,T

{
Ξj(0, s) (it2)s + s (s− 1)

2 Ξj(2, s− 2) (it1)2 (it2)s−2
}
.
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The approximation of the characteristic function of u using its cumulant generating function is

AT (t, τ) = exp
{1

2 ∥it∥2
}1 +

τ+1∑
j=3

(Tb1,T )(2−j)/2∑
r

τ+1∏
n=3

[BT (n, t)]rn
1

r3! · · · rτ+1!

 ,
where r = (r3, . . . , rτ+1)′, rn ∈ {0, 1, . . .}, and the summation is over all r satisfying

∑τ+1
n=3 (n− 2) rn =

j − 2. To obtain a second-order Edgeworth expansion we set τ = 2 and we include in AT (t, 2) terms up
to order (Tb1,T )−1/2,

AT (t, 2) = exp
{1

2 ∥it∥2
}(

1 +BT (3, t) (Tb1,T )−1/2
)
, (S.69)

where in BT (3, t) includes only the leading term in bj
1,T (j = 0) in the expansion for the cumulant of

order three. Note that the characteristic function of Q(2)
T (·) is AT (t, 2).

The rest of the proof consists of studying the distance between the true distribution and its Edgeworth
approximation. Lemma S.16 studies the Edgeworth approximation for the characteristic function for
∥t∥ ≤ c1

√
Tb1,T , whereas Lemma S.8 analyzes its tail behavior. The desired result follows from the same

steps as in Theorem 1 of Velasco and Robinson (2001) which relies on Lemma S.2. □

Lemma S.16. Let Assumptions 4, 6-7 and b1,T + (Tb1,T )−1 log5 T → 0 hold. There exists δ1 > 0 such that,
for ∥t∥ ≤ δ1

√
Tb1,T and a number d1 > 0,

|ψT (t) −AT (t, 2)| ≤ exp
{

−d1 ∥t∥2
}
F̃ (∥t∥)O

(
(Tb1,T )−1/2

(
b2

1,T + ϵT (3)
)

+ 1
Tb1,T

)
,

where F̃ (∥t∥) is a polynomial in t with bounded coefficients and AT (t, 2) is defined as in (S.69).

Proof of Lemma S.16. It is similar to the proof of Lemma 14 in Velasco and Robinson (2001). □

S.B.2.8 Proof of Lemma S.15

It is similar to the proof of Lemma 5 in Velasco and Robinson (2001). □

S.B.2.9 Proof of Theorem 4

Consider the transformation s = (s1, s2)′ = (Z̃T (h1, h2), h2)′ = ∆T (h) say, and its inverse h = ∆−1
T (s) =

(h†
1(s1, s2), s2)′. Let LT = {h : |hi| < l1T

γ , 0 < γ < df/(3(1 + 2df )), i = 1, 2}, where li are some fixed
constants. Using (1 + x)−1 = 1 − x+ x2 − x3 + . . . for |x| < 1, we have uniformly in the set LT ,

h†
1 (s) = s1

[
1 + 1

2c1b
df

1,T + 1
2

√
4π ∥K2∥ s2 (Tb1,T )−1/2

]
+ o

(
(Tb1,T )−1/2

)
.

We have P(ZT ∈ C) = P(h ∈ ∆−1
T (C × R)) and from Theorem 3,

sup
C

∣∣∣P (h ∈ ∆−1
T (C × R)

)
−Q(2)

T

(
Z−1

T (C × R)
)∣∣∣ = o

(
(Tb1,T )−1/2

)
+cost sup

C
Q(2)

T

((
∂∆−1

T (C × R)
)2ϕT

)
,
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where ϕT = (Tb1,T )−ϖ with 1/2 < ϖ < 1. The rest of the proof is similar to the proof of Theorem 2 in
Velasco and Robinson (2001). □

S.B.3 Additional Lemmas Used for the Proofs of Theorems 5-6

Lemma S.17. Let Assumptions 4, 6, 8-9 and 11-12 hold. Then,

E
(
Ĵ∗

DK,T

)
− 2π

� 1

0
f (u, 0) du− 2π

� 1
0 f

(df ) (u, 0) du
df ! µdf

(K) bdf

1,T

− πb2
2,T

� 1

0
x2K2 (x) dx

�
C̃

∂2

∂u2 f (u, 0) du− 2πb2
2,T ∆f (0)

= O
(
b

df +ϱ
1,T + (Tb2,T )−1 log (Tb2,T )

)
+ o

(
b2

2,T

)
.

The term 2πb2
2,T ∆f (0) in Lemma S.17 is the contribution to the bias due to the local time-smoothing

in the neighborhoods involving a discontinuity point.
We now consider the cumulants of the normalized spectral estimate v2.

Lemma S.18. Let Assumptions 4, 6-7 and 11-12 hold. For s > 2 with ϵT b2,T
(s) = b

df +ϱ
1,T + (Tb2,T b1,T )−1

log2s−1(Tb2,T ) → 0, we have

κ2,T (0, s) ≜ κ2,T (0, s) (Tb1,T b2,T )(s−2)/2

=
df∑

j=0
Ξ2,j (0, s) bj

1,T + b2
2,T

df∑
j=0

(
Ξ̃2,j (0, s) + Ξ̃3,j (0, s)

)
bj

1,T +O
(
ϵT b2,T

(s)
)
,

where Ξ2,j (0, s) is bounded and depends on K, K2 and on f (j) (u, 0) (j = 0, . . . , df ), Ξ̃2,j (0, s) is bounded
and depends on K, K2, f

(j) (u, 0) and
(
∂2/∂u2) f (u, ω) and Ξ̃3,j (0, s) is bounded and depends on K, K2,

f (j) (u, 0) and ∆f (ω).

We now consider the cross-cumulants of v.

Lemma S.19. Let Assumptions 4, 6-7 and 11-12 hold. For s > 0 with ϵT b2,T
(s+ 2) → 0,

κ2,T (2, s) ≜ κ2,T (2, s) (Tb2,T b1,T )s/2 =
df∑

j=0

(
Ξ2,j(2, s) + b2

2,T

(
Ξ̃2,j(2, s) + Ξ̃3,j(2, s)

))
bj

1,T

+O
(
ϵT b2,T

(s+ 2)
)
,

where Ξ2,j(2, s) is bounded and depends on K, K2 and f (j) (u, 0) (j = 0, . . . , df ), Ξ̃2,j (2, s) is bounded

and depends on K, K2, f
(j) (u, 0) and

(
∂2/∂u2) f (u, ω), and Ξ̃3,j (2, s) is bounded and depends on K, K2,

f (j) (u, 0) and ∆f (ω).
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S.B.3.1 Proof of Lemma S.17

For r ∈ C̃, using a second-order Taylor’s expansion as in the proof of Theorem 7.3 in Casini and Perron
(2024), we yield

E
(
ĨT (r, ω)

)
= E

 1
2πTb2,T

∣∣∣∣∣
T∑

t=1
exp (−iωt) Ṽt (r)

∣∣∣∣∣
2

= 1
2π

1
Tb2,T

⌊T b2,T ⌋−1∑
k=−⌊T b2,T ⌋+1

T∑
t=|k|+1

�
Π
K2

(
(Tr − (t− k/2)) /T

b2,T

)
f ((t+ k/2)/T, λ) eik(ω−λ)dλ

+O
(
(Tb2,T )−1 log (Tb2,T )

)
=

�
Π
f (r, λ) Ψ(2)

T b2,T
(ω − λ) dλ

+
b2

2,T

2

� 1

0
x2K2 (x) dx ∂

2

∂u2 f (u, ω) |u=r + o
(
b2

2,T

)
+O

(
(Tb2,T )−1 log (Tb2,T )

)
.

In a neighborhood of a break point λ0
j , let r = λ0

j + sb2,T for some s ∈ (0, 1). Then,

E
(
ĨT (r, ω)

)
=

�
Π
f (r, λ) Ψ(2)

T b2,T
(ω − λ) dλ

+ b2,T

(� 1−s

0
xK2 (x) dx ∂

∂u−
f
(
λ0

j , ω
)

+
� 1

1−s
xK2 (x) dx ∂

∂u+
f
(
λ0

j , ω
))

.

When integrating the last term above over r we have

b2
2,T

m0∑
j=1

� 1

0

(
∂

∂u−
f
(
λ0

j , ω
)� 1−s

0
xK2 (x) dx+ ∂

∂u+
f
(
λ0

j , ω
)� 1

1−s
xK2 (x) dx

)
ds.

Thus, we obtain

E
(
Ĵ∗

DK,T

)
= 2π

�
Π
K̃b1 (ω)

� 1

0

�
Π
f (u, α+ ω) Ψ(2)

T (α) dλdudω

+ πb2
2,T

� 1

0
x2K2 (x) dx

�
Π
K̃b1 (ω)

�
C̃

∂2

∂u2 f (u, ω) dudω

+ 2πb2
2,T

�
Π
K̃b1 (ω) ∆f (ω) dω + o

(
b2

2,T

)
+O

(
(Tb2,T )−1 log (Tb2,T )

)
.

Then, using
�

Π Ψ(2)
T (ω) dω = 1,

�
Π K̃b1 (ω) dω = 1, Assumption 12 and similar arguments as in the proof

of Lemma S.12 applied to the terms involving ∂2

∂u2 f (u, ω) and ∆f (ω), we have

E
(
Ĵ∗

DK,T

)
− 2π

� 1

0
f (u, 0) du− 2πbdf

1,Tµdf
(K)

� 1

0

f(df ) (u, 0)
df ! du
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− πb2
2,T

� 1

0
x2K2 (x) dx

�
C̃

∂2

∂u2 f (u, 0) du− 2πb2
2,T ∆f (0)

= 2π
�

Π
K̃b1 (ω)

� 1

0

�
Π

Ψ(2)
T (α) (f (u, ω + α) − f (u, ω)) dαdudω

+ 2π
�

Π
K̃b1 (ω)

� 1

0

f (u, ω) − f (u, 0) − b
df

1,Tµd (K) f
(df ) (u, 0)
df !

 dudω
+ o

(
b2

2,T

)
+O

(
(Tb2,T )−1 log (Tb2,T )

)
+ o

(
b2

2,T b
q2
1,T

)
≜ A1 +A2 + o

(
b2

2,T

)
+O

(
(Tb2,T )−1 log (Tb2,T )

)
.

To conclude the proof, note that by Lemma S.12 we have |A1| + |A2| = O
(
T−1 log T

)
+O(bdf +ϱ

1,T ). □

S.B.3.2 Proof of Lemma S.18

We have
κ2,T (0, s) = 2s−1 (s− 1)! (V2,TJT )−s (Tb2,T /b1,T )−s/2 Tr((Σ

Ṽ
Wb1)s),

for s > 1. By Lemma S.5,

κ2,T (0, s) = κ2,T (0, s) (Tb1,T b2,T )(s−2)/2 (S.70)

= 2s−1 (s− 1)! (2π)2s−1

(V2,TJT )s

 df∑
j=0

Lj (s) bj
1,T + b2

2,T

df∑
j=0

(
(L2,j (s) + L3,j (s)) bj

1,T

)
+O

(
ϵT b2,T

(s)
) .

Using Lemma S.5 to evaluate V2
2,T yields

V2
2,T

J2
T

4π2 = 1
4π2Tb1,T b2,T Var

(
Ĵ∗

DK,T

)
= Tb1,T b2,T Var

(� 1

0
Ṽ (r)′ Wb1

Tb2,T
Ṽ (r) dr

)

= 2b1,T

4π2Tb2,T
Tr
(
W 2

b1Σ2
Ṽ

)

= 2b1,T

4π2 (2π)3

 df∑
j=0

Lj (2) bj−1
1,T + b2

2,T

df∑
j=0

(
(L2,j (s) + L3,j (s)) bj−1

1,T

)+ Tb2,T b
−1
1,TO

(
ϵT b2,T

(2)
)

= 4π

 df∑
j=0

Lj (2) bj
1,T + b2

2,T

df∑
j=0

(
(L2,j (s) + L3,j (s)) bj

1,T

)+O
(
ϵT b2,T

(2)
)
,

where we have use the normality of {Vt}. Since Lemma S.5 implies that 0 < L0 (2) < ∞ and Lj (2) are
fixed constants independent of T , we then have

(
V2,T

JT

2π

)−s

= (4π)−s/2
df∑

j=0
Hj (2) bj

1,T +O
(
ϵT b2,T

(2)
)
, (S.71)
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where H0 (s) = L0 (2)−s/2 and so on. Using (S.70)-(S.71) we yield

κ2,T (0, s) = c (0, s)

 df∑
j=0

P2,j (s) bj
1,T + b2

2,T

df∑
j=0

((
P̃2,j (s) + P̃3,j (s)

)
bj

1,T

)+O
(
ϵT b2,T

(2)
)
,

where c (0, s) = (4π)(s−2)/2 (s− 1)!, P2,j (s) =
∑j

t=0Ht (s)Lj−t (s) are constants not depending on T with

P2,1 (s) = 0, P2,2 (s) = H0 (s)L2 (s) + H2 (s)L0 (s) and so on, and P̃2,j (s) =
∑j

t=0Ht (s)L2,j−t (s) and

P̃3,j (s) =
∑j

t=0Ht (s)L3,j−t (s). The lemma follows from setting Ξ2,j(0, s) = c (0, s)P2,j (s), Ξ̃2,j(0, s) =
c (0, s) P̃2,j (s) and Ξ̃2,j(0, s) = c (0, s) P̃3,j (s). □

S.B.3.3 Proof of Lemma S.19

For s > 0 we have

κ2,T (2, s) = 2ss!ξ′
T

(
Σ

Ṽ
Q2,T

)s
Σ

Ṽ
ξT = 2ss! 1

Tb2,TJT

b
s/2
1,T

(Tb2,T ) s/2Vs
2,TJ

s
T

1′
(
Wb1Σ

Ṽ

)s
Σ

Ṽ
1.

From Lemma S.6, we have

κ2,T (2, s) = (Tb1,T b2,T )s/2 2ss! 1
Tb2,TJT

b
s/2
1,T

(Tb2,T ) s/2Vs
2,TJ

s
T

1′
(
Wb1Σ

Ṽ

)s
Σ

Ṽ
1

= (Tb1,T b2,T )s/2 2ss! 1
Tb2,TJT

b
s/2
1,T

(Tb2,T ) s/2Vs
2,TJ

s
T

×
(
Tb2,T (2π)2s+1

((� 1

0
f (u, 0) du

)s+1 � 1

0
Ks+1

2 (x) dx+ b2
2,T Λ̃2

(
f ′′, C̃, s

)
+ b2

2,T Λ̃3
(
f ′,

{
λ0

j , j = 1, . . . , m0
}
, s
))(

K̃b1 (0)
)s

+O

(
b1−s

1,T log2s+1 (Tb2,T ) + b−s
1,T

log2s+1 (Tb2,T )
Tb2,T

))

=
(

2π
JT V2,T

)s 2π
� 1

0 f (u, 0) du
JT

(4π)s s!
((� 1

0
f (u, 0) du

)s � 1

0
Ks+1

2 (x) dx+ b2
2,T

(
Λ̃∗

2 + Λ̃∗
3

))
K (0)s

+O
(
ϵT b2,T

(s+ 2)
)
,

where Λ̃∗
2 and Λ̃∗

3 are equal to Λ̃2 and Λ̃3, respectively, without the factor
� 1

0 f (u, 0) du, and we have used

K̃b1 (0) = b−1
1,TK (0). Using Lemma S.11 and (S.71), we yield

κ2,T (2, s) =
(
JT V2,T

2π

)−s (
1 +O

(
(Tb2,T )−1 log(Tb2,T )

))
× (4π)s s!

((� 1

0
f (u, 0) du

)s � 1

0
Ks+1

2 (x) dx+ b2
2,T

(
Λ̃∗

2 + Λ̃∗
3

))
K (0)s +O

(
ϵT b2,T

(s+ 2)
)
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= (4π)−s/2 (4π)s s!
((� 1

0
f (u, 0) du

)s � 1

0
Ks+1

2 (x) dx+ b2
2,T

(
Λ̃∗

2 + Λ̃∗
3

))
K (0)s

df∑
j=0

Hj (s) bj
1,T

+O
(
ϵT b2,T

(s+ 2)
)
,

where the Hj (s) are as in (S.71). Letting

Ξ2,j(2, s) = (4π)−s/2 (4π)s s!
(� 1

0
f (u, 0) du

)
sK (0)s

� 1

0
Ks+1

2 (x) dxHj (s)

Ξ̃2,j(2, s) = (4π)−s/2 (4π)s s!Λ̃∗
2K (0)s

� 1

0
Ks

2 (x) dxHj (s)

Ξ̃3,j(2, s) = (4π)−s/2 (4π)s s!Λ̃∗
3K (0)s

� 1

0
Ks

2 (x) dxHj (s) ,

the lemma follows. □

S.B.3.4 Proof of Theorem 5

It follows from Velasco and Robinson (2001) and Taniguchi (1987) that only the cumulants κ2,T (0, s) and
κ2,T (2, s) are nonzero, and that the cumulant generating function is given by

logψT (t) = 1
2 ∥it∥2 +

τ+1∑
s=3

(Tb1,T b2,T )(2−s)/2

s!
∑

|r|=s

s!
r1!r2!κ2,T (r1, r2) (it1)r1 (it2)r2 +R∗

T (τ) , (S.72)

where r = (r1, r2)′, with r1 ∈ {0, 2} and |r| = r1 + r2, and

R∗
T (τ) = (Tb1,T b2,T )−τ/2

[
R′

0,τ+2 (it2)τ+2 +R′
2,τ (it1)2 (it2)τ

]
, τ even,

R∗
T (τ) = (Tb1,T b2,T )−τ/2 1

(τ + 2)!

[
κ2,T (0, τ + 2) (it2)τ+2 + (τ + 2) (τ + 1)

2 κ2,T (2, τ) (it1)2 (it2)τ
]

+ (Tb1,T b2,T )−τ/2
[
R′

0,τ+3 (it2)τ+3 +R′
2,τ+1 (it1)2 (it2)τ+1

]
, τ odd,

where the R′
0,j and R2,j are bounded. Using Lemmas S.18-S.19, we have

logψT (t) = 1
2 ∥it∥2 +

τ+1∑
s=3

(Tb1,T b2,T )(2−s)/2

s!

(
κ2,T (0, s) (it2)s + s (s− 1)

2 κ2,T (2, s− 2) (it1)2 (it2)s−2
)

+R∗
T (τ)

= 1
2 ∥it∥2 +

τ+1∑
s=3

(Tb1,T b2,T )(2−s)/2
[
B2,T (s, t) +

{
(it2)s + (it1)2 (it2)s−2

}
O (ϵT (s))

]
+R∗

T (τ) ,
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where

B2,T (s, t) = 1
s!

df∑
j=0

bj
1,T

{(
Ξ2,j(0, s) + b2

2,T

(
Ξ̃2,j(0, s) + Ξ̃3,j(0, s)

))
(it2)s

+ s (s− 1)
2

(
Ξ2,j(2, s− 2) + b2

2,T

(
Ξ̃2,j(2, s− 2) + Ξ̃3,j(2, s− 2)

))
(it1)2 (it2)s−2

}
.

The approximation of the characteristic function of v using its cumulant generating function is

A2,T (t, τ) = exp
(1

2 ∥it∥2
)1 +

τ+1∑
j=3

(Tb1,T b2,T )(2−j)/2∑
r

τ+1∏
n=3

(B2,T (n, t))rn
1

r3! . . . rτ+1!

 ,
where r = (r3, . . . , rτ+1)′, rn ∈ {0, 1, . . .}, and the summation is over all r satisfying

∑τ+1
n=3 (n− 2) rn =

j−2. To obtain a second-order Edgeworth expansion we set τ = 2 and we include in A2,T (t, 2) the terms
up to order (Tb1,T b2,T )−1/2,

A2,T (t, 2) = exp
(1

2 ∥it∥2
) [

1 +B2,T (3, t) (Tb1,T b2,T )−1/2
]
, (S.73)

where B2,T (3, t) includes only the leading term in bj
1,T (j = 0) in the expansion for the cumulant of order

three. Note that the characteristic function of Q(2)
2,T (·) is A2,T (t, 2). We use Lemma S.2 with kernel G to

bound the distance between PT and Q(2)
2,T . First,∥∥∥(PT − Q(2)

2,T

)
• GϕT

∥∥∥
TV

≤ 2 sup
B⊂B(0, rT )

∣∣∣(PT − Q(2)
2,T

)
• GϕT

∣∣∣+ 2 sup
B⊂B(0, rT )c

∣∣∣(PT − Q(2)
2,T

)
• GϕT

∣∣∣ ,
where B (0, rT ) is a neighborhood around 0 with radius rT , rT = (Tb1,T b2,T )a with a > 0, and ∥·∥TV
denotes the total variation norm. For B ⊂ B (0, rT )c we have uniformly∣∣∣(PT − Q(2)

2,T

)
• GϕT

∣∣∣ ≤ |PT • GϕT
| +

∣∣∣Q(2)
2,T • GϕT

∣∣∣
≤ P (∥v∥ ≥ rT /2) + 2GϕT

(B (0, rT /2)c) + 2Q(2)
2,T (B (0, rT /2)c) .

By definition of q
(2)
2,T (v) it follows that Q(2)

2,T (B (0, rT /2)c) = o((Tb1,T b2,T )−1/2). In view of the definition

of v2, we have P{∥v∥ ≥ rT /2} = o((Tb1,T b2,T )−1/2). By Lemma S.2,

GϕT
(B (0, rT /2)c) = O

(
(ϕT /rT )3

)
= O

(
(Tb1,T b2,T )−3(ϖ+a)

)
= o

(
(Tb1,T b2,T )−1/2

)
.

For B ⊂ B (0, rT ) we have by Fourier inversion∣∣∣(PT − Q(2)
2,T

)
• GϕT

∣∣∣ ≤ (2π)−1 πr2
T

� ∣∣∣(P̂T − Q̂(2)
2,T

)
(t) ĜϕT

(t)
∣∣∣ dt, (S.74)
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where P̂T denotes the characteristic function of PT (i.e., P̂T = ψT (t)) and Q̂(2)
2,T = A2,T (t, 2). Let

a′ = 8 × 24/3π−1/3. Using Lemma S.20, a bound for (S.74) is given by

O
(
(Tb1,T b2,T )2a−1/2

) [
b2

1,T + ϵT b2,T
(3)
]�

∥t∥≤c2
√

T b1,T b2,T

∣∣∣e−d2∥t∥2
F (∥t∥)

∣∣∣ ∣∣∣ĜϕT
(∥t∥)

∣∣∣ dt (S.75)

+O (Tb1,T b2,T )2a
�

c2
√

T b1,T b2,T <∥t∥≤a′(T b1,T b2,T )ϖ

� ∣∣∣(P̂T − Q̂(2)
2,T

)
(t) ĜϕT

(t)
∣∣∣ dt.

(S.76)

The integral over ∥t∥ > a′ (Tb1,T b2,T )ϖ is equal to zero from (S.29). Choosing a ≤ 1/4 (S.75) is

o(((Tb1,T b2,T ))−1/2).
By Lemma S.10, for c2m2,T < ∥t∥ the expression in (S.76) is bounded by

O
(
(Tb1,T b2,T )2a

)�
c2

√
T b1,T b2,T <∥t∥≤a′(T b1,T b2,T )ϖ

e−d3m2
2,T dt + o

(
(Tb1,T b2,T )−1/2

)
,

for some d3 > 0. This implies that (S.76) is bounded byO(((Tb1,T b2,T )2(ϖ+a))e−d3m2
2,T )+o((Tb1,T b2,T )−1/2)

since by Assumptions 10-11 it holds m2,T ≥ ϵ(Tb2,T )ϵ for some ϵ > 0 depending on q and p. □

Lemma S.20. Let Assumptions 4, 6-7, 11-12 and b1,T + (Tb1,T b2,T )−1 log5(Tb2,T ) → 0 hold. Then there
exists a c2 > 0 such that, for ∥t∥ ≤ c2

√
Tb1,T b2,T and a d2 > 0,

|ψT (t) − A2,T (t, 2)| ≤ exp
(
−d2 ∥t∥2

)
F̃ (∥t∥)O

(
(Tb1,T b2,T )−1/2

(
b2

1,T + ϵT b2,T
(3)
)

+ 1
Tb1,T b2,T

)
,

where F̃ (∥t∥) is a polynomial in t with bounded coefficients and A2,T (t, 2) is defined in (S.73).

Proof of Lemma S.20. From Feller (1971, p. 535) for complex α and β it holds that |ea − 1 − b| ≤
eγ(|a− b| + |b|2 /2), where γ = max{|a| , |b|}. We set

a = logψ (t) − 1
2 ∥it∥2 = (Tb1,T b1,T )−1/2 ∑

|r|=3

s!
r1!r2!κ2,T (r1, r2) (it1)r1 (it2)r2 +R∗

T (2) ,

where the right-hand side follows from (S.72). Let b = (Tb1,T b1,T )−1/2B2,T (3, t) where B2,T (3, t) is
defined after (S.73). Using Lemmas S.18-S.19 for s = 3 we have

|a− b| ≤
∣∣∣∣∣(Tb1,T b1,T )−1/2O

(
b2

1,T + ϵT b2,T
(3)
) (

(it2)3 + (it1)2 (it2)
)

(S.77)

+ 1
Tb1,T b2,T

(
R′

0,4 (it2)4 +R′
2,2 (it1)2 (it1)2

)∣∣∣∣∣
≤ P1 (∥t∥)O

(
(Tb1,T b1,T )−1/2

(
b2

1,T + ϵT b2,T
(3)
)

+ 1
Tb1,T b2,T

)
,

where P1 is a polynomial of degree of 4. Note that |b|2 /2 ≤ P2 (∥t∥)O(Tb1,T b1,T )−1) where P2 is a
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polynomial of degree 6. Then, for some polynomial P

|a− b| + |b|2

2 ≤ P (∥t∥)O
(

(Tb1,T b1,T )−1/2
(
b2

1,T + ϵT b2,T
(3)
)

+ 1
Tb1,T b2,T

)
.

Next, we need to find a bound for γ = max {|a| , |b|}. For ∥t∥ ≤ cb

√
Tb1,T b2,T with cb > 0 we have

|b| =
∣∣∣(Tb1,T b1,T )−1/2B2,T (3, t)

∣∣∣ ≤ ∥t∥2
{ 1

3! (Tb1,T b1,T )−1/2 [|Ξ2,0(0, 3)| + 3 |Ξ2,0(2, 1)| ∥t∥]
}

(S.78)

≤ ∥t∥2
{
cb

3! (|Ξ2,0(0, 3)| + 3 |Ξ2,0(2, 1)|)
}

≤ ∥t∥2 Tb,

where 0 < Tb < 1/4 by choosing cb sufficiently small. For a given a we can choose a ca > 0 sufficiently
small such that, for ∥t∥ ≤ ca

√
Tb1,T b1,T ,

|a| ≤ ∥t∥2
{

1
3! (Tb1,T b1,T )−1/2

[
|Ξ2,0(0, 3)| + 3 |Ξ2,1(2, 1)| +O

(
b2

1,T + ϵT b2,T
(3)
)]

(S.79)

× ∥t∥ + (Tb1,T b1,T )−1
[∣∣∣R′

0,4

∣∣∣+ ∣∣∣R′
2,2

∣∣∣] ∥t∥2
}

≤ ∥t∥2
{
ca

3!
[
|Ξ2,0(0, 3)| + 3 |Ξ2,0(2, 1)| +O

(
b2

1,T + ϵT b2,T
(3)
)]

+ c2
a

[∣∣∣R′
0,4

∣∣∣+ ∣∣∣R′
2,2

∣∣∣]}
≤ ∥t∥2

{1
4 +O

(
b2

1,T + ϵT b2,T
(3)
)}

.

From (S.78)-(S.79) we have for ∥t∥ ≤ c2
√
Tb1,T b1,T with c2 = min {ca, cb},

exp (γ) ≤ exp
{

∥t∥2
[1

4 +O
(
b2

1,T + ϵT b2,T
(3)
)]}

,

or

exp
{

−1
2t2 + γ

}
≤ exp

{
∥t∥2

[
−1

4 +O
(
b2

1,T + ϵT b2,T
(3)
)]}

≤ exp
{

−d2 ∥t∥2
}
, (S.80)

for some d2 > 0. Note that ψ (t) = exp{1
2 ∥it∥2 + a} and A2,T (t, 2) = exp{1

2 ∥it∥2}(1 + b). Using
(S.77)-(S.80) the result of the lemma follows. □

S.B.3.5 Proof of Theorem 6

Consider the following linear stochastic approximation to UT ,

ŨT ≜ v1

(
1 − 1

2c1b
df

1,T − 1
2

√
4π ∥K∥2 ∥K2∥2 v2 (Tb1,T b2,T )−1/2 − 1

2c2b
2
2,T

)
. (S.81)
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Consider the transformation s = (s1, s2)′ = (ŨT (h1, v2) , v2)′ = ∆T (v) say, and its inverse v = ∆−1
T (s) =

(h†
1 (s1, s2) , s2)′. Let γ > 0 be such that

T 3γ

(Tb1,T b2,T )3/2 → 0,

and define LT = {v : |vi| < liT
γ , i = 1, 2}, where li are some fixed constants. Using (1 + x)−1 =

1 − x+ x2 − x3 + . . . for |x| < 1, we have uniformly in the set LT ,

h†
1 (s) = s1

[
1 + 1

2c1b
df

1,T + 1
2

√
4π ∥K2∥ ∥K2∥2 s2 (Tb1,T b2,T )−1/2 + 1

2c2b
2
2,T

]
+ o

(
(Tb1,T b2,T )−1/2

)
.

We have P(UT ∈ C) = P(v ∈ ∆−1
T (C × R)) and from Theorem 3,

sup
C

∣∣∣P (v ∈ ∆−1
T (C × R)

)
−Q(2)

2,T

(
∆−1

T (C × R)
)∣∣∣

= o
(
(Tb1,T b2,T )−1/2

)
+ cost sup

C
Q(2)

2,T

((
∂∆−1

T (C × R)
)2ϕT

)
, (S.82)

where ϕT = (Tb1,T b2,T )−ρ, 1/2 < ρ < 1. From the continuity of ∆T , we can obtain, for some c > 0,

Q
(2)
2,T

((
∂∆−1

T (C × R)
)2ϕT

)
≤ Q

(2)
2,T

(
∆−1

T (∂C)cϕT × R
)
, (S.83)

and

Q
(2)
2,T

(
∆−1

T (C × R)
)

=
�

LT ∩∆−1
T (C×R)

φ2 (x) q(2)
2,T (x) dx + o

(
(Tb1,T b2,T )−1/2

)
=

�
L∗

T ∩{C×R}
φ2
(
∆−1

T (s)
)
q

(2)
2,T

(
∆−1

T (s)
)

|J | ds + o
(
(Tb1,T b2,T )−1/2

)
,

where φ2 (·) is the bivariate standard normal density, L∗
T = ∆T (LT ), and |J | is the Jacobian of the

transformation. Neglecting the terms that contribute o((Tb1,T b2,T )−1/2) to the integrals, we yield

φ2
(
∆−1

T (s)
)

= φ (s1)φ (s2)
(

1 − 1
2s

2
1

[
c1b

df

1,T + 1
2

√
4π ∥K∥2 ∥K2∥2 s2 (Tb1,T b2,T )−1/2 + 1

2c2b
2
2,T

])
,

(S.84)

and

q
(2)
2,T (v) = 1 + 1

3! (Tb1,T b2,T )−1/2 (Ξ2,0 (0, 3) H3 (v2) + Ξ2,0 (2, 1) H2 (h1) H1 (v2)) , (S.85)

where

|J | = 1 + 1
2c1b

df

1,T + 1
2

√
4π ∥K2∥ ∥K2∥2 s2 (Tb1,T b2,T )−1/2 + 1

2c2b
2
2,T .
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For j = 1, 2, 3 let pj (s) denote polynomials not depending on T . We have

Q
(2)
2,T

(
∆−1

T (C × R)
)

=
�

C
φ (s1)

{�
R

[
1 + p1 (s) (Tb1,T b2,T )−1/2 + p2 (s) bdf

1,T + p3 (s) b2
2,T

]
φ (s2) ds2

}
ds1

(S.86)

+ o
(
(Tb1,T b2,T )−1/2

)
=

�
C
φ (s1)

[
1 + r1 (s1) (Tb1,T b2,T )−1/2 + r2 (s1) bdf

1,T + r3 (s1) b2
2,T

]
ds1

+ o
(
(Tb1,T b2,T )−1/2

)
,

where rj (s1) are polynomials in s1 for j = 1, 2, 3 with bounded coefficients. Integration with respect
to s2 in R yields r1 (x) = 0, r2 (x) = −2−1c1

(
x2 − 1

)
and r3 (x) = −2−1c2

(
x2 − 1

)
. Using (S.82)-(S.86)

provides the second-order Edgeworth expansion for the linear stochastic approximation ŨT . Since Lemma
S.21 below shows that ŨT and UT have the same Edgeworth expansion, the proof is concluded. □

Lemma S.21. Let Assumptions 4, 5 (p > 1) and 6-8, 11-13 hold. Then, UT has the same Edgeworth
expansion as ŨT uniformly for convex Borel sets up to the order O((Tb1,T b2,T )−1/2).

Proof of Lemma S.21. We first expand UT (v) around 0 in LT with |η2| ≤ 1,

UT = dTh1 − 1
2d

3
T V2,Th1v2 (Tb1,T b2,T )−1/2 + U∗

1,T (Tb1,T b2,T )−1 , (S.87)

where dT = (1 + B2,T )−1/2 and

U∗
1,T = 3

8
(
1 + B2,T + η2V2,T v2 (Tb1,T b2,T )−1/2

)−5/2
V2

2,Th1v
2
2.

We now express UT in terms of ŨT where the latter is defined in (S.81). Substituting for B2,T and V2,T

in (S.87), we yield UT = ŨT + U∗
T (Tb1,T b2,T )−1 where U∗

T =
∑3

i=1 U
∗
i,T ,

U∗
2,T = h1

(
O
(
(b1,T b2,T ) −1 log T + Tb2,T b

1+df +ϱ
1,T

)
+ o

(
Tb3

2,T b1,T

))
and

U∗
3,T = h1v2O

(
(Tb1,T b2,T )1/2

(
b2

1,T + ϵT (2)
))
.

We now show that U∗
T (Tb1,T b2,T )−1 can be neglected with error o((Tb1,T b2,T )1/2). This follows from

Theorem 2 in Chibisov (1972) provided that the following condition holds,

P
(
|U∗

T | > γT

√
Tb1,T b2,T

)
≤

3∑
i=1

P
(∣∣∣U∗

i,T

∣∣∣ > 1
3γT

√
Tb1,T b2,T

)
= o

(
(Tb1,T b2,T )−1/2

)
, (S.88)

for some positive sequence {γT } such that γT → 0 and γT
√
Tb1,T b2,T → ∞. Note that

(Tb1,T b2,T )−1/2 U∗
2,T = h1O

(
(Tb2,T )1/2 b

−3/2
1,T (Tb2,T )−1 log T + (Tb2,T b1,T )1/2 b

df +ϱ
1,T

)
.
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By Assumption 13 the right-hand side above is O((Tb2,T b1,T )−υ) for some υ > 0. Further,

(Tb1,T b2,T )−1/2 U∗
3,T = h1v2O

(
b2

1,T + ϵT (2)
)

= O((Tb2,T b1,T )−υ),

for some υ > 0. Since h1 and v2 have finite moments of all orders, we can take γT = 1/ log T and apply
Chebyshev’s inequality to establish P(|U∗

i,T | > 3−1γT
√
Tb1,T b2,T ) = o((Tb1,T b2,T )−1/2) for i = 2, 3.

It remains to show P(|U∗
1,T | > 3−1γT

√
Tb1,T b2,T ) = o((Tb1,T b2,T )−1/2). We have

P
(∣∣∣U∗

1,T

∣∣∣ > 1
3γT

√
Tb1,T b2,T

)
< P

(∣∣∣∣38V2
2,Th1v

2
2

∣∣∣∣ (Tb1,T b2,T )−1/4 > γ
1/2
T

)
+ P

(∣∣∣1 + B2,T + η2V2,T v2 (Tb1,T b2,T )−1/2
∣∣∣ (Tb1,T b2,T )−1/4 > γ

1/2
T

)
.

≜ A1 +A2.

Using Chebyshev’s inequality A1 = o((Tb1,T b2,T )−1/2). Using (Tb1,T b2,T )−1/10 γ
−1/5
T → 0 we yield

A2 < C2P
(∣∣∣v2 (Tb1,T b2,T )−1/2

∣∣∣ > c2
)

= o
(
(Tb1,T b2,T )−1/2

)
,

where C2 and c2 are some positive constants and we have used Chebyshev’s inequality. □

S.B.4 Proof of the Results of Section 5

S.B.4.1 Proof of Theorem 7

Consider first the numerator of tDM,i. We have

T 1/2
n dL = δ2OP

(
T 1/2

n T−1
n nδ

)
+OP

(
T 1/2

n T−1
n (Tn − nδ)1/2

)
N (0, JDM)

= δ2OP
(
T−1/2

n nδ

)
+OP (1) ,

for some JDM ∈ (0, ∞) where nδ depends on the length of the segment where the mean of x
(2)
t shifts by

δ. The factor δ2 follows from the quadratic loss.
Next, we focus on the expansion of the denominator of tDM,i which hinges on which LRV estimator

is used. We begin with part (i). Under Assumption 9 b1,T → 0 as T → ∞. Using Theorem S.1,

ĴdL,NW87,T =
⌊b−1

T ⌋∑
k=−⌊b−1

T ⌋
(1 − |b1,Tk|) Γ̂ (k)

=

⌊
b−1

1,T

⌋∑
k=−

⌊
b−1

1,T

⌋ (1 − |b1,Tk|)
� 1

0
c (u, k) du
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+

⌊
b−1

1,T

⌋∑
k=−

⌊
b−1

1,T

⌋ (1 − |b1,Tk|)
(

2−1
(
Tb − Tm − 1

Tn

)(
Tn − Tb − 2

Tn

)
δ4 + oP (1)

)

= CJDM +

⌊
b−1

1,T

⌋∑
k=−

⌊
b−1

1,T

⌋ (1 − |b1,Tk|)
(

2−1
(
Tb − Tm − 1

Tn

)(
Tn − Tb − 2

Tn

)
δ4 + oP (1)

)
,

for some C > 0 such that C < ∞. By Exercise 1.7.12 in Brillinger (1975),⌊
b−1

1,T

⌋∑
k=−

⌊
b−1

1,T

⌋ (1 − |b1,Tk|) exp (−iωk) = b1,T

sin
⌊

b−1
1,T

⌋
ω

2
sin ω

2


2

.

Evaluating the expression above at ω = 0 and applying L’Hôpital’s rule we yield,⌊
b−1

1,T

⌋∑
k=−

⌊
b−1

1,T

⌋ (1 − |b1,Tk|) = b1,T


⌊

b−1
1,T

⌋
2
1
2


2

=
⌊
b−1

1,T

⌋
.

Therefore, ĴdL,NW87,T = CJDM + δ4OP
(
b−1

1,T

)
and

|tDM,NW87| ≤
δ2OP

(
T

−1/2
n nδ

)
+OP (1)(

δ4O
(
b−1

1,T

))1/2 (S.89)

=
δ2O

(
T ζ

n

)
δ2O

(
b

−1/2
1,T

) = O
(
T ζ

nb
1/2
1,T

)
,

which implies Pδ(|tDM,NW87| > zα) → 0.
Under Assumption 10 with q = 1/3, similar derivations yield |tDM,NW87| = O(T ζ−1/6

n ) and Pδ(|tDM,NW87| >
zα) → 0.

In part (ii), b1,T = T−1. Proceeding as in (S.89) we have |tDM,KVB| = O(T ζ−1
n ) and Pδ(|tDM,KVB| >

zα) → 0 since T ζ−1
n → 0.

Finally, we consider part (iii). Using Theorem 1, we have

ĴdL,DK,T =
Tn−1∑

k=−Tn+1
K1

(
b̂1,Tk

) nT

Tn

⌊Tn/nT ⌋∑
r=1

ĉDK,T (rnT /T, k)

=
Tn−1∑

k=−Tn+1
K1

(
b̂1,Tk

) nT

Tn

⌊Tn/nT ⌋∑
r=1

(
c (rnT /T, k)

+ δ21
{(

|rnT + k/2 + n2,T /2 + 1) − T 0
j |/n2,T

)
∈ (0, 1)

})
+ oP (1)
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= JDM + δ2OP

b̂−1
1,T

T b̂2,T

nT

nT

Tn

+ oP (1) .

It follows that

|tDM,DK| =
δ2OP

(
T

−1/2
n nδ

)
+OP (1)(

JDM + δ2OP
(
b−1

1,T b̂2,T

))1/2

= δ2O
(
T ζ

n

)
,

and so Pδ(|tDM,DK| > zα) → 1 since T ζ
n → ∞. □
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Figure S.1: Plots of loss differentials dt, sample autocovariance Γ̂ (k), periodogram I (ω), sample local autocovariance ĉ(u, k) and

local periodogram IL(u, ω). In all panels δ = 2.
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Figure S.2: Plots of loss differentials dt, sample autocovariance Γ̂ (k), periodogram I (ω), sample local autocovariance ĉ(u, k) and

local periodogram IL(u, ω). In all panels δ = 5.
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