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LOW FREQUENCY CONTAMINATION IN HAR INFERENCE

S.A Results on Low Frequency Bias for the Sample Autocovari-
ance and the Periodogram

In Section S.A.1 we define the long memory SLS processes. In Section S.A.2 and S.A.3 we present results
on the low frequency bias for the sample autocovariance and the periodogram, respectively.

S.A.1 Long Memory Segmented Locally Stationary Processes

Define the backward difference operator AV, = AV, = V; — V;_; and A'V; recursively. Long memory
features can be expressed as a “pole” in the spectral density at frequency zero. That is, for a stationary
process, long memory implies that f(w) ~ w™?” as w — 0 where ¥ € (0, 1/2) is the long memory
parameter. In what follows, [ is some non-negative integer.

Definition S.1. A sequence of stochastic processes {V; r} is called long memory segmented locally station-
ary with mg + 1 regimes, transfer function A% and trend pu. if there exists a representation

s
AV =y (t/T) + / oxp (iwt) ALy (w) d€ (w) (t=T01+1,..., 1)), (S-1)
—7
for j=1,..., mg+ 1, where by convention 7§ = 0 and T}, ., = T, (i) and (iii) of Definition 1 hold, and
(ii) of Definition 1 is replaced by
(ii) There exist two constants L > 0 and D < 1/2 (which depend on j) and a piecewise continuous

function A : [0, 1] x R — C such that, for each j = 1,..., mg + 1, there exists a 27-periodic function
Aj (M), A xR — C with 4j (u, —w) = Aj (u, w),

A(u, w) = Aj (u, w) for )\2_1 <u< )\?, (S.2)

sup sup ‘A%M (w) — A; (t/T, w)‘ < LoT | 7P, (S.3)

1<j<mo+1 T;Ll<t§TJ0,w
and

sup |A (u, w) — A (v, w)| < Lo |u—o||w| 7. (S.4)
0<v<u<l, u#N) (j=1,...,mo+1,),w

The spectral density of {V; 7} is given by f; (v, w) = |1 —exp (—iw) |7%|A; (u, w) |2 for j =1,..., mo+1.
We say that the process {V; r} has local memory parameter 9 (u) € (—oo, [ +1/2) at time u € [0, 1] if it
satisfies (S.1)-(S.4), and its generalized spectral density f; (v, w) (j =1,..., mo+1) satisfies the following
condition,

—20;(u)

£, w) = [1 = 7 £ (u, w), (S.5)

with f7 (u, w) > 0 and

J

I (u, w) = f7 (u, 0)‘ < Lafj (u, w) lwl|”, w € [-m, 7], (S.6)
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where Ly > 0 and v € (0, 2].

Definition S.1 extends Definition 1 and Assumption 1 by requiring the bound on the smoothness
of A(-, w) to depend also on |w|™? thereby allowing a singularity at w = 0. Casini (2023) showed that
fi (u, w) =145 (u, w)|? for j = 1,..., mo+1. Using similar arguments, we obtain the form [ (u, w) given
in (S.5). See Roueff and von Sachs (2011) for a definition of long memory local stationarity. Definition
S.1 extends their definition to allow for mg discontinuities. We have assumed that breaks in the long
memory parameter occur at the same locations as the breaks in the spectrum. This can be relaxed but
would provide no added value in this paper.

Example S.1. A time-varying AR fractionally integrated moving average (p, 9, q) process with mq struc-
tural breaks satisfies Definition S.1 with ¥, : [0, 1] — (—oc0, [ +1/2), 05 : [0, 1] = Ry, ¢; = [¢1,..., ¢p] :
0, 1] - RY and 0; = [01,..., 6, : [0, 1] — RP are left-Lipschitz functions for each j = 1,..., mo + 1
such that 1 — 3°7_, ¢ (u) z¥ does not vanish for all u € [0, 1] and 2 € C such that |2| < 1. Using the
latter condition, the local transfer function A; (u; -) defines for each j a causal autoregressive fractionally
integrated moving average (ARFIMA (p, ¥ (u) — [, ¢) process whose spectral density satisfies the condi-
tions (S.5) and (S.6) with v = 2. Using Lemma 3 in Roueff and von Sachs (2011), condition (S.4) holds

with D > Sup1§j§m0+1 Sup>\971<u§>\§)7w '19] (u) — 1.
Definition S.1 implies that py (u, k) £ Corr(Vizu)s ViTuj+k) ~ CE29i (w1 for )\9_1 <u< )\9 and

large k£ where C' > 0. This means that the rescaled time-u autocorrelation function (ACF(u)) has a power
law decay which implies > 72 |pv (u, k)| = oo if 9; (u) € (0, 1/2).

S.A.2 The Sample Autocovariance Under Nonstationarity

We now establish some asymptotic properties of the sample autocovariance under nonstationarity. We
consider the case k > 0 only; the case k < 0 is similar.

Theorem S.1. Assume that {V,r} satisfies Definition 1. Under Assumptions 1-2,
R 1
B0 > [ eclu k) dutd+on. (1), (5.7)
0

where d* = 2713 o vy r, (g, — 1y,)% Further, as k — oo, [ (k) > d* P-a.s. If in addition it holds
that pj (t)T) = pj for j=1,..., mo+ 1, then

1
P (k) :/ ¢ (u, k) du + diy, + ons, (1),
0
where d,, = 21 > j1is T T (g, — ,ujl)2 and, as k — oo, r (k) = d&;, + 0as. (1).

S.A.3 The Periodogram Under Nonstationarity

Classical LRV estimators are weighted averages of periodogram ordinates around the zero frequency.
Thus, it is useful to study the behavior of the periodogram as the frequency w approaches zero. We now
establish some properties of the asymptotic bias of the periodogram under nonstationarity. We consider
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the Fourier frequencies w; = 2nl/T € (—m, ) for an integer [ # 0 (mod 7') and exclude w; = 0 for
mathematical convenience.

Assumption S.1. (i) For each j =1,..., mg+ 1 there exists a B; € R such that
2
mo+1 LT/\?J mo+1 LT)‘?J
Z Z wi (t/T) exp (—iwt)| > Z B; Z exp (—iwt)| w; € (—m, m),
j=1

I=1 =T, |+ t=[TXA9_, |+1

2

where Bj, # Bj, for j1 # jo2; (i) |I' (u, k)| = Cyu k™™ for all w € [0, 1] and all k > C3T" for some
C3 <00, Oy < oo (which depends on u and k), 0 < k < 1/2, and m > 2.

Part (i) is easily satisfied (e.g., the special case with p; (t/T) = p;). Part (ii) is satisfied if {V;} is
strong mixing with mixing parameters of size —2v/ (v — 1/2) for some v > 1 such that sup,>; E V¥ < .
This is less stringent than the size condition —3v/ (v — 1) for some v > 1 sufficient for Assumption 2-(i).

Theorem S.2. Assume that {V; 1} satisfies Definition 1. Under Assumptions 1-2 and S.1,

1
E(Ir () =2r | f u, o) du (5.8)
0
1 20 ’
+ 72 | [ B~ Bug1 = Y (Bj = Bjia) exp (—2mitA) || +0(1).
1 j=1

Under Assumptions 1-2 and S.1-(%), if p; (t/T) = p; for each j =1,..., mo+1, then

1
E (I (w)) = 27r/0 f(u, wy) du

2

1 Ul .
s | [~ Hmott = D (15 = Hyr) exp (=2miX9) || +o(1).
W j=1

In either case, if Tw} — 0 as T — oo then E (I (w;)) — oo for many values in {w;} as w; — 0.

The theorem suggests that for small frequencies w; close to 0, the periodogram attains very large
values. This follows because the first term of (S.8) is bounded for all w;. Since By, ..., Bpyy+1 are fixed,
the order of the second term of (S.8) is O((Tw?)™"). Note that as w; — 0 there are some values [ for
which the corresponding term involving |-|* on the right-hand side of (S.8) is equal to zero. In such cases,
E (Ir (wp)) > 2w fol f (u, wy)du > 0. For other values of {l} as w; — 0, the second term of (S.8) diverges
to infinity. Thus, considering the behavior of {E (It (w;))} as w; — 0, it generally takes unbounded values
except for some w; for which E (I (w;)) is bounded below by 2w fol f(u, wy)du > 0. A SLS process with
long memory has an unbounded local spectral density f (u, w) as w — 0 for some u € [0, 1]. Since f (-, -)
cannot be negative, it follows that fol f (u, w) du is also unbounded as w — 0. Theorem S.2 suggests that
nonstationarity consisting of time-varying first moment results in a periodogram sharing features of a long
memory series.
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S.B  Mathematical Appendix

S.B.1 Proofs of the Results in Sections 3 and S.A
S.B.1.1 Proof of Theorem S.1

_ _ TX\O . -~ 20
Let V; = (Try) ! ZtL: L%J’\Q 1 Vi, pia,j (u) = E(V|py))? for T]Q_l <Tu< T]O and fiy j = 75 ! f)\]QJ H2, (u) du.
J— —

By Assumption 1-2-(i), the latter implying ergodicity, it follows for fixed k > 0 that

2

f(k) = Z Tjﬁ Z ViViek — z:l Tjﬁ Z Vi
j=

Jj=1 J t=|TAI_, |+1+k ! t=|TX)_; | +1
| TA9]

mo+1 )\? mo+1 1
_ 2/ clw Kydut Y ri— S E(V)E(Vig)
j—l j—1 ]—1 J

t=|TA9_, | +1+k

2
mo-+1 1 LTA;)J
— Z Tjﬁ Z ‘/% + O (T_l) + Oy s. (1)
j=1 T=[TX0_, | +1

:/ c(u, k)du+ Y i > E (Vi) E (Vi_g)
0 j=1 T =T, [+1+k

2
mo-+1 o
X V| 0 (T7Y) +oae (1)
=1
1 motl 4 (727 , motl \ 2 )
:/0 ¢ (u, k) du+ 2_: ro—Tj Z u” (t)T) — z_: iV —l—O(T )+0a.sA(1),
J=1 t=|TA9_, |+1+k j=1

where we have used E (V;_y) — E (V;) = O (k/T) by local stationarity in the third equality. Note that by
ergodicity and an approximation to Riemann sums, we have

mo+1 o mo+1 mo+1 - mo+1 - mo+1 - mo+1
donVi= X mfg= Y rVi— ) nE (Vj) + > 7B (Vj> = > il
j=1 j=1 j=1 j=1 j=1 j=1
=010 (1) +0(T7). (S.9)

Basic manipulations show that
- N2
Z Tj1T g2 (/”sz - luﬁ)
J2# 1

_9 _9 _
= > i (75, + 7, — 21,75,
JeFn
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= Z rjzﬁjzg (1 - rjz) + Z Tj1ﬁ?1 (1 - 7’]'1) -2 Z rj1rj2ﬁj2ﬁj1

1<j2<mo+1 1<j1<mo+1 J1#72
=2 Z Tjﬁ? —2 Z TJQ‘E? —2 Z P17 ja gy Fj, - (S.10)
1<j<mo+1 1<j<mo+1 J1#j2
Note that
[¢] [7¢) ’
(Try—k) Y. pAT) = S ouwm|. (S.11)
t=|TAY_, |+1+k t=|TAI_, |+1+k
Thus,
ot D8 wn CT
Z i > /T = ij(TTj—k) > po (t/T)
e t=|TXO_, [+1+k i=1 P t=|TAO_, |+1+k
2
mo+1 1 U“?J
> > iy > e/
— ri (Tr; — k)
J= t=|TX0_, |+1+k
= > mE+4o(l). (S.12)
1<j<mo+1

Using (S.9)-(S.12) we have,

R 1 mo+1 1 LT/\?J mo+1 o 2
I (k) :/o c(u, k)du+ Y rjz— ) p (t/T) ~ (Z TJVJ’) +0as. (1)

=t T e J+1+k =1

1 mo+1 mo+1
2/ ¢ (u, k)du+ Z Tl — Z r;V; +O —l—oas(l)
0 =1

j=1
1 ) 9
:/0 c(u, k)du+ 2~ Z 7§17 (ﬁh ,u]l) +O ) + 045 (1) . (S.13)
172

The claim that ' (k) > d P-a.s. as k — oo follows from Assumption 2-(i) since this implies that ¢ (u, k) — 0
as k — oo and from the fact that the second term on the right-hand side of (S.13) does not depend on k.
If in addition it holds that yu; (t/T) = p; for j =1,..., mg + 1, then (S.11) holds with equality and the
result follows as a special case of (S.13). O
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S.B.1.2 Proof of Theorem S.2

Lemma S.1. Assume that {V; 1} satisfies Definition 1. Under Assumptions 1-2 and S.1-(ii),

ool oy
DI . E(Vi—pt/T)) (Ve — p(s/T))) exp (—iw (t = 5)) = 0 (1).
nF2 T =|TAY ) [+1s=[TAY, | +1

i1jo = min{rj, 7;,}. We consider the case of adjacent regimes
(i.e., j2 = j1 + 1) which also provides an upper bound for non-adjacent regimes due to the short memory

Proof. Let 7j, j, = max{r;, rj,} and r

property. Forany k =s—t=1,..., LszthJ there are k pairs in the above sum. The double sum above
(over t and s) can be split into
|CT*"] |hT|
Ty )F{I:[CT@} () k)‘ +T0 Y ‘F{LCT“J+1sLhTJ} (s k)‘ (S.14)
k=1 k=|CT*"|+1
LthlijJ -1 Lﬁj17j2J
7! r SR+ T ‘r Lk
- > {lrT)+1:| T2y, 5 |1} ( )’ + 2. {50051} (5 k)

k=[hT]+1 k= LTﬁh ijJ

where C' > 0,0 < h < 1 with [hT] < |Tr;, ;,| =1, and T's (-, k) is the sum of the autocovariances at lag k
computed at the time points corresponding to k € S. Note that the term |exp (—iw; (£k))| can be bounded
by some constant. The sums run over only k > 0 because by symmetry I'y (k) = I'y_ /7 (—k). Consider
the first sum in (S.14). This is of order O (T~'T2*) which goes to zero given x < 1/2. The second sum is
also negligible using the following arguments. By Assumption S.1-(ii), |I" (u, k)| = Cy k™ with m > 2
and choosing C' large enough yields that the second sum of (S.14) converges to zero. In the third sum, the
number of summands grows at rate O (T') and for each lag k there are O (T') autocovariances. However,
by Assumption S.1-(ii) each autocovariance is O (I~™) . Thus, the bound is O (T~'T?~™) which goes to
zero as T — oo. The difference between the arguments used for the third sum and fourth sums is that
now we do not have O (T') autocovariances for each lag k. Thus, the bound for the fourth sum cannot be
greater than the bound for the third sum. Thus, the fourth sum also converges to zero. [

Proof of Theorem S.2. We have,

1 mo+1 LT)\]OJ ?
Ip (w) = Wia Z exp (—iwt) V;
J=La=[TXY_, [+1
1 motl [T | motl [ 727 :
=77 (Xe — p (t/T)) exp (—iwit) + Nis p (t/T) exp (—iwyt)
J=14=|TX_, |+1 I=1 =|TA9_, |+1
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From Assumption S.1,

mo+1 L J 2
> Z p (t/T) exp (—icpt)
I=La=[TA_, [+1
mo+1 U“?J 2
> Z B; Z exp (—iwyt)
Jj=1 t=|TA9_, |+1
mot1 [729)= |0, |1 ’
= Z Bjexp (—iwl (LTA?_IJ + 1)) Z exp (—iwyt)
j=1 t=0
exp (—iw motl ’
-l S e (i ([13)) (- i () [739-])
ex jwy)  Mef! ’
1= é)xp zlwl Zl Bj (exp( w QT)\?_lJ)) T exp <7iwl {T)‘?D) '

using the formula for the first n-th terms of a geometric series 7 arf = a X7 ¥ =a (1 —7") /(1 = 7).
Then, using summation by parts,

mo—+1

M Z B; (exp( iwy QT)\?_1J)) —exp (_iwl {TA%))

1 —exp( zw]

exp (—iw;) 20 ) 0
= P ) 1B~ Bugri— Y (B — B; —iwy | T2

By Lemma S.1, it is sufficient to consider the cross-products within each regime j,

mo+1 L7 L7
B (@) 2 3 rj—E ) S Vi u(t/T)) (Va — i (/T)) exp (—ic (¢ — 9))
= TA ) |+1s=|TA)_, |+1
[ 79, ] [72,]
YR Y S (V- u(/T)) (Vs — i (5/T)) exp (—iwn (¢ — 5))
1772 t=|TA | +1s=|TA0, |41

mo+1 2

1 exp (—iw, ) .
| SRS (o (e ([144])) - (i 7)) +00)

mo+1 |T29] [Tr;]-1 [ 727
=> |E Yoo (Vi—p/T)*+ T > > Lyyr (k) exp (—iwk)
i=1 j

t= LT,\g.LlJ +1 k=1 4= LT)\?AJ +k+1
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2
H AT e iy ZB (e (=i (|70 )) = e (=i [75]))] 00,

Next, using the definition of f (u, w;), e~?*! = 1 by Euler’s formula and letting w; — 0 we have,

mo+1 A0
E (I7 (w;)) > Z (/}\] uOdu—i—QZ/ ukexp(—zwlk)d>

0

]:1 j—1
1 1 - 0 i
+ = B, —B —(14o0(1 B; — Bji1)exp [ —2mil\; +o(1
T e i[5~ Bt ~ A 02 (B = By exp (-2mit) | +0(1)
mo+1 )\?
=27 Z f(u, wy) du
Jj=1 ’\?71
1 1 ma NI
+ = B, - B —(14+o0(1 B; — Bji1)exp | —2mil\; +o(1
T e (i) || Bt~ (0 )2 (B = Brsajexp (22mit]) | 4o (1)
2
1 1 mo 0
= 271'/0 f(u, wy) du+ T By — Byy+1 — Z (Bj — Bj41) exp (—2ml)\j) +o(1).
i j=1
(S.15)
By Assumption 1-(ii), the first term of (S.15) is bounded for all frequencies w;. Since By, ..., Byy+1 are

fixed, if Tw? — 0 then the order of the second term of (S.15) is O((Tw?)~!). Note that as w; — 0 there are
some values of [ for which the corresponding term involving ||2 on the right-hand side of (S.15) is equal to
zero [see the argument in Mikosch and Starica (2004)]. In such a case, E (I (w;)) > 27 fol f(u, wy)du > 0.
For the other values of {I} as w; — 0, the second term of (S.15) diverges to infinity. The outcome is that
there are frequencies close to w; = 0 for which E (It (w;)) — oo. O

S.B.1.3 Proof of Theorem 1

We consider the case k& > 0. The case &k < 0 follows similarly. Consider any u € (0, 1) such that
Tj0 ¢S (u, k, nor) forall j =1,..., mg. Theorem S.B.3 in Casini (2023) showed that

2

E [er (u, k)] = ¢ (uo, k) + % (nar/T)? l 882 c(u, k)| +o0((nor/T)) + 0 (1/nor). (S.16)

Since ngr — oo and no /T — 0, Efer (u, k)] = c(up, k) + 0(1). The same aforementioned theorem
shows that ng rVar [ér (u, k)] = Op (1). This combined with (S.16) yields part (i) of the theorem.
Next, we consider case (ii-a) with n;r (u, k, no7) /nor — v € (0, 1). We have,

na T nar 2

~ | -1

or (u, k) =150 > Vidu)4h/2—nop /24541 VI Tu) 1k /2—ns 1 /2s41—k — (%,T > Viru) nQ,T/2+s+1>
s=0 s=0

S-8
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T —(|Tu)+k/2—n27/2+1)

-1
=MNgr Z ViTu)+k/2—no 7 /24541 V| Tu| +k/2—no /245 41—k
s=0
na, T
-1
+ngr Z ViTu)+k/2—na /24541 V| Tu| +k/2—no 7 /245 +1—k

s=T0—(|Tu)+k/2-n2 1/2)

T9—(|Tul+k/2—ng 1 /2+1)

1
o (nQ,T Z VLTUJ +k/2—ng 7/2+s+1
s=0
na,T 2
—1
g > VLTuJ—nz,T/2+s+1>

s:TJQf(LTuj +k/27n2’T/2)
TO—(|Tul+k/2—na7/2+1)

-1
=Ny Z VLTuj +k/2—ng 1/24+s+1 V[Tuj+k/2—n2,T/2+s+1—k
s=0

—E (VLTujJrk/Q*nz,T/QJrerl) E (VLTuJ +k/2n2,T/2+s+1k>)
na, T

+ nilT Z VITuj+k/2—no 1 /24541 V| Tu) +k/2—ns 1 /2+5+1—k
s=T0—(|Tu)+k/2-n2 1/2)

—-E (VLTUJ+’€/2*”2,T/2+S+1) E (VLTuJ +k/2n2,T/2+s+1k))

T9—(|Tu)+k/2—n27/2+1)

+ny > E (VLTuJ+k/2—n2,T/2+s+1) = (VLTuJ+k/2—n2,T/2+s+1—k>
s=0
na,T

+ n{%p > E (VLTuj+k/2—n2,T/2+s+1) E (VLTuJ+k/2—n2,T/2+s+1—k)

s:T]Qf(LTuj +k/27n2,T/2)

T —(|Tul+k/2—n27/2+1)

s=0
na, T 2
+ 15y > v, ) +op (1)
2, T LTUJ 7%2’T/2+8+1 P

s=T0—(|Tul+k/2—n2,1/2)
> e (A B) + (1= ) e (u, &) + v (A2 + (1= iy (w)?
— (1 (A2) + (=) 1 ()" + 02 (1)
= e (A B) + (=) e, £+ (1 =) (1 (M) — e ()" + 02 (1). (8.18)

Consider the case (ii-b) with n;r, (u, k, nar) /n2r — 0. The other sub-case follows by symmetry. Eq.
(S.17) continues to hold. The first term, third term and the first summation of the last term on the
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right-hand side of (S.17) are negligible. Thus, using ergodicity, implied by Assumptions 2-2-(i),

n2, T

cr (u, k) = c(u, k) + ”E%F Z E (VLTuJ+k/2—n2,T/2+s+1> E (VLTuJ+k/2—n27T/2+s+1>
s=T9—(|Tu)+k/2—n21/2)
— i1 ()’ +op (1)
= c(u, k) + pj1 (w)? = pipa (W) + 0p (1) = (u, k) + op (1),

where we have used the smoothness of E(V;) implied by local stationarity. The second claim of the lemma
follows from Assumption 2-(i) since this implies that sup,cpo 1 ¢ (u, k) — 0 as k — oo and the fact that
the third term on the right-hand side of (S.18) does not depend on k. Thus, I'pk (k) > d% + op (1) where
dp = (nor/T)y (1 — ) (1y (A?) — pj+1 (u))? > 0 and d — 0 since no /T — 0. The factor no /T in di.
follows because the neighborhood (/\? —na1/T, )\9 +no1/T') includes O(ny 1/nr) blocks which are then
averaged out. [J

S.B.1.4 Proof of Theorem 2

Consider first any u € (0, 1) such that TJQ ¢ S(u, 0, np) for all j =1,..., mp. Theorem 3.3 in Casini and
Perron (2024) shows that

np—1 2

1 .
E (IL,T (uv wl)) = ‘\/TTT Z VLTuJ*nT/2+S+1,T exp (_Zwls)
s=0

= f(u, wl)+é(7¥>2§;f(u, wl)+o<(n;>2> +O<bgn(:T)>. (S.19)

By Assumption 1 the absolute value of the first term on the right-hand side is bounded for all frequencies
w;. By Assumption 3-(iii) | (8%/0u?) f (u, w;)| is bounded and, since ny/T — 0, the second term converges
to zero. Similarly, the third and fourth terms are negligible. Thus, E (Ir, 7 (u, w;)) is bounded below by
f (u, w;) > 0 as w; — 0 which establishes part (i). Now we consider part (ii). We begin with case (a). We
only focus on the sub-case n;r, (u, 0, ny) /ny — v with v € (0, 1). We have

I (W) =
1 T9—(|Tu)—n7/2+1) .
’\/ﬁ Z ViTu|=ng j2+s+1,7 €XD (—iw;s) + Z Vit rap f2-s 17 €XD (1)
S:O s=T)—(|Tu|—nr/2)
| (5Tl /2t
= E z% (VLTuj—nT/2+s+1,T —pn(([Tu] —nr/2+s+1) /T)) exp (—iwrs)
—
+ Z (VLTUJ*nT/QJrerl,T —p((|[Tu] =np/24+s+1) /T)) exp (—iwys)
s=T)~(|Tu|-nr/2)
npr—1 )
0 wl(LTu) = /2 454 1) [T oxp (i) 5.20)
s=0

S-10
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Using Assumption 3, we have

Note that

?’LT—l 2

S w(([Tu] = nr/2+ s +1) /T) exp (—iwys)| >
s=0

T0—(|Tu)—ny/2+1) ng—1 2
B; Z exp (—iw;s) + Bjt1 Z exp (—iws)| . (S.21)
5=0 s=T)—(|Tu]-nr/2)

T0—(|Tul—ng/2+1)

np—1
B; Z exp (—iw;s) + Bjt1 Z exp (—iw;s)
s=0 s=T) —(|Tu|—nr/2)
T].Of(LTuJ —np/2+1)
= B; Z exp (—iw;s) (S.22)
5=0
np—1—(T9—(|Tu)—n7/2))
+ Bjy1exp (—iwl (TJQ — (|Tu] — nT/Q))) Z exp (—iw;s) .

Focusing on

s=0
the second term on the right-hand side above,

2

ny—1
nyt |Bji1 i exp (—iw;s)
S:T]Q—(I_Tuj—nT/Q)

np—1—(T)—(|Tu)—nr/2)) 2

= nqjl Bj+1 exp (—iwl (TJO — (LTUJ — nT/Q))) Z exp (—iwls)

s=0
2

1- —i — (79 — (|Tu) — np/2

— ! | B exp (<iw (10 = (ITu) = nr/2))) exp (i (nr = (1~ (1Tu] —nr/2)))

1 —exp (—iw;)

exp (—iva (T9 = (1Tu] = nr/2)) ) = exp (—icanr) |

1 — exp (—iwy)

Bja (5.23)

We show that the above equation diverges to infinity as w; — 0 with ngw? — 0. If nyw; — a € (0, o)

then Re (exp
S.2, |1 —exp

(—iwynr)) # 1 and the order is determined by the denominator. As in the proof of Theorem
(—iw;)|? = w?. Since nyw}? — 0, the right-hand side above diverges. If npw; — 0, we apply

L’Hoépital’s rule to obtain

i (19 = (|Tu) — nz/2)) +ing|

7

—1
np | Bjt

S-11
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=g By (= (0 - (7wl = mr/2)” o+~ (10~ (Ta) = nr/2)) mr )
=0 (n%/nT) =0 (nr),

which shows that the right-hand side of (S.23) diverges. A similar argument can be applied to the first
term on the right-hand side of (S.22) and to the product of the latter term and the complex conjugate of
the second term on the right-hand side of (S.22).

It remains to consider case (b) and the sub-case n; 1, (u, 0, n7) /np — 0. The other sub-case follows

by symmetry. We have (S.20) and (S.21). Note that,
1 np—1 2

——Bjn Z exp (—iw;s)
Vi s=T0—(|Tu) —n7/2)

B LB. nTz_:leX y _LB. T)—(|Tu]—nr/2)-1 B
N i1 2 p (—iwys) N i1 Sz:% exp (—iw;s)
. T0—(|Tul-ng/2)-1 | 2
= _ﬁBj+1 52:% exp (—iws)| — 0.

Thus, we have

T]Q—( |Tu]—nr/241)

E (L7 () = - > (Vitwngzserir — n(Tu] = np/2+ 5 +1) /T)) exp (~icars)
s=0
np—1 2
+ Y (Vitwenepssrir = #((ITu) = nr/24 54 1) /T) ) exp (—iwis)| +0(1).

s:TJO —(|Tu]—nr/2)

Note that the first sum above involves at most C' < oo summands. So the first term is negligible. The
expectation of the product of the first term and the conjugate of the second term is negligible by using
arguments similar to the proof in Lemma S.1 with ny in place of T. Thus, the limit of E (I7 (w;)) is equal
to the right-hand side of (S.19) plus additional o (1) terms. [J

S.B.2 Proofs of the Results in Section 4

We first introduce the multiple Fejér kernel as in Velasco and Robinson (2001),

1 T . n
\P(TTL)(xl,...,xn):TlT Z exp{zth:r:j},
j=1

(27T) t1-tp=1

S-12
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with z, = — ?:_11 xj. Velasco and Robinson (2001) discussed the following properties. \sz ) (1,5 Tn)

is integrable in 11"~ ! and integrates to one for all 7. For 6 > 0 and T > 1, we have

s

where D¢ is the complement in II""! of the set D = {z € II"™' : |2;] < 4, = 1,...,n — 1}. For
j=1,...,n—1,

n log" ' T
\I/,g_')(:[}l,..., xn)‘dxl...dl'n_l :O (W) 5 <824>

// 2|95 (@1, @) [das -+ da = O (T log" 1 7). (S.25)
11 11

Recall that the Dirichlet kernel is defined as Dy (z) = Y1, exp (itz). It satisfies the following two
relations,

|Dr (2)] < min {7, 2|2| ' }; /H D7 (z)| dz = O (log T) . (S.26)

Eq. (S.24)-(S.25) follow from
1

0 (21, )| < T |Dr (z1)||Dr (22)] - - |Dr (20)|dy - - - dvp. (8.27)

S.B.2.1 Preliminary Lemmas

Lemma S.2. (Bhattacharya and Rao, 1975, pp. 97-98, 113). Let Q1 and Qo be probability measures on
R? and %2 the class of all Borel subsets of R?. Let ¢ be a positive number. Then there exists a kernel
probability measure Gy such that

4
sup [Q1 (B) — Q2 (B)] < 5 /(@1 — @a) Gl + 5 sup ©a ((0B)),
Be#? Be#?

where Gy satisfies

3
Gy (B(0, 1)) = O <<¢) ) , (5.28)
and its Fourier transform @¢ satisfies
Gy(t)=0  for ||t] =8 x243/x1/3¢. (S.29)
Here (0B)*? is a neighborhood of radius 26 of the boundary of B, |||l is the variation norm, and e means

convolution.

Lemma S.3. Let Assumptions 4, 6-7 hold. For s > 2 with er (2s) — 0, we have
dy '
T ((SyWh,)*) = T 2m)* 71 Y. Ly (s) by~ + O (Tbl e (25))
j=0

S-13
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where e (25) = (Thy 1) og® ™' T, L; (s) = (1/§)'u; (K*) (& /dw?) (f (u, 0) du)® with |L; (s)] < oo and
Lj (s) differs from zero only for j even (7 =0,..., df).

Proof of Lemma S.3. Let 19541 = r1 and note that
Tr (v We,)?)

= > H E ( rai—1 TZJ) w (byr (r2; — r2541))

1<ry,..,r2s<T j=1

= > H/ F(roj 1T, wyjy) st r2i)en- 1/Kln waj) ' T2

1<ry,.,ros<T j=1
T-1

T T T s )
= Z Z Z o Z H / f (7n2],_1/T7 W?j—l) eik2; (w2; —1—wa;)

k2, kd oo kos=—T+1r1=|ko|+1 r3=|ka|+1  ros_1=|kos|+15=1"1I
% / Ky, (ij)ei((—kzj—k2j+2)w2g‘)dw
11

T-1

- Z = |ka51) // [ ugj—1, waj—1)e ihaj (w2j—1—w2;)

ko, ka,.. ,k29—7T+1j 1

X / Ky, (way) e ((=k2j—k2j4+2)w23) do,dey + O (Tﬁl)
II

Z H( — [k24l) // [ (ugj—1, waj—1 /Kb1 waj exp{ Zw] —Tjt1 }dudw—i—O(Tl)

1<ry,..,r2s <T j=1

=T @)™ | Hy, (0, ) Ky, () U7 (1) dwdpe + O (T7), (5:30)
I12s

where \11538) (,U,) = ( ) (/*L17 KRN MQS) ;

Hy, (w, N)Z/ / flur, w—pg— .o — pas) Kp, (0 —p3 — o — pias)
0 0
X fus, w—...— pas) Kp, (W—pig — ... — pas) ... f(ugs—1, w— pas) du,
dp = dps, ..., duss, dw = dwq, ..., was, du = duy, dus, ..., dugs—1, and we have made the change in
variables
M1 = w1 — w2 W2s—1 = W — H2as
M2 = w2 — w1 Ws—2 = W — 25 — H2s—1
H2s = W2s — W2s—1 Wi =W — U2 — ... — s =W — U1
with Z 21 i = 0, setting w = wa,, and expressing all the w; in terms of w and puj, j = 2,..., 2s.
Let

B = |Tr ((SyWy,)®) — T (2m)*~ 1/ (/ f(u, w) u) Klf;l(w)dw.
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Using (S.30) we have

Ky, (w) W) ()] dwdp + O (T7).

Hy, (w, p) — (/fuw u)%gll

We split the integral in (S.31) into two sets, for small and for large ;. Define the set M = {p € 11?71 :
sup; [pj| < b1/ (2s)}. Since K (w) takes small values for |w| > 7by 7, for all u all functions f (u, w) are
boundedly differentiable in w in the set M. We use the following inequality,

B<T (27r)25‘1/

I12s

(S.31)

r—1
[Ar-- A = Br-+ By <) |Bi- Byl [Bysr — Agra| [Agaa -+ A (S.32)

and sup,, |Kb1 (w)| = O(bl_},) to bound the integral in (S.31) over M by

O Tb1 STJrl Z/ / / |f (u2q1, w — payoq — - - — pas) — f (u2q41, W)| ‘En (w) \I’ﬁ?s) (M)’ duggy1dpdw
(S.33)
O Tbl ;:H Z/ / ‘Kbl w H34+2¢ — -+ — ILLQS) — f(/bl (w)‘ ‘\Ilgs) (,U,)‘ d,udw <834>

We apply the mean value theorem in (S.33) to yield,

2s
O (T017) [ Koy @) dw Y [ [mgll ¥ (1) lds
1T q=0 M
2s
<0 (1vl7) [ (R @) [ gl 0 () ldn
11 q:0 112s—1

=0 (b7 log ' 7)),

where the equality follows from (S.25). Using the Lipschitz property of K (cf. Assumption 7), the
expression in (S.34) is of order O(b 7, log?*~1 7).

Let M€ denote the complement of M in II?*~!. We now study the contribution to B corresponding
to the set M€. This is bounded by

7m0 [ [ [ ) Ra )] [9527 0) d (5:35)
+T 27'(' 2s5—1 (/ f U, w u) Kgl (w) dw/ . \Ilg?s) (,u)’d,u (836)
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The expression in (S.36) is O(b; 7 log?*~! T') using (S.24) and

1 P —
( / Flu, w)du> Ry, (w)
II 0

Applying (S.27) the expression in (S.35) is bounded by

dw =0 (by3) -

/ H/ ‘f uzj—1, waj—1) Ky, (wa;) D (waj — waj—1) Dr (w2j+1_w2j)‘du2_] 1dwajdwj 1,  (S.37)

where M/ = {|wa — wi| > vp}U{|ws — wa| > vp}U.. U{|wes — was—1| > v} with vp = by 7/ (2s) and 2s+1
is to be interpreted as 1. Note that the integral in (S.37) differs from zero only if |wa|, |wyl,. .., |was| <
by rm. Without loss of generality, we consider only the case where just one of the events in M’ is satisfied,
|waj — waj—1| > vr, say, the other cases can be handled similarly.

From (S.26) it follows that |Dp(wa; — waj—1)| = O(bi%) since |waj — waj—1| > vr = b7/ (2s), and

Ji 1D (w2 — ng_l)f(jbl (waj)|dwa; = O(bilT logT'). For € > 0, consider the following decomposition

1
// |f (ugj—1, waj—1) Dr (w21 — waj—2)| dugj—1dwyj1 (S.38)
mJo
1
=/ / |f (ugj—1, waj—1) Dy (w2j—1 — waj—2)| dugj—1dwsj—1
woj—1|<e JO
1
—i—/ / |f (ugj—1, waj—1) Dr (waj—1 — waj—2)| dugj_1dwaj_1.
|waj—1|>€ SO

By Assumption 4 f(ugj_1, waj—1) is bounded if |wa;_1| < e. Then, the integral over |wgj_1| < € above is
of order O (log T"). On the other hand, if |wo;_1| > € (and recall that |waj_1| < by p7), we yield as T — oo
lwaj—1 — waj—a| > €/2, say. Then, |Dp(wyj—1 — waj—2)] = O (1) by (S.26) and the second summand of
(S.38) is finite in view of the integrability of f (u, w) by Assumption 5. It follows that (S.38) is O (logT').
There are other s — 1 integrals of this type that can be handled in the same way. The remaining integral

is of the form
1 —~—
/ / / ‘Kbl (was) f (u2s—1, wi) D (w1 — was)
nJmJo

where w; = was41 and we have useqv the same argument as in (S.38) to show that the integral in w;
is O (logT) for all wy, and that [i;|Kp, (was)|dwas = O (1). Thus, (S.37) is O(b;5log>* ' T) and B =

O(by7°1og™ ' T + b 5 1og® ' T+ T71) = O(Tby Fer (25)).

Define Ry, (s) = ij oLj(s) blﬂ ®. Using the Lipschitz property of f\/ (dr) (u, w) for all u,

[ R @) (/Olfw,w)du)sdw—fzbl(s)
< [ R @) (/Olfw,w)du)s—J () (/ f (u, 0)d ) v
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/’w‘df-&-g ‘K ’ ) O(bcll’f;Q—S-l-l),

where we have used sup,,cy |K, (w) | = O(bl_lT)
Note that L; (s) differs from zero for j even because L; (s) depends on pu;(K*®). O

=0 (sup Kb1
well

Lemma S.4. Let Assumptions J and 6-7 hold. For s > 1 with ep (2s +2) — 0, we have

1 S+1 ~ s
1 (Sy Wy, )* Syl =T (2n)*H! ( / f (u, 0) du) (Kbl (0)) +0 (b;}T—S log?* T + T—l) .
0

Proof of Lemma S.J. We first write 1'(3y W, )*Ey 1 using an argument similar to the one used to derive
(S.30), the only difference being that we also have the summation over two additional indexes. We write

Z E (V7“25+1 VT25+2) j:l {E <V7"2j—1 Vrzj) w (bl,T (T2j - T2j+1))}

0<ry,...y r2s42<T
—Z/ f (rasi1 /T, wagp) e r2erimraee2)zeiiqs
X {f('r'Qj—l/T7 waj—1) ei(rzf"lrzf')“’zj‘l/ Ky, (A2j) ei(Ter2j+1)A2j} dAdw
I

T (2m)%H! /

T12s+1

Sty () W () du+ 0 (T7), (3:39)

using a change of variable, where \I/( s+2) (1) = \11(25+2) (11, ey P25ty — EQSH i),

Spy (1 / / Flut, pn) Koy (14 pr2) o Kpy (1 4 oo 4 pios) f (uassn s iy + .+ piog11) du,
and dy = dpy .. .dussy1, du = duy ... dugse1 and dw = dwi ...dwasy1. Proceeding as in the proof of

Lemma S.3, we divide the range of integration in (S.39), II>**1, into two sets, M and its complement M¢,
where M = {|p;| <7bir/(2s+2),j=1,..., 25+ 1}. We have

+1

| / S () W5 )= [ ( / ' (w0) du>s K5, (0) U () dp
_ b—s 1 / Z‘ 3\“1/ 25+2) ‘

=0 (b 77! 10g25+1 T), (S.40)

using (S.25), (S.32), Assumptions 4 and 7. On the other hand, the contribution from M¢ is less than or
equal to

/ 1S, (10)] )mg%s+2> (u)] dp+ O (b5 T~ og? 1 T) (S.41)
MC
where we have used (S.24). Using the same argument used for (S.37), the integral in (S.41) is less than
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or equal to
1 s el opl N
W /M/jl_[1/0 /0 [f (ugj—1, waj—1) Kp, (w25) D1 (waj — waj—1) (S.42)
X Dy (waj+1 — waj) f (u2st1, wast1) Dr (w1) Dy (—was—1)] dudw,
where

M = {\w1| > 7Tbl7T/ (28—|—2)} U {|w2 —wl\ > 7T1)17T/ (28+2)} U...uU {|w25_1 —w25| > 7Tbl7T/ (28+2)},

and (S.42) is nonzero only if |wal, |wa|, ..., |was| < b1 7.

If |wjt1 —wj| > mbi7r/(2s+2) for at least one index j € {1,...,2s} we can obtain a bound
of order (T~'b 5 1og? ™1 T) for (S.42) as in Lemma S.3. The same bound is obtained for the case
lwi| > wby 7/ (23 + 2) with a similar argument. Combining these results with (S.39)-(S.41) concludes the
proof. [

Lemma S.5. Let Assumptions 4, 6-7 and 11-12 hold. For s > 2 with ery, 5 (25) — 0, we have

d
() ) = wa<27r2“(2fL Lt TZ(LQ,] +L3]<>>b1}js))
7=0

logQS (TbQ’T)>

+ O (Tb27Tb%}8€Tb2,T (28) + bl_v% Tb2 T

where ery, ;. (25) = (Tba,r) " log* ' (Tbyr), Lj (s) = (1/4)!p; (K*) fo K5 (z)dz (dj/dwj) fo (u, 0) du)®
with |L; (s)| < oo, Lj(s) differs from zero only for j even, Lo ; (s) depends on 8u2 Je [ (u, w)du, K,
Ky, and s with |Loj (s)| < oo, and L3 ; (s) depends on Ay (-), Ky, and s with |L3 ;i (s)] < oo.

Proof of Lemma S.5. Let ros11 = r1 and note that

Tr (S5 W) —/ / > HE( g1 () Vi, () ) w (b (3 — 7241)) du

1<ri,..,ros<T j=1

N ° (Twj — (rgj—1 — (raj —12j-1) /2)) /T
ST A | )

s <T j=1 b2, 1

/f roj—1/T, w) €212 - ldw/ Ky, (waj) €23 —r2ie)e2i doydy

LTb2 T

B / // H (Tbo,r — ko) f (unj—1, wjor) €217k

ko, kq,.. ,kzs—* Tb2 T

— . log (T'b
X Kb1 (CLJQ]‘) e’(’k%’k?f“)w?jdwdu + O (b%,T) + O (Ogjgb Z’T)>
2, T

= Thyp (2m)*7 ! /

1
(Hb1 (o) [ K (&) da + Hagy o, ) + Hapy (o m) (3.43)
I2s 0
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— s e o log®® (Tb
x Ky, () U5, (1) dwdp+ O (b3 rby 3 log® ™ (Thy.7) ) + O (b ’TgTz(;QTQT)> ’

where Hp, (w, 1), dw and dp are defined as in (S.30), \II%Z)T (n) = g (L1 -y p2s),

TbQ’T
1
it [ om0 120

xzau / /f uy, W ,UQ—...—,LLQS)Ebl(w—/.Lg—...—”QS)

jeJ

X f(us, w— ... — o) Koy (W= — ... — pas) - f (Us—1, W — pigs) duy - - - dugs_1,

with J = {1, 3,..., 2s — 1}, and H3}, (w, ) depends on the discontinuity points, i.e.,

Hdbl(w u —b (/ K )( {ul:)\2,]':1,...,mo}Aﬁj(w—ug—...—ugs))
XKb1(w_:u?)_'--_/@s)f(u?nW_'--_N2S)Eb1(w_/M_~'-_,U2s)"'f(u2sflaW_NZS)
1 —
+b§,T</ Kg_l(x)d:c>f(ul,w—,uz—...—ugs)Kbl(w—,ug—...—,uzs)
0
X f(ug, w— ... — pog) Ky, (w0 — g — ... — pios) - ..

X 1{“28—1 =N, ji=1,..., mD}Af,j (w— p2s)

with

Ay, () = /01 (ai_ ()\97 w) /013 2Ky (z) dx + (‘)u8+ (/\9, w) /113 xKo () da:) ds. (S.44)

Let

1 o~
B:'wa (2m)2> / K3 () da /H (Hbl (w, 1) Koy () 9E) () ( / f (u, ) u> K;, (w)) duodp .

Using (S.43) we have

1
B < Thyr (21)*71 / K3 (z) dx /
0

= 2s
- Ky, (@) W) ()] dwdp.

Hy, (w, 1) — (/fuw u) f(/gfl(w)

We split the integral in (S.45) into two sets, for small and for large uj. Define the set M = {u € 11?57 :

(S.45)
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sup; [pj| < b1/ (2s)}. Proceeding as in (S.33)-(S.34), we have

s—1 1 -
O (Thorbis) Y /H / /0 1 (0w = piagag — oo = ping) = f (u, )| [Ky, () W) ()] dudwdps
q=0
(S.46)
s—2
+0 (Tb27Tb1_75T+1) Z /H /M ‘Kbl (W— poyoqg — ... — pas) — K, (w ‘ ‘\IJ 2s) )‘ dwds.
q=0
(S.47)

We apply the mean value theorem in (S.46) and use (S.25) to yield,
@) (TbQ’Tbi%+1> /H ’ﬁbl de/ |:UCI| ‘\IijzT H ‘ H
O(TbgTb SH)/H’Kbl de/ |14 ’\I/szT H ’ H

=0 (b5t log™ ™ (Tharr))

On the other hand, using the Lipschitz property of K (cf. Assumption 7), the expression in (S.47) is of
order O(b; 7 log? ! (Tha.r)).

Let M¢ denote the complement of M in I12*~!. The contribution to B corresponding to the set M¢
is bounded by

TbQT(27T 28 1//

+ Tb2 T 27’[’

Hy, (w, p) K, (w qu?s) )‘dwdu (S.48)

(/ f (u, ) u)sf?l;(w)

The expression in (S5.49) is O(b; 7 log?* ™! (Thy,r)) using (S.24) and

1 s
( / f (u, w>) K3, ()
11 0

The expression in (S.48) is bounded by

25-1 du /M w2 (w]dn. (s.49)

dw =0 (bi7) -

s 1 _
/ H/ F (uzjr, waj1) Koy (wng) Drog g (w3 = wajo1) Dy g (wagen — woy)| dugj1dwsjdw; 1,
o 0
(S.50)
where M’ is defined after (S.37).

From (826) it follows that |DTb2,T (WQ]' — WQj_1)| = O(bl_,%“) since |w2j — U.)Qj_l‘ > vp = bl,T/ (28),
and [} [Dry, , (wa2j — wajt1) Ky, (w2j) |[dwa; = O(bl_} log(Tba,7)). For € > 0, consider the following de-
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composition
1
/ / ‘f (uj-1, waj—1) Do, 4 (wW2j-1 — w2j—2)‘ dugj—1dwzj—1 (S.51)
nJo
1
= / / ‘f (u2j-1, waj—1) Dy 4 (w251 — w2j—2)‘ dugj_1dwaj_1
|waj—1|<e JO

1
+/ / ‘f (u2j-1, waj—1) Dby 4 (w2j-1 — W2jf2)‘ dug;_1dwaj_1.
|w2j_1\>e 0

By Assumption 4 f(ug;—1, wej—1) is bounded if |wpj—1| < €. Then the integral over |wy;_1| < € above is of
order O(log(Thz7)). On the other hand, if |wa; 1| > € we have |Dry, ;. (w2j-1 —w2j—2)| = O (1) by (S.26)
and the second summand of (S.51) is finite in view of the integrability of f (u, w) by Assumption 5. It
follows that (S.51) is O(log(T'b2,7)). There are other s — 1 integrals of this type that can be handled in
the same way. The remaining integral is of the form

/H/H/Ol ‘f?bl (was) f (U2s—1, w1) D, 1 (w1 — was)

where w1 = wasy1 and we have used the same argument as in (S.51) to show that the integral in w; is
O(log(Tba,7)) for all wys and that [ | Ky, (was) |dwss = O (1). Thus, (S.50) is O(by 7 log?* ™! Ty ) and
B = 0(by °1og> ! (Tbyr) + by 5 108> (Thy1)) = O(Tby b FPers, 1 (25)).

Next, let

dUQS_ldwldOJgs = O (log (TbQ’T)) :

By = Thy 1 (21)* 71 /
HQS

Hop, (w, 1) = 0300 (£, C, 5) Kyt ()| Koy () 95 ()| devdp,

where Aq(f”, C, s) depends on f (u, w), the second partial derivative of f (u, w) in u at the continuity
points in C and s. By Assumption 12, for j € J and u; € C (82/0u?) f (uj, wj) has similar smoothness
properties in w; to those of f (u;, w;j). Thus, the proof used above to bound B can be repeated which
then results in By = O(Tbg,Tbi_TSeTblT (29)).

Let

B3 = Tb2,T (277)25_1 /2 H3,b1 (wv ,LL) - b%,TA3 (f/a {)‘97 ] = 17 ey mO} y S) f{/gl_l (w)‘
I12s

T 2s
X | Koy (w) O ()| dovdp,

where As(f, {)\?, j=1,..., mp}, s)dependson f (u, w),As(-) and s. By Assumption 12, (9/0u—) f (u, w)
and (0/0uy) f (u, w) for u a discontinuity point have similar smoothness properties in w to those of
f (u, w). Thus, the proof used above to bound B can be repeated which then results in Bs = O(Tb;Tbi}s
€Tty 7 (25))-

The rest of the proof follows from the same arguments used in the last part of the proof of Lemma
S.3. 0
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Lemma S.6. Let Assumptions /, 6-7 and 11-12 hold. For s > 1 with ep (2s +2) — 0, we have

1 (3 Wb1> S 1_Tb2T(27r)23“<</ f(u, 0)d > / K3t (x
+ 637 (Ra (£, Cs) + 85 (£, {A) 5 =1, mo}, s))> (K, (0))°

1 2s+1 Th
+0 (b}—TS log2 1 (Thy 1) + by = 22T) ( 27”) ,
’ ’ Tb27T

where Aa(f", C, s) depends on f (u, w), the second partial derivative of f (u, w) in u at the continuity
points in C and s, and As(f’, {)\?, j=1,...,mp}, s) depends on f(u, w), As(-) and s.

Proof of Lemma S.6. We first write 1/ (Ef/Wbl)sE‘;l using an argument similar to the one used to derive
(S.39),

1
>
0 1<r1

sy T2s 42T

~ . 1 1
E (‘/;'QSJ,-l (US+1) ‘/;“23-',-2 (us+1)> /0 “ e A

x {E (Vh,_, (Uj) Vo, (1)) w (b, (2 = 72511)) } ds
sz T

=Tby //f (o1 /T, wosyr) e Fasr2ee s / /

kasyo=— Lsz J +1

Ty k)
x q f(ugj—1/T, waj—1) > 2;[)21“ : / Ky, (wng) /W2 there0)2i b dusdu
ko, ki, kos=—| Tho,p | +1

1
<Sb1 (1) /0 K3 () dx + Sy, (1) + 3, (u)) \I’%f;f) (1) dps (5.52)

log25 (TbQ,T)
Tbyr

I2s+1

+ O (b%Tbl—’% 10g28*1 (TbQ,T)) + O (bl_é—v

where \II(QSH) (1), Sp, (n) and dp = dpy .. . dugsyy are defined as in (S.39),

1 1
Sopy (1) = b3 7 </o 2* Ky (x) diU) /0 K3 (z)dey | —— o2 / / f(ur, ) Ky, (1 + p2) ..

jedJ
X Kbl (1 + oo 4 p2s) fugser, 1+ -+ post1) du,

with J = {1, 3,..., 254+ 1} and Sz, (w, i) depends on the discontinuity points, i.e.,
Ss.r (1) = b3, / K5 (o) de (1{ur = A}, j = L., mof Ay (m)) Koy (i1 + pi2)
Ky (1 pas) f (upeet, g p2ss)
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1 —~—
+b%,T/ K3 () daf (ur, w—pg — .o — pios) Ky, (w—pg — ... — p2s)

0
XE[)I(/,L1+...+,U,23)1{U25,1:)\?,j:].,-..,mo}Af,j(,Uz1+.,,+,UJ23+1),

with Ay ; (w) defined in (S.44). Proceeding as in the proof of Lemma S.4, we divide the range of integration
of the integral involving Sb1 (1 ) (S.52), TI?**! into two sets, M and its complement M€, where M =
{lpjl <7 r/ (2s+2),5=1,..., 25+ 1}. We have

1 S—i-lN
[ S 9 = | ( | 1 o>du) R, (0) U5 (1) dp
—o(ni) [ Zw\%?:jf) ) dn
=0 (b5 (Thor) Hog® ! (Thoy1) ) (8.53)

using (S.25), (S.32), Assumptions 4 and 7. On the other hand, the contribution from M€ is less than or
equal to

Ty (2m) 2 / oy ()] [ €552 ()| da + O (b1 1og™ ! (Thayr) ) (S.54)

c

where we have used (S.24). Using the same argument used for (S.50), the expression in (S.54) is less than
or equal to

S 1 1 N
/ , H/(; /O ‘f (U2j*1> )\2]'*1) Kb1 ()\2]’) DTbQ,T ()\2j — )\zjfl) (855)
=1

X Dy, o (A2j1 — A2j) f (u2st1, A2s+1) Doy o (A1) Doy (—)\25—1)‘ dugs1dug;j—1dA,

where M/ = {’)\1‘ >7rb1T/(2$+2)}U{]/\2—)\1\ >7rb1T/(2s+2)}U U{’/\QS 1—A25‘ >7Tb1T/(28+2)}
and (S.55) is nonzero only if |Xao|, [A4], ..., [A2s| < 7by 7.

If (Nj41 — Aj| > wbi 7/ (25 + 2) for at least one index j € {1,..., 2s} we can obtain a bound of order
((Tba,r) 10 5 Hog? ™ (Thy 1)) for (S.55) as in Lemma S.5.

Next, we have

[ S 0+ Sy () 95572 () (5.56)
- b%T/HQs (KQ (fllv Ej7 S) +K3 (f/7 {)\?7 j = 17 ceey m}7 3)) R:lfl ( )\II’,('[?;:_I?) (lu’) d/'L .

By Assumption 12, (82/0u?)f (u, w) for u € C, (8/0u_) f (u, w) and (8/duy) f (u, w) for u a disconti-
nuity point have similar smoothness properties in w to those of f (u, w). Thus the proof used above to
bound (S.53) can be repeated which then results in (S.56) being O(b3 by logQS‘H(Tbg 7). O
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Lemma S.7. Let Assumptions 4, 5 (p > 1), 6-7 and 10 (0 < g < 1) hold. Then, ||Ly Wy, || < Civo,r where
Cy depends on f (-, -) and K, 0 < Cy < 0o and vo 7 = max{bilT log? T, T(2_1”)/2pb1_’1T/2 log?T)} — 0.

Proof of Lemma S.7. We have

ISy Wi, || = sup | > :ijhz / F ()T, \) Ky, (w) e =N dxdyy +0(T—1)
=1 | h=1 t=1s=1
= sup Zf (t/T, \) ei’»‘z:vja:h/ R/bl (w) Dy (—w) "IN dxdw| 4+ O (T_l)
lzll=1]¢=1 j 1

< sup / / Z f /T, N e Dy ( Zx]xthl e =3 g\ duw
w<leJ A ¢

ll=]=1
+ sup / / Z F(t/T, \) e™Dr ( ij:nth ) € r=iN g\dw| + O (T‘1>
lz||=1 |Jw>e J X ¢
2 A 40(1)+0 (T* ). (S.57)
Let Lo : R — R be the periodic extension with period 27 of
T, w| <1/T,
L) Wl <1/
Vel 1T <[] < I,
Lemma S.A.1-2 in Casini and Perron (2024) showed that
T .
Z f (t/Tv )\) e_Zt/\ < LQ,T ()‘) ) (858)
t=1

and fr[ Ly (AN)dX < CplogT for T'> 1 and Cp, > 0 being a constant independent of T'. Let Xp (w) =
ZJT:1 x;€%%. Then, the contribution to A; from |A| < € is bounded by

s [ f
lz||l=1Jw<e J A

T
S FE/T, A) e

|Dr (=w)| [ X7 (@) | X7 (V]| Ky, ()] dAdeo
t=1

< sup bihsup |K (@) [ 2ar ) ([ 1Pr (=)l 1Xr (@)1 X7 ()] ) dade
z||=1 we
) 1/2 ) 1/2

< o b sup K (o o) ([ Lar dA) (] roean)

z||=1 we

1/2 1/2
</|DT )2 dw) </|XT )2 dw)
< 27Coby 1sup | K (w) |log? T, (S.59)
T well
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where 0 < (3 < oo and we have used sup,,cpy |K (w) | = O(bi%r), (f, | X7 (w)|*dw) = 27 and (S.58). For
|A| > € the contribution to A; is bounded by

sup /LKHXT; </H (f (t/T, \)? d)\> v </H A X (N) |pf1d)\> v ’DT w) X (w) K, (w)‘ dwdw

llzll=1

. . (r—1)/p —
<@mQXﬁW&mvm) [ [prce) xr @) R )] de
w<e

[l 1t 1

(r=1)/p (r—1)/p
< Cy sup (/ |eitA | 7=1 1d)\) / </ | X7 (\) |71 1d/\>
lzl=1 =1 wee
1/2 1/2
« (/ Dy (- |dw> </ X7 ()2 dw) (/ [, () dw)
II

<¢@<“MK<>Q | Kl (2m) @V T b L 10g? T, (S.60)

where 0 < Cy < oo and we have used sup,, , [ X7 (\)| < VT and

(/n | X7 (N\) |ppld>\> (p—1)/p _ </H Xr () |2+2_119d/\)(p—1)/p
= (/ | X7 () P X7 (V) |ifdA) (b=1/p
<

L (»=1)/p
/ X7 (\) [2T2 pl)d)\>

S (27‘( (1’ 1)/PT
From (5.59)-(S.60) we have A; < Civor for some Cy such that 0 < C; < co. O

Lemma S.8. Let Assumptions 4, 5 (for some p > 1), 6, 7 and by + TflbilT log®T — 0 hold. Then,

there exists co > 0 such for ||t|| > eimp with ¢ > 0 we have |1 (t)| < exp {—com#}, where mp =
min{(Tby )~ "?1log T, T®P~D/P} — co.

Proof of Lemma S.8. The proof is similar to the proof of Lemma 15 in Velasco and Robinson (2001) with
the difference that reference to Lemma 16 there is changed to reference to Lemma S.7. [J

Lemma S.9. Let Assumptions 4, 5 (p > 1), 6-7, 10 (0 < ¢ < 1) and 11-12 hold. Then, ||SWs, || < Crvar
where C1 depends on f(u, w) and K, 0 < C; < oo and vop = max{bl_’lT log (Tbar) (Tbgj)(z*p)/zf’

by )} — oo

Proof of Lemma S.9. The proof is similar to the proof of Lemma S.7. J

Lemma S.10. Let Assumptions 4, 5 (p > 1), 6-7, 11-12 and by 1 + (Tbl,szT)_1 log® T — 0 hold. Then,
there exists a c4 > 0 such for ||t|| > csmor with c3 > 0 we have | (t1, t2)| < exp(—04m%’T), where
m27T = min{(TbQ,TbLT)l/Q/log(TbQ,T), (Tbgj)(p_l)/p} — OQ.
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Proof of Lemma S.10. Following Bentkus and Rudzkis (1982) and Velasco and Robinson (2001) we first
study the characteristic function of Jpk 7. Define 7 (t2) = E(exp(itave)) = 7' (t2) exp(—it2 Yo 1), where

-2 N ~1/2
. Y
= H 1-— 21t2 s
j=1 Thy /by Vo7 JT

21ty
\/To21 /b1, 7V 1T

and X]— are the eigenvalues of X W}, . Note that

7' (ty) = |I —

=W,

bir 1

1 =Var (vg) = Thoy V2,2
2,7YT

b
Vo {<2‘7Wb1) } ngTTV TJT Z)\

where we have used the normality of {V;} and the relationship between the trace and the eigenval-
ues. Rearranging yields erzl )\? = 2_1bilTTb27TV%7TJ% = O(bilTTbZT). Further, we have max; |\;| =
SUP||z|=1 |25 W, @, | = |25 W), ||. We can apply Lemma S.9 to yield

m]ax ’XJ‘ < Civar, Vo, r = Max {bl_lT log (Tbar) , (Tbg,T)(Q*p)/zpb;;/Q} — 00,

where Cq > 0 is such that Cy < oo. Let gj = Xj(ClygT)*l and note that for 7' large enough we have
lgj| < 1. Using 3°5_, g7 = (2C13 1)V3 1 J3by 1 Tba 1 we yield

T 2,2 (1/4)
< 1442 1727 )
j1:[1 ( bl,lTTbZTV%,TJ:/z*

, Vir  4C} ~(/B)CTVE 1 b Thavy 1
L+t = 712
b by V317

9

2, —(1/2)(C5 ' +0 (b3 p+ern, 1. (2)) ) Tha,rby 15 7
<1 + tQm |:O2 + 0 (bl T + eTbg T (2))}>

where Cy = C2/(x®4(fi) f (u, 0) du)? ||K|[3 || K2[|2) and we have applied (1 + at) > (1 + t)* which is valid
fort > 0 and 0 < a < 1. Thus, for all n > 0, we have

—n2(Tba b7
7 (t2)] < (14 n}) (Thartiiin) (S.61)
for |ta]| > ny /TbQ,Tbl_}VQ_% and for n; > 0 and 72 > 0 depending on 7.
Next, we consider the joint characteristic function ¢ (¢1, t2). Its modulus is equal to
1 2 ¢/ . -1
[¥r (t1, t2)] = |7 (t2) | exp { —5ti& 0% (I - 22t22‘7Q2,T) Ysér ), (5.62)

where Z (A) stands for the real part of A. From Anderson (1958, p. 161) %’(Z‘Z/l — 2itaQo ) =
%(I—QitQQQ,T)_lE;/ is positive definite since t2Q2 1 is real. Then féyT,@(I—2it22‘7Q2,T)_1E‘7§2,T > 0 for
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all ta € R. Thus, |ta| < dy\/Tby by p/var for all d > 0 and & p2(I — 2ityS5 Qo )~ Séor > € for some
e > 0 depending on d because ||S5Qor|| = O(Tbyrby 1)~ /2||Se Wi, || = (O(Tbyrby 1)~/ ?va7), and
leorl] = (/Thordr) V12 + 124 .+ 12 = 1/\/bapJp, with Jp — 27 [ f (u, 0)du, 0 < f (u, 0) < o0
for all u by Assumption 4. Then, for |t;|v/2 > di, /TbQ’Tbi%ﬂ/VZT and |ta] V2 < dh/Tbg,TbilT/uzT and

some €1 > 0 depending on dy,

1, , 1 1 1, Thyrbiy
exp <_2t1£2,T‘% (I - 221522‘7622771) V§2 T) < exp (_2t161) < exp —ZdlelT’ . (863)
2,T

From (S.61)-(S.63), there exists a da > 0 such that |[¢7 (t)| < eXp(—dg(Tbngbl_’%w/ViT)) for {t : [|t]| >
dlq/TbZTbi:lp/Vg,T} C B; UBy where B; = {t S R2 . |t2| > (dl/\/i) szjbi%/l/gj} and By = {t S
R?: |to] < (dl/\/i),/Tbg,Tbl_’lT/uZT and [t1| > (d1/v/2), /Tb27Tb1_ér/u27T}, and the lemma follows because
Tb27Tb1_,1T/1/227T = m%vT — 00. O

S.B.2.2 Additional Lemmas Used for the Proofs of Theorems 3-4

We first present a result about the limit of Jp and a result about the bias of Ju AC,T-

Lemma S.11. Let Assumption 4 with dy =1 and ¢ = 0 hold. Then, Jp—2m fol f(u,0)du=0 (T logT).
If in addition Assumption 2-(i) holds, then the order is O(T~1).

Lemma S.12. Let Assumptions 4, 6, 8, and 9 hold. Then,

~ 1 Lp(ds u, 0) du d d
E(JHAC,T)%/O f (u, 0)du—27rf0f d;,’ ) ay (K) b = O (T log T+ b11)

We now study the cumulants of the normalized spectral estimate ho.

Lemma S.13. Let Assumptions 4, 6-7 hold. For s > 2 with ep (s) = bif;g + T oy 7log>* ™' T — 0, we
have

T (s—2)/2 dy
Fr (0, s) = kr (0, s) () ZE b 7+ O (er (s)),

b1,

where Z; (0, s) is bounded and depends on K and f9) (u, 0) (j =0,..., dy).

A few examples of Z; (0, s) are Zq (0, s) = (4m) (s~ 2)/2 D! [ K° (w) dw ||K||5° and Z1(2, 5) = 0.
If (8/8w)(f01 [ (u, w) du)|w=o = 0 then =;(0, s) = 0 for j > 1. In order to develop an Edgeworth expansion
to approximate the distribution of h, we need to study the cross-cumulants of h.

Lemma S.14. Let Assumptions 4 and 6-7 hold. For s > 0 with er (s + 2) — 0, we have

dy
(2, 5) 2 kr(2, 8) (Thyr)*” = ZE- )+ O (er (s +2)),
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where Z;(2, s) is bounded and depends on K and f) (u, 0) (j = 0,..., dj).

For example, we have Z(2, s) = (47)*/? sIK* (0) | K5 ® and Z1(2, s) = 0. Using Lemmas S.13-S.14
we can substitute out By and V7 in Z7 and, by only focusing on the leading terms, we define the following
linear stochastic approximation,

_ 1 .d - -
Zr & (1 -2 1C1b1ch — 274 || Ka|| hy (Tby 1) 1/2> :

Lemma S.15. Let Assumptions 4, 5 (p > 1), 6-8 and 10 (¢ = 1/(1 + 2d¢)) hold. Then, Zr has the same
Edgeworth expansion as Zy uniformly for convex Borel sets up to order O((Tby 1)~ "/?).

Note that the condition ¢ = 1/(1+2dy) is sufficient for the consistency of Ji ac,T- Indeed, for dy = 2
it implies that by =T —1/5 which coincides with the MSE-optimal bandwidth choice for the quadratic
spectral kernel [cf. Andrews (1991)].1
S.B.2.3 Proof of Lemma S.11

Note that Jp = 311 L4 D (k) where T'p (k) =T EtT=|k\+1 E(ViVi—k). We have

T 1
JT: /f (t/T, w) e dw
T+1 t=|k|+1
- ’k‘ kw
= Z / /fuw’dwdu—l—O( )
—T+1 |kl/T

—27r//fuw Y (w) dwdu+ 0 (T71).

Since [ \Ifg?) (w) dw = 1, we can apply the mean value theorem for f (u, w) in a small interval [—¢, €], € >
0, for some || < 1 depending on w,

1
<o </w|<e+/|w|>e)/ /yf(u, W) = 1 (u, 0)|[ ¥ ()] dwdu+ 0 (T7)
= (/w<6/ w1 FM (u, wn) |‘\I/ ‘dudw
1
+ (/0 (I1f (@) |ls + £ (a, o>>du> Tl) +0(r7)

-0 (T—llogT) +0 (T—l) ,

JT—27T/01f(u, 0) du

where we have used Assumption 4,

1 _
[0 ()] < 5oz D1 @) Dr (<) < =™,

!Note that the MSE bounds under nonstationarity in Section 8 in Andrews (1991), which are used to determine
the optimal bandwidth, are not correctly stated [cf. Casini (2022)].
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from (S.26)-(S.27) and |¥'? (w)| < O (T)71) if |w| > e.
For the second result in the lemma, note that

|K|

he Y T Y E(Wi)—- Y 1Y B (W) + Z Y B ().

k=—T+1 t=|k|+1 k=—T+1 t=1 —T+1 t=1

Then,

+

Z T 1ZE(VtVt )|

—T+1 t=1

Z leE(V;Vt | —27r/fu0du

1
JT—27T/ f(u, 0)du| <
0 —T+1 t=1

:O(T—),

using Assumption 2-(i). O

S.B.2.4 Proof of Lemma S.12

We can write jHAC,T =27 [ Ebl (w) I (w) dw. Note that

:/1/f(u, NP (@ = A dAdu+ 0 (T7Y).
0 JII

Thus, we obtain

(JHACT —27r/Kb1 //fua+w v (a )dadudw+0( )

Then, using [; \I'(TZ) (w)dw =1 and [ Ky, (w) dw = 1 we have

1 () (u, 0
E(JHACT —277/ f (u, O)du—QTrbITudf )/0 fdf(')du

= 27r/ Ky, (w)/ / \I/g) (@) (f (u, w+ a) — f(u, w)) dadudw
i 0 Ju
- 1 (@r) (u, 0
d u, _
+/ Ky, (w)/ [f (u, w) = f (u, 0) = by "ppta, (K) fd(')] dudw + O (T 1)
I 0 £
A -1
For € > 0, we introduce the sets A = {|a|, |w| < ¢/2} and its complement A€, both defined in IT?. Let

Aq1 and Ajs be the contributions to A; corresponding to A and A€, respectively. Then, applying the
mean value theorem we have

1
|A11] :27r/ ‘Kb w dw‘dw/ ‘\I' ’\a\da/ sup
jwl<e/2 laf<e/2 0 |wl<e

:O( _llogT>,

7O (u, w)‘ du
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where we have used (S.26)-(S.27) and Assumption 4. Let B; = {|a| > €/2} and By = {|w| > €/2, |o| < €/2}
and note that A¢ C {B; UBs}. The contribution to Ao from By is

|/|a|>e/2 V2 (@) [ Ry @) [0 (0t 0) = () o
( /Hz/ ‘Kbl (u, w+a) = f(u W))’ dudwda)

_o (T—l <1+/w|<6/0 i (@) £ (u, w)‘dudw))
:0( / Ky, (w ’dw) (S.64)

using (S.26)-(S.27) and Assumption 4. Since K, (w) is of reduced magnitude for w > €/2, the contribution
to Ao from By is, for large T,

1
‘/ || > /2/ |<e/2 K, g’?) (a)/o (f (u, w+ ) = f (u, w)) dudadw

This implies that Ajp = O (T 1).

As for Ay we apply a Taylor’s expansion of f (u, w) around w = 0 and we split the integral into two
parts for |w| < € and |w| > €, denoted as Az and Agg, respectively. We have for || < 1 depending on w,

=0, (S.65)

dg—1

w (dr) u, 0
A9y = Ky, (w / ( Z Fu) f(df) (u, nw) dfj: - fd;!),udf (K) b(lifT) dudw
/ W Ky, (w dw/ 79 (u, 0)

+ df /|w|<b1,T7r deln (w )/0 (f(df) (u, nw) — f(df) (u, 0)) dudw

- (‘/W|<bl,T7T ‘Kbl ’ ‘w’df—hg dw) =0 (b‘ff‘;"-’) )

where we have used Assumption 8 and the fact that as by 7 — 0 the integration is within [—e, €] and that

dfl

by Assumption 4 f (dr) (u, 0) is Lipschitz continuous of order g for all u € [0, 1]. We can use the same
argument used for Ao to show that Ase = 0. [

S.B.2.5 Proof of Lemma S.13

From the definition of )7, we have

kr(0, 5) = 2571 (s — 1)1 (VpJp)~° (T/bLT)_S/2 Tr((Xyv W, )®),
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for s > 1. By Lemma S.3,

(VrJr)®

. B 251 dy ,
7r(0, 5) = w7 (0, ) (b pT)D/2 = 25— D) (Z L; (5) W g+ O (er (23))) . (S66)
=0

Using again Lemma S.3 with s = 2 to evaluate V2 yields

:]2 1 ~ 1 %
2 YT o 1 YV,
I = 12 T'by,rVar (JHAC,T) =12 Tby 7 Var (V T V)

d
2bl,T 2«2 2b1,T 3 f -1 4
= 47[_2TTI' (Wbl EV) = 12T T (27’[’) J;O LJ (2) bl,T + Tbl,TeT (2)

dy
=4r Y L; (2)b] p+er (2),
§=0

where we have use the normality of V4. Lemma S.3 implies that 0 < Lo (2) < oo and L; (2) are fixed
constants independent of T'. Then

J —s dy )
(VT%TT) = (4m) "2 Hj ()b 1 + O (er (s)) (S.67)
J=0

where Hy (s) = Lo (2)~*/? and so on. Denoting ¢ (0, s) = (47)® 272 (s — 1)! and using (S.66)-(S.67) we
yield the following expression for the cumulants, %7 (0, s) = ¢ (0, s) Z;lio P; (s) b{T + O (er (s)), where
P;(s) = i;o Hy (s) Lj—¢ (s) are constants not depending on 7' with P; (s) = 0, P> (s) = Ho(s) La (s) +
Ja (s) Lo (s), and so on. Setting =; (0, s) = ¢ (0, s) P; (s) the lemma follows. [J

S.B.2.6 Proof of Lemma S.14

Note that for s > 0 we have

s/2
kT (2, s) = 2°81¢0 (SyQr)° Sy ép = zsslleTTs/;\éJ%r (W, Sv)* Syl
From Lemma S.4,
(2, 5) = s/20s gL BT, s
7(2, s) = (T )" 2 sl TS/QV%J;l (W, Zy)” Xyl
- 5/2 s 1 bi/% 2s+1 ! . > $
= M) 28l e (7 (2m) ( /0 £ (u, 0) du> (K5, (0))

+ 0 (b3 log™*1 7))

2m \*2m o f(w O)du o s
<JTVT> : Jr ) </0 fe O)du> K(0)°+O(er (s +2)),
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where we have used the fact that f(/bl (0) = b, 7K (0). Using Lemma S.11 and eq. (S.67), we yield

)

Rr(2, 8) = <Ji<T/T>S(1+O( 1logT (/ f(u, 0)d ) K(0)°+ 0 (er(s+2))

— (4m) "2 (4m)° s (/fu(] ) ZH )Vl 4O (er (s +2)),

where the Hy (j) are as in the proof of Lemma S.13. The lemma follows by setting Z;(2, s) = (477)75/2 (4m)* s!
fo (u, 0) du)*K (0)* H; (s). O

S.B.2.7 Proof of Theorem 3

We first construct the approximation for 7 (t). It follows from Velasco and Robinson (2001) and
Taniguchi and Puri (1996) that only the cumulants x7(0, s) and sp(2, s) are nonzero, and that the
cumulant generating function is given by

T+1 Tb1 T)(2 s)/2 5!

log r (t) = = H it||* +Z

' 'ET(Tl, Tg) (it1)r1 (itg)m + Ry (T) , (868)
r1:1r9:

|r|=s

where r = (r1, 72)’ with r; € {0, 2} and |r| = ry + 7o, and

RT (7’) = (TbLT)iT/Z <R077—+2 (itQ)TJrQ + R277- (it1)2 (itQ)T) y T even,
. 1 . oy + 2 +1)_ ) T
Ry (1) = (Thyp)™™? <;-;T(0, T4 2) (ita)"T% + ww(z, 7) (it1)? (ity) >
(1+2)! 2
+ (Tby ) ™? (R0,7+3 (it2) ™ + Ry i1 (ity)? (itz)TH> : 7 odd,

where the Ry ; and Ry ; are bounded. Using Lemmas S.13-5.14, we have

s(s—1)_

T+1 TblT)(2 s)/2<
2

logyr (t) = 3 || it]|” + Z (0, s) (it2)” + (2, s —2) (it1)* (it2)82> + Ry (7)

= 2 lit]® + S ()72 (Br (s, ) + {(it2)" + (it1)* (it2)*"*} O (e (5))) + R (7)

where

df s —
Br (s, t) 1' Z v T {_] (0, s) (ite)® + (21)~] (2, s —2) (it1)” (itQ)sz} :
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The approximation of the characteristic function of u using its cumulant generating function is

1 T7+1 ) T+1 1
AT (t7 T) = exp {2 HZtH2} 1+ Z (TbLT)(Q_])/Q Z H [BT (n’ t)]T" —_—
J=3 r n=3 T3l Tr4l
where r = (r3,..., r741), mn € {0, 1,...}, and the summation is over all r satisfying Z;ié (n—2)r, =

j — 2. To obtain a second-order Edgeworth expansion we set 7 = 2 and we include in Arp (t, 2) terms up
to order (T )~ /2,

Ar (£, 2) = exp {; HitHQ} (1+Br (3. 6) @) ). (S.69)

where in Br (3, t) includes only the leading term in bi r (7 =0) in the expansion for the cumulant of

order three. Note that the characteristic function of @g,? )() is Ar (t, 2).

The rest of the proof consists of studying the distance between the true distribution and its Edgeworth
approximation. Lemma S.16 studies the Edgeworth approximation for the characteristic function for
It|l < c1y/Tb1,7, whereas Lemma S.8 analyzes its tail behavior. The desired result follows from the same
steps as in Theorem 1 of Velasco and Robinson (2001) which relies on Lemma S.2. [

Lemma S.16. Let Assumptions 4, 6-7 and by 1+ (TbLT)f1 log® T — 0 hold. There exists 61 > 0 such that,
for |[t]| < 01\/Thi 7 and a number d; > 0,

7 (6) = Ar (8, 2)] < exp {~du "} F (1) O ((Tbl,ﬂ-l/? (Br+er(3)+ T;ﬁ) 7

where F (|[t]]) is a polynomial in t with bounded coefficients and A (t, 2) is defined as in (S.69).

Proof of Lemma S.16. It is similar to the proof of Lemma 14 in Velasco and Robinson (2001). O

S.B.2.8 Proof of Lemma S.15

It is similar to the proof of Lemma 5 in Velasco and Robinson (2001). O

S.B.2.9 Proof of Theorem 4

Consider the transformation s = (s1, s2)’ = (Z7(h1, ha), ha)' = Ar (h) say, and its inverse h = AL (s) =
(hJ{(sl, s2), s2)'. Let Ly = {h: |hy| < LT, 0 <~ < dy/(3(1+42dy)), i = 1, 2}, where [; are some fixed
constants. Using (1+2) "' =1—2+2? — 23 + ... for || < 1, we have uniformly in the set L,

1 1 _ -
i (s) = s {1 + Saby + 5 VaT [ Ko sz (Toyr) 1/2] + o0 ((Thyr)™?).
We have P(Zr € C) = P(h € A;' (C x R)) and from Theorem 3,

aup[F (1€ A7 (© ¢ B) 08 (271 (© % B)| =0 (7)) scost supl? ( (07 (€ x )™ ),
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where ¢ = (Thy 7)~® with 1/2 < @ < 1. The rest of the proof is similar to the proof of Theorem 2 in
Velasco and Robinson (2001). O

S.B.3 Additional Lemmas Used for the Proofs of Theorems 5-6
Lemma S.17. Let Assumptions 4, 6, 8-9 and 11-12 hold. Then,

) (u, 0)d
b/ d;? )u“df(K)bellfT

1
E(Jokr) - 2 /O fu, 0)du — 27

1 2
— b3 T/ 22Ky (z) dx /y 8—2]‘" (u, 0) du — 27b3 7 A ¢ (0)
) 0 c 8u )

=0 (b + (Thor) ™ log (Thar) ) + 0 (B3

The term QWb%’TA #(0) in Lemma S.17 is the contribution to the bias due to the local time-smoothing
in the neighborhoods involving a discontinuity point.
We now consider the cumulants of the normalized spectral estimate vs.

Lemma S.18. Let Assumptions 4, 6-7 and 11-12 hold. For s > 2 with erp, .. (s) = b(ff;Q + (TblTbl,T)_l
log? ™Y (Tby7) — 0, we have

Far (0, s) 2 ko (0, s) (Thy b T>(S*2>/2
df ‘
=D 52, (0, ) bl + b3 TZ (HQJ (0, 8) + 3,5 (0, 3)) b +0O (eTbQ,T (3)) ;
7=0

where s ; (0, s) is bounded and depends on K, K and on fU) (u, 0) (j =0,..., dy), Eg,j (0, s) is bounded
and depends on K, Ko, 9 (u, 0) and (0%/0u?) f (u, w) and Z3; (0, s) is bounded and depends on K, Ks,
f9) (u, 0) and Ay (w).

We now consider the cross-cumulants of v.
Lemma S.19. Let Assumptions 4, 6-7 and 11-12 hold. For s > 0 with ery, ;. (s +2) — 0,

ds ‘
Ror (2, 8) 2 For(2, 8) (Thorbyr)™? = 3 (S22 8) + B3p (2,(2, ) +55,(2,5)) ) blg
=0

+ O (6Tb27T (s+ 2)) ,
where Za;(2, s) is bounded and depends on K, Ko and fU) (u, 0) (j =0,..., dy), =, (2, 5) is bounded

and depends on K, Ko, f9) (u, 0) and (8?/0u?) f (u, w), and Z3; (2, s) is bounded and depends on K, Ko,
£9) (u, 0) and Ay (w).

S-34



LOW FREQUENCY CONTAMINATION IN HAR INFERENCE

S.B.3.1 Proof of Lemma S.17

r ~
exp (—iwt) Vi (r)

For r € 6, using a second-order Taylor’s expansion as in the proof of Theorem 7.3 in Casini and Perron
E (fT (r, w)) =E 1
27 Tby 1 Pt

(2024), we yield
2)
| T2, | -1

Sy /1@( i (t_m))/T) £ ((E+ B/2)/T, A) eeVax
II

b
k= | Ty 1 | +1t=Ikl+1 2T

+0 ((TbQ,T)_l log (sz,T))

=/f<r, VO (w—A)d
s |

11
N 2T TbQ,T

b%T ! 2 9? 2 -1
+2r /0 2Ky (@) do g f (u, @) s +0 (B3 ) + O (Thar) ™ log (Tbar) ).

In a neighborhood of a break point )\?, let r = /\9 + sby 7 for some s € (0, 1). Then,
EITrw /fr)\ Tb o (W—=A)dA

+bor (/0 zKs (x )dw—f( )—l—/llsxKg (x)da:aqirf (/\?, w))

When integrating the last term above over r we have

9 mo 1l o 0 1-s o 0 1
bQ,T Z/O W ()\ja W) /0 Ko (l') dx + Mf ()\j, CU) / Ko (J:‘) dr | ds.
j=1 -

1-s

Thus, we obtain
E (Jbk.r —27T/Kb1 / /f u, o+ w) U (@) drdudw

N 2
+ ng,T/ 22Ky (z) dx/ Ky, (w) /~ 882f (u, w) dudw
0 11 c ou

+2mb3 7 /H Ky, () A (@) dw + 0 (037) + O (Tho,r) Hlog (Thy7)) .

Then, using [; \Ilgg) (w)dw =1, [ Ky, (w) dw = 1, Assumption 12 and similar arguments as in the proof
of Lemma S.12 applied to the terms involving g—;f (u, w) and Ay (w), we have

R 1 dy) 0
* d u,
E(Jhkr) —271'/0 £ (u, 0) du — 21by/pq, (K)/O f d;! ) du
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1
—7rb / 22Ky (z )dm/ aa2f(u, O)du—Qﬂ'b%’TAf (0)

= 27T/ Ky, (w / / (u, w~+ @) — f (u, w)) dadudw
— (df) u, 0
+ 27r/ Ky, (w)/ f(u,w)— f(u,0)— b1 "rha (K) fd(") dudw
I 0 fr
o (b31) + O ((Tba,r) Hlog (Thar) ) + o (b3 rb%r )
2 A1+ As 40 (Br) + O (Tbor) ' log (Thyr)) -
To conclude the proof, note that by Lemma S.12 we have |A;| + |As| = O (T~ tlogT) + O(bdfﬂ)). O
S.B.3.2 Proof of Lemma S.18
We have
ko (0, 5) = 2271 (s — 1) (Vo dr) ™ (Thoyr/bir) ™ Te((S5 Wi, )®),
for s > 1. By Lemma S.5,
Fo.r(0, 8) = ko 7(0, 8) (T rba) 2 (S.70)

s—1 s — - 25—1 dy '
— 2 <(V2 711)}:’(1?5 ) (Z L b{ T + bQ T Z ( L2j ) + L3,j (S)) b{,T) + 0 <6Tb2’T (5)>) .

7=0

Using Lemma S.5 to evaluate V%T yields

J? 1 ~ 1 Wi ~

5 L= = = / b

Srgmr = g ourbaaVar (Jokr) = ThigbyrVar </0 V) g,V ) d’”)
_ 2b1,1 5 o
= oy (W sh)

2b1 T

(Z Li (b7 + Y1 Z (L2 (8) + Lay () b{}l)) + Thorby 1O (ertr (2))

=4m (Z L;(2) b{,T + b3 TZ ( Ly (s)+ Ls;(s)) bji,T)) + O (GTbQ,T (2)) ;
=0

where we have use the normality of {V;}. Since Lemma S.5 implies that 0 < L¢ (2) < oo and L;j (2) are
fixed constants independent of T', we then have

J —s df .
(Varyl) = m =2 S Hy 261+ O (erm, (2). (8.71)
=0
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where Hy (s) = Lo (2)75/2 and so on. Using (S.70)-(S.71) we yield

R21(0,5) =¢(0, s (ZPQJ b7 +b Z((PQJ s)+ P (s )) bi,T)) JrO(eTbZT (2)),

where ¢ (0, s) = (47r)(572)/2 (s=1), Ppj(s) = {: Hy (s) Lj—¢ (s) are constants not depending on T" with
Pyi(s) =0, P (s) = Ho(s) L2 (s) + Hz (s) Lo (s) and so on, and Pyj(s) = YI_o Hi (s s) La,j—¢ (s) and
Psj(s)=>_yHt(s) L3 j—t(s). The lemma follows from setting Z» (0, s) = ¢ (0, s) Py (s), 22,5(0, s) =
c(0, s) Py (s) and E2(0, s) =¢(0, s) P3 (s). O

S.B.3.3 Proof of Lemma S.19

For s > 0 we have

s/2
s 1 by 1 s
— 9Sale! - ~ — 9Ss ) / ~ ~
ko1 (2, 5) = 2°s1&p (ZVQQ’T> Yyér =2 s! barJr (Thaz) /23 Tj%l (Wbl Ev) Xyl

From Lemma S.6, we have

s/2
1 bt s
For(2, s) = (Tby rby1)? 255! ’ 1 (W, 2=) =1
R (2, s) = (Th,rbe,r) § TbyrJ7 (Tha.T) S/QVS,T‘]% ( b1 V) 1%
s/2
1 b
= (Thy 7byr)? 2%! =il

Tby TJT (Tbg T) s/2\/3 TJS

(Tbg (27r)23+1(</ f(u, 0)d )SH/ K3' (z) dz + 03 hs (£, C, 5)

+ b%,TXB (f,, {)\?, 7=1,..., mo} )) (Kbl (0))

1 2s+1 Tb
10 (515 10g? ! (Thy ) + b3 5 (Th2r)
’ ’ Tbo T

S 1
:<JT2V7T2,T> 2 fo / JT“ 0) du ((/ f(u,0)d )/K5+1 () da + b3 1 (A;+7\§)>K(0)s

+0 (eTbQ,T (s + 2)) ,

where l~\§ and /~\§ are equal to JNXQ and 1~X3, respectively, without the factor fol f (u, 0) du, and we have used
Ky, (0) = b;lTK (0). Using Lemma S.11 and (S.71), we yield

E2,T(2, S) = (JT2V7T27T) B (1 + O ((TbQ,T)_l log(Tbg,T)))

X (47)° 8! ((/0 ) / K5 (x) da + b3 (A5 + K?,)) K (0)° + 0 (emp, (s +2))
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_ (4m)~*/ (4)" _((/fuo )/K;“ x)da + b3 1 (A;+K§)>K(0)SZHJ(S)b{,T
+O(6Tb2,T (34—2))7

where the H; (s) are as in (S.71). Letting

1
55(2, 5) = (4m)~*/? (4m)° (/ f(u, 0)d ) (0)8/0 K5 (2) deH; (s)

2,(2, ) = (4m)2 (4m)" A3 K (0)° /0 3 (2) dot, (s)
~ 1
) o [

Z3,(2, s) = (4m) 7%/ (47)* sIALK K3 (z) dzH; (s)

the lemma follows. [J

S.B.3.4 Proof of Theorem 5

It follows from Velasco and Robinson (2001) and Taniguchi (1987) that only the cumulants 2 7(0, s) and
k2,7(2, s) are nonzero, and that the cumulant generating function is given by

(—)/2

(T'by, b s! NP1 (g T *
log v (¢) = [t +Z LRI S R 1) ) () 4 Ry (), (572)

|r|=s

where r = (r1, 72)’, with 71 € {0, 2} and |r| = r; + 72, and

Ry (7) = (Tbirba,r) 7/ [Ro 1y (it) 7 + Ry, (it1)* (it2)7] 7 even,
« —r 1 _ T T+2)(1+1 , T
R (1) = (Thyrbyr) ™ R (0, T4 2) (it2)™ "2 + M@ 7(2, 7) (it1)? (ita) }
(14 2)! 2
+ (Thyrbor) ™ [R6,7+3 (it2) ™" + R ;4 (it1)? (it2)7+1} : Todd,

where the Rf)’j and Ry ; are bounded. Using Lemmas S.18-5.19, we have

1. T (T by ) B9/2 s Ss(s—1 ) s
logr () = 3 [lit]* + 3 Thyr 25{) (m,T(o, 5) (it2)" + (Q)EZ,T(z, s — 2) (it1)” (it2) 2)
5=3 '

+ Ry (1)
T7+1
= litl + 3 (Tourbo)® % [Bor (s, ) + {(ita)" + ()" (i82)"*} O (er ()] + Ry (7).
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where
1 dr ~ ~
Bor (s, )= 5> b{,T{ (22,00, ) + 87 (22,0, 8) +Z3,5(0, )) ) (ita)*
P
s(s—1) /_ = = . s
+ o (202 s =)+ B (B2 (25— 2) + Eay(2, 5 - 2))) (i0)° (it2) }

The approximation of the characteristic function of v using its cumulant generating function is

1 . T+1 . T+1 1
Agr (t, 7) = exp ( Hth?) 1+ 5" (Thirber)® 2S5 ] Bar (ny t)™ ———— |
2 — - ral. . orrgq!
j=3 r n=3
where r = (r3,..., r741), 7, € {0, 1,...}, and the summation is over all r satisfying Z:;é (n—=2)r, =

j—2. To obtain a second-order Edgeworth expansion we set 7 = 2 and we include in A 7 (t, 2) the terms
up to order (TbLTbZT)*l/Z,

1, _ )
Ao (£, 2) = exp (2 |]th2> (14 Bor (3. 6) (Thyrbor) ™) (S.73)

where By 1 (3, t) includes only the leading term in biT (j = 0) in the expansion for the cumulant of order
three. Note that the characteristic function of Qg}() is Ao (t, 2). We use Lemma S.2 with kernel G to

bound the distance between Pr and Qg% First,

[(or 05 Curlyy <2, g0 |(Pr 05 el v2, g |(Pr ) oCor|

BCB(0,r7) BCB(0,77)°

where B (0, r7) is a neighborhood around 0 with radius rp, rp = (Tby,rbe )" with a > 0, and |||y
denotes the total variation norm. For B C B (0, r7)“ we have uniformly

|(Pr — Q%)) 0 Gy, | < |Pr e Gy | + [QF) 0 Gy |
<P (|vl| > rr/2) + 2y, (B (0, rr/2)°) + 2057 (B (0, 77/2)°) .

By definition of qéz% (v) it follows that @gz)T(B (0, r7/2)) = o((Tby 7bo.7)"/?). In view of the definition
of vg, we have P{||v|| > r7/2} = o((Tby rba7)~"/?). By Lemma S.2,

Gy (B (0, r7/2)%) = O ((¢T/7“T)3) =0 ((Tbl,TbQ,T)_3(w+a)) =0 ((Tbl,szT)_l/Q) _

For B C B (0, 1) we have by Fourier inversion

|(Br — @) « Gy, | < 2m) e} / |(Br — @) (6) sy (1)t (S.74)
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where P denotes the characteristic function of Pr (i.e., Pp = 7 (t)) and @52% = Az 7 (t,2). Let
a =8 x 2*/3771/3, Using Lemma S.20, a bound for (S.74) is given by

2@—1/2 2
O ((Tbrrber)**™V?) |2+ €rny 0 (3)] /”t||<02\/m

+ O (Thy by 1) / B
cay/Tby wba r<|[t]|<a’(Tb1,1rb2,7)

eI (|1t |Gor (11t dt (5.75)

/ |(Br - Q)) () Gy, (1) dt.
(S.76)

The integral over |t|| > a' (Thyrbar)” is equal to zero from (S.29). Choosing a < 1/4 (S.75) is

o(((Tby by, 7)) 7).
By Lemma S.10, for comg r < ||t|| the expression in (S.76) is bounded by

a —d3m?2 —
0] ((Tbl’Tbg,T)2 ) / _e dsm3 ¢ +o0 ((TbLTbQ’T) 1/2) ,
02\/Tbl,TbQ,T<Ht||Sa'(Tb1,Tb2,T)

for some d3 > 0. This implies that (S.76) is bounded by O(((Tby by 7)2F+®)e~B™30) 4 o((Thy 1by7)~/2)
since by Assumptions 10-11 it holds mo 1 > €(Thy )¢ for some € > 0 depending on ¢ and p. O

Lemma S.20. Let Assumptions 4, 6-7, 11-12 and by + (Tbl,TbQ,T)il 10g5(Tb27T) — 0 hold. Then there
exists a ca > 0 such that, for ||t|| < ca\/Tb1, b2 and a dy > 0,

~ _ 1
[r (6) = As,r (8, 2)] < exp (=dz [¢%) F (I61) O | (Tbarbor) ™ (80 + exvyr (3)) + 7o |
Tby b1

where F (||t|)) is a polynomial in t with bounded coefficients and Ag.r (t, 2) is defined in (S.73).

Proof of Lemma S.20. From Feller (1971, p. 535) for complex o and f it holds that [e* — 1 —b| <
e (la — b| + [b]* /2), where v = max{|al, |b]}. We set

s! . .
T Re,r(r1, r2) (i)™ (it2)"™ + Ry (2)
r1!rg!

1, . _
a=log (t) — 3 it)|* = (Tby by )"/ >
|r|=3

where the right-hand side follows from (S.72). Let b = (T by 7) /*Bar (3, t) where Bor (3, t) is
defined after (S.73). Using Lemmas S.18-5.19 for s = 3 we have

]a — b| S (TbLTbl’T)_l/z O (b%,T -+ ETb2,T (3)) ((it2)3 + (itl)z (’itz)) (877)

1

t Ty pbor <R6,4 (it2)* + Rh 5 (it1)? (it1)2)|

B 1
< P ()0 (<T"1’TblvT> V2 (bt ernae () + zmm) |

where P; is a polynomial of degree of 4. Note that [b|*> /2 < Py (||t])) O(Tb1.rb1.7r)~") where P is a
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polynomial of degree 6. Then, for some polynomial P

2
14

b
la — b| +

16" —1/2 (12 ;
5 < P(|lt])oO ((TbLTbl,T) (bLT + €Ty (3)) + Tbl,sz,T> .

Next, we need to find a bound for v = max {|a|, |b|}. For ||t|| < cp\/Tb1rbor with ¢, > 0 we have
Ry 1 Ry _
b= (@b brr) 2 B (3, 0] < 812 {5 (Torrba) ™ (2200, 3)] + 3[E20(2 V18| (578)
b —
< 61 {55 (122000, 3)] + 3[220(2. DD} < 412 T

where 0 < Tj < 1/4 by choosing ¢, sufficiently small. For a given a we can choose a ¢, > 0 sufficiently
small such that, for [[t|| < cq+\/Tb1 7017,

1 _ — —_
ja] < [l6]? {3, (Tb1,rbyr) ™2 [|Z2000, 3)] +8(Z21(2, V) + O (81 + ey (3)) ] (8.79)
X 61+ (Tbrrbyr) ™ [|Roa| + [Roa|| HtH?}

C _ —
< 11 { 5o (122000, 3)| + 3 B0 (2 1]+ 0 (B + e (3))] + 2

1
<612 {5 + 0 (B + erma (3) |

R+ |3a] }

From (S.78)-(S.79) we have for ||t|| < ca\/Tb1 7017 with ¢ = min{cq, ¢},

exp (1) < exp { [t |+ O (B + emny (3)) ]},

or
1 1
exp {—2t2 + 7} < exp {||t||2 [—4 +0 (biT + €Tby 1 (3))} } < exp {—d2 ||t||2} : (S.80)

for some do > 0. Note that ¢ (t) = exp{i|jit|* + a} and Asr (t, 2) = exp{l [|it|[*}(1 + b). Using
(S.77)-(S.80) the result of the lemma follows. [

S.B.3.5 Proof of Theorem 6

Consider the following linear stochastic approximation to Ur,

~ 1_ 4 1 _ 1_
Or 2 oy (1= geably = VAR K [ Kallyva (Toyrbar) ™2 = Jeatr ). (s.81)
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Consider the transformation s = (s1, s2) = (Ur (h1, v2), v2) = Ar (v) say, and its inverse v = Azl (s) =
(hJ{ (s1, s2), s2)’. Let v > 0 be such that

37

o,
(Tb1,sz,T)3/2

and define Ly = {v : |v;| < ;T7, i = 1, 2}, where [; are some fixed constants. Using (1+z)"! =
1 -2+ a2 —2%+... for |z| < 1, we have uniformly in the set Lr,

1 1 _ 1 -
Bl (s) = s1 {1 + flbf,fT + g var [ K| || Kzl s2 (Tbrbar) V2 26253,4 + 0 ((Tbirbe) ).
We have P(Ur € C) = P(v € A7 (C x R)) and from Theorem 3,
sup [P (v € A7! (C x R)) ~Qf) (A7 (C x R))|
C
— 2¢
=0 ((TbLTbZT) 1/2) + cost sup @52% ((8A}1 (C x ]R)) T) , (S.82)
C )

where ¢ = (Tbi7bo7)™", 1/2 < p < 1. From the continuity of A7, we can obtain, for some ¢ > 0,

Yy ((m;l (C x R))%T) < QY (A7 (0C)?T x R}, (S.83)
and
0F (A7 (C xB)) = / e (e () dx+ o (Thyrbar) )
LTﬂA; (CXR)

= /L*Tm{CxR} P2 (AE1 (s)) qé?% (A;l (s)) |T|ds + o ((Tbl,sz,T)‘l/Q) ’

where ¢ (+) is the bivariate standard normal density, L. = Ap (Lz), and || is the Jacobian of the
transformation. Neglecting the terms that contribute o((Thy 7b2.)~'/?) to the integrals, we yield

(S.84)

_ 1 4 1 _ 1
P2 (ATI (S)) =@ (s1)p(s2) (1 - 58% [Clbl,fT + 5\/47? | K[|y 1 K2ly s2 (Tb1,1b2,7) /2 4 562633

and
1

o (Thurbar) ™% (20,0 (0, 3) Hs (v2) + E20 (2. ) Ha () Ha (v2),  (S:85)

qg,T (v) =1+

where
1 4 1 _ 1
T1 =1 Sebly + S VAT Kol [ Kaly 52 (Torrbar) ™2 + Seatdr.
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For j =1, 2, 3 let p; (s) denote polynomials not depending on 7. We have

% (a7 € xm) = [

o { [ [+ ) Thrban) ™2 42 (9) 5 3 5) 8] ¢ (s2) di s

(S.86)
+o0 ((Tbl,TbZT)il/Q)

= /C ¢ (s1) [1 + 71 (s1) (TbLTbZT)_l/Q + 79 (s1) bil’fT + 73 (s1) b%,T} dsy
+o ((Tbl,TbZT)il/Q) y

where 7; (s1) are polynomials in s; for j = 1, 2, 3 with bounded coefficients. Integration with respect
to sg in R yields r1 (z) = 0, 72 (v) = —271¢; (#2 — 1) and 73 () = —27'¢ (#2 — 1). Using (S.82)-(S.86)
provides the second-order Edgeworth expansion for the linear stochastic approximation Ur. Since Lemma
S.21 below shows that U and Ur have the same Edgeworth expansion, the proof is concluded. [J

Lemma S.21. Let Assumptions 4, 5 (p>1) and 6-8, 11-13 hold. Then, Ur has the same Edgeworth
expansion as Up uniformly for convex Borel sets up to the order O((TbLTbZT)_l/Q).

Proof of Lemma S.21. We first expand Ur (v) around 0 in Ly with |na] <1,
1 _ “ _
Ur = dphy — 5dé_’;vg,Thva (Tby,rbar) ™2 + Ut g (Torrbor) ™" (S.87)
where dr = (1 + By ) ~'/? and

—5/2
* —
Ulr=

ool w

(1 + BQ7T + 772V2,T'U2 (Tb17Tbg7T)_1/2) V%»Thlvg.

We now express Ur in terms of Ur where the latter is defined in (S.81). Substituting for By 7 and Vo r
in (S.87), we yield Ur = Ur + Uj (Tby rbo,r) ' where Up = 32, Uy,

U;,T = h1 (O ((bLTbQ,T) -1 logT + TbQ,Tbi}derQ) —+ o0 (Tbgval’T))

and
Uz = hvsO (Thirbor)'? (B +er (2)).

We now show that Uj(Tbyrbar)~! can be neglected with error 0((Tb17Tb27T)1/2). This follows from
Theorem 2 in Chibisov (1972) provided that the following condition holds,

P (‘U;i’ > "YT\/TbLTbZT) < ip ( > ;VT\/Tbl,Tb27T> =0 ((TbLTbZT)_l/Q) , (S.88>
=1

for some positive sequence {7} such that vz — 0 and v7/Tb1 7b2, 7 — co. Note that

*
Ui,T

_ N _ _ d
(Tb1,rbo,r) ™ Usp = mO (Tho,r) "/ by (Thor) ™ log T + (Thorbir) /2 b))
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By Assumption 13 the right-hand side above is O((Tb rb1,7)~") for some v > 0. Further,
(Tb1rbo.r) "> Usp = hia0 (B 1 + er (2)) = O(Thorbir) ™),

for some v > 0. Since h; and v9 have finite moments of all orders, we can take vy = 1/logT and apply
Chebyshev’s inequality to establish IP’(|U;T| > 37 yp/Thirbor) = O((Tbl’TbQ,T)_1/2) for i =2, 3.
It remains to show P(\Uf7T| > 37 yp/Thyrbor) = 0((Tb17Tb2,T)_1/2). We have

P (‘UT,T’ > zl))'YT\/Tbl,TbQ,T>

3 _
<F (‘V%,Thlvg (Tbyrbyr) /* > 7%/2>

8
+P (‘1 + Bor + m2Va 1o (Tbl,TbQ,T)_l/Q‘ (Tbyrbor) " > 7%/2) :
£ Ay + As.

Using Chebyshev’s inequality A; = o((Tbl?szT)*l/Q). Using (TbLTbQ,T)_l/IO 7;1/5 — 0 we yield

Ap < CoP (‘112 (Tbl,TbQ,T)_l/Q‘ > 62) =o0 ((Tbl,TbZT)_l/Q) ,

where Cs and ¢y are some positive constants and we have used Chebyshev’s inequality. [J

S.B.4 Proof of the Results of Section 5
S.B.4.1 Proof of Theorem 7

Consider first the numerator of tpy;. We have

T3y, = 6205 (TY/T; Mng) + Op (Th2T57 (T = 1) /%) A (0, Jon)
= 6208 (T;7"/n5) + 08 (1),

for some Jpyr € (0, co) where ns depends on the length of the segment where the mean of xEQ) shifts by
§. The factor 62 follows from the quadratic loss.

Next, we focus on the expansion of the denominator of ¢tpy; which hinges on which LRV estimator
is used. We begin with part (i). Under Assumption 9 by 7 — 0 as T' — oo. Using Theorem S.1,

[or']
Jinwstr = > (L—|burk])T (k)
k=—[b7"]
[bir] 1
= Z (1-— ]b17Tk|)/ c(u, k)du
0
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. LISJ A (2_1 (Tb — Ty — 1) (Tn ~ T} — 2) 5* + op (1))

T, T,
h==[br 7]
[b1x)
. 4 (Ty—Ty —1 T, — 1T, —2
= 1— |byrk]) (277 & 1 >
Chont Y (k) (27 (Pt ) () ot e )
:*V’LTJ
for some C' > 0 such that C' < co. By Exercise 1.7.12 in Brillinger (1975),
o) i Lkl
, sin =5
Z (1 — |b17Tk‘) exp (—zwk) = bl,T T E—
" S1n 5
k=—[b7 1|

Evaluating the expression above at w = 0 and applying L’Hoépital’s rule we yield,

[b17] i3]\
(1= burkl) =bur | —— | = [br7]-
h==[biz] ’

Therefore, jdL7NW877T = CJpu + 6*Op (bf}) and

6205 (T /*ns) + 08 (1)

$.89
(510 (%) v o

ltom Nws7| <

520 (TS
= 520(51}/)2) =0 (T5bi'7).

which implies P6(|tDM,NW87| > Za) — 0.

Under Assumption 10 with ¢ = 1/3, similar derivations yield |tpy nws7| = O( s 6) and Ps(|tpv,nwsz| >
Za) — 0.

In part (ii), by 7 = T~!. Proceeding as in (S.89) we have |tpy xvs| = O(TS!) and Ps(|tpymxve| >
Zo) — 0 since TS5~1 — 0.

Finally, we consider part (iii). Using Theorem 1, we have

. Tt T
Ja, DK, T = Z K, (bl,Tk>? Z ¢k, (rnr /T, k)
k=—Tp+1 noor=1
Th—1 A T [Tn/nT]
- Y K (bLTk)T— 3 (c(rnT/T, k)
k=—Tp+1 noo

+ 31 {(Irnr + k/2 + nar/24+1) = Tf|/narr) € (0, 1)}) +op (1)
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. Th
= Jpwm + 620 (bllT 2L ”T) +op(1).
’ nr Tn
It follows that
5205 (i *ns) + Op (1)
- 1/2

(ot +620p (b 1bo.r))
=420 (1) ,

ltbmDK| =

and so P6(|tDM7DK’ > Za) — 1 since Té — oo. [
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S.C Figures
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Figure S.1: Plots of loss differentials d¢, sample autocovariance /I\‘(k), periodogram I (w), sample local autocovariance ¢(u, k) and

local periodogram I, (u, w). In all panels § = 2.
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Plot of loss differentials d;
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Figure S.2: Plots of loss differentials d¢, sample autocovariance /I\‘(k), periodogram I (w), sample local autocovariance ¢(u, k) and

local periodogram Iy, (u, w). In all panels § = 5.
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