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Abstract

The supplementary material includes two appendices. Appendix S.1 introduces some additional
notation on local polynomial regression for the convenience of discussion in the text and proofs.
Appendix S.2 states and proves some technical lemmas needed to show the main theorems in the

text.

S.1 Additional Notation on Local Polynomial Regression

For r-th order local polynomial regression of Y; on X;, let j = (j1, 2, - - - j;) be an arbitrary d-tuple
of integers, denote |j| = j1 +jo + -+ +ja, j! = ji! X jal X --- x jgl, o = (k1)1 x (¥?)2 x - .- (x¥)]a,

. olily .
DIH(x) = a(xl)lvla(xz)j(zx:?ia(xd)jd ,and Yo<|jl<r = Lk—0 Lji +jo+-+js—k - L he total number of d-tuples with
d—1
j| =sis Ms = T . We arrange these tuples in an ascending lexicographical order style as

d—1
in Masry (1996)!. The correspondent position of each tuple forms a one-to-one map which is called
s, i.e. 5(1) = (5,0,0,---,0), ... ms(Ms) = (0,0,---,0,s). Denote a vector-value function u( -) for
an arbitrary entry x € R? such that jis(x) is an M x 1 vector with I-entry given by [ys(x)]l = x7s(0),
and we stack these vectors and define an N, x 1 vector as u(x) = [po(x), p1(x), -+, pr(x)]’, where
N, = Mg+ M + -+ M,. Also, we denote M; x 1 vectors Hs(x) (s = 0,1,...,7 + 1) to store
H(x) and its derivatives (up to (r + 1)-th order) such that the I-entry of as(x) equals to {Hs(x)L =

nsb>!D”5(’)H(x), and a(x) stacks as(x) (s = 0,1,...,r.) as a(x) = [Hp(x), H1(x), - -, Hy(x)]’, then
u(y — x)'a(x) is the r-th order Taylor expansion of H(y) at x. Let Sy 4(x) and S, 4 be M, x M,
matrices with (I, k)-element given by [Sy,p4(x)],, = [u O+ a®K(u)px (x +hyu)duand [Syq],, =
[u O+ O K (1) du, where u = (ug,up, -, ug), K(u) = Ky (u')Kp (u2) with u' = (uy,- - ,uy,) and

u? = (ug, 41, ,uq), and px(-) is the probability density function of X. Define N, x N, matrices
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Spr(x) and S, as

Snoo(x) Snoa(x) -+ Suor(x) Soo So1 - Sor

Suao(x) Swia(x) -+ Suas(x) S10 S11 - Sir
Snr(x) = . . . . /Sy = . . . . ,

Sn,r,O (x) Sn,r,l(x) s Sn,r,r(x) Sr,O Sr,l oo Spy

and N; x M, matrices S;t1(x) and S7+" as S0 (x) = (Suo,41(%), Sure1(x), -+, Spprra (x))

+1 _ (g / /
and 5771 = (S, 5 P S
similarly, for each 2-tuple j = (ji, j»), we can define summation, factorial operation, multiplication and

) . For r-th order local polynomial regression of Y; on Z; = {(X;),

partial derivatives. In the same style as M, N;, 75( - ), we can define M;, N,, and the lexicographical
order map Ty( - ). Similar to (), Sup,q(x), Spq, Snr(x), and S;, we can define fi(-), Sy pq(2), Spq
Snr(z), and S, with z = (z!,22). Let Sy p4(z,{) be an M, x M, matrix with (I, k)-element defined by

2).
k -
[Sn,p,q(z, @)]l nh2 i ( Xi ) Pl )K(%) and Qn,p,O(Zr {) be an M) x 1 vector with

k-th entry given by [Q, ,0(z,0)], = h2 ¥l ,(%)Tp(k)lg(%), where z = (z!,22), { =
(¢4, 2%), 0(X;) = (G1(X}), 02(X?)), and K( ) = ky(u!)kp(u?). Also, we define the kernel derivatives
oK (1) = k. (uF)k_i(u=F) for k = 1,2. By stacking Sp,p,q(z,¢) and Quy(z,{), we define an N, x N,
matrix Sy, ,(z,{) and an N, x 1 vector Q,,,(z,{) as

Sn,O,O (Zr é) Sn,O,l (Zr C) e Sn,O,r(Zf g) Qn,0,0 (Zr é)
Sur(0) = Sn,1,0:(2/ ¢) Sn,1,1:(2/ ) '. : 'Sn,l,r:(z/ ) 0 (20) = Qn,l,(J: (z,0)
Sn,r,O (Z/ é) Sn,r,l (Z/ @) o S (Zr @) Qn,r,O (Z/ é)

Then infeasible local polynomial estimator is f(z) = B_lSn #(2,0) 71 Qp (2, {) with unknown parame-
ter (- ), and correspondent feasible estimator is f(z) = B, 1Sn H(2,0)71Qur(2,0), where By isa N, x
N, diagonal matrix with diagonal vector D, = [Dj,0, Dy, 1, - -, Dy,,) and Dy (h‘T(k)‘)kzl 2 I,
In order to represent the first-order derivatives of H(z) by B(z), we introduce an N, X 2 vector
01 00
0 010
regression of Y; on T; = f1(X}) + f(X?). Similar to p(-), He(x), Spr(x), Sy and SI*1, we can also
define jig(+), Gy41(1), SS,(1), S¢ and §or

/
given by e; = ( , then (817-[(2),627-[(2))/ = ¢/,B(z). For r-th local polynomial

S.2 Technical Lemmas

We state and show in this section the lemmas used to prove the theorems in the text.

S.2.1 LemmaS.1

Lemma S.1 modifies Lemma 3.1 of Powell, Stock, and Stoker (1989) and Lemma 5 of Horowitz
(1998). It provides sufficient conditions for approximation error of U-statistic projection other than
0p (1/+/n). In particular, it degenerates to the case of Lemma 3.1 of Powell, Stock, and Stoker (1989)
when A, = n. Denote U, = 2 [n(n — 1)1z} j—i19n(Wi, W) and U, = E[gu(W;, Ws)] +
(2/n) iy (Elgn(Wi, W;)[Wi] — E[g2(W1, W2)]). As a matter of fact, Lemma S.1 can be further modi-



fied as Uy — Uy = O, {n_l v/ E[gn(W1, WZ)ZH by its proof.

Lemma S.1. Suppose that {W;}"_; is a sequence of independently and identically distributed random variables
or vectors. Let g, (-, -) be a symmetric function, and A,, be a sequence of positive scalars. If E[q,,(Wy, W,)?] =

0(An), then U, — U, = op[VAn/n].

Proof. Follow the same idea as the proof of Lemma 3.1 of Powell, Stock, and Stoker (1989) to
get E(U, — Uy)? = O{n*2~E[qn(W1,W2)2H. Thus (n2/A,) - E(U, — Uy)? = O[(nz/)\n) 12

E[qn (W1, Wz)z]} = 0(1). The desired conclusion therefore holds by Markov’s inequality. 0O

S.2.2 LemmaS.2

Lemma S.2 finds the uniform convergence rate and asymptotic representation of the nonparametric

regression estimator H(). We give a proof of Lemma S.2 for completeness.

Lemma S.2. Let Assumptions 1-5 hold, and the bandwidth hy satisfy (i) hyy — 0 and (ii) log(n) / (nhf;) — 0
asn — oo. Then

sup [H(x) — H(x)| = O(¢n)

x€Sx

in probability as n — co. Moreover, the asymptotic representation of H(x) — H(x) is given by

H(x) — H(x)
1 L -1 X — X
= L (=X o) () e Snr ()7 p(F ) }
!l — x1 x2 — X2
(e ) vo@)
as n — oo in probability uniformly over x € Sx, wheree; = (1,0,---,0)" isan N, x 1 vector, u(X; — x) a(x)

represents the r-th order Taylor expansion of H(X;) at X; = x. Sp,(x), u( - ) and a(x) are defined in Appendix
S.1.

Proof. The first part can be established by an argument similar to the proof of Theorem 6 of Masry
(1996). Its proof is hence omitted here. According to the uniform bahadur representation in Remark 1
of Theorem 3.2 in Kong, Linton, and Xia (2010),

~ 1
H(x) = H(x) = k. ¢\S,r(x) "' By 1ZK( )( — (X = x0)'a(x) ) u(Xi — x)
logn
+0
( nh([i_] )
1 gy X Xi /
= hd, g ASnr (1) By ) K(=) (Y = (X — ) () p(Xi — x)
i=1
+0(&%)
as n — oo in probability uniformly over x € Sx, where e; = (1,0,---,0)'(N; — 1 copies of 0), By
is the diagonal matrix with diagonal vector by = (bﬁ,s);:o ... and bH (h‘”s(k)‘)k:1 > - BY
simplifying this equation, it establishes the second part and hence completes the whole proof.
O



S.2.3 LemmaS.3

Lemma S.3 shows the large sample properties of the estimators of partial integrations i (-) for k = 1,2.
It establishes the uniform convergence rate and asymptotic representation of the estimators i (+)’s for
k =1,2. In particular, the asymptotic representation decomposes the difference between the estimator
and true value of i () (i.e. Z k — Cx ) into a weighted sum of i.i.d. quantities (with a mean of 0) and a
bias term h}; Dy (xk) for k = 1,2 up to some higher order error.

Lemma S.3. Let Assumptions 1-6 hold. Then for any k =1,2,as n — oo, (i) sup ke . |Zk(xk) — Gi(xF)| =
X

O(&xy ) in probability with &y = W' + log(n)/(nh}ij). (i) Moreover, for any x¥ € Sy, T (x%) — i ()
can be written as

Gk () = Ge(2*) = Tk (x*) = [ (x)] + B - Di(x) + 0p (),
where i (xX) and Dy(x*) are defined respectively by (A.2) and (A.3).

Proof. Only Z1(-) part is shown here. The {»(-) part can be shown similarly. Let W = (Y, X}, X?).
Apply Lemma 1 of Horowitz (1998) (or Theorem 2.37 of Pollard (1984)) and Lemma S.2 to obtain

%i { i X!, X2 H(xl,ij)} —I—o(lof;(;))

Vn

-1 ¥ L | 2y (log(n)

o By B <o <o)
—igﬁ[¢1<wi,wj>|wi]+n(,f_l);;(wmwi,m E [ (W, W) [ W)

= 1=1j#i
+i]§E[¢z<wuw]>|wj]+n(n1_1)§j§(¢z<wuw> E [ (W W) [ W]
+O(§%{)+o(lof/(;))

=Ty + Top + Tan + Tan + O(E%) +0<lo§(ﬁn)> W

as n — oo in probability uniformly over x! € Sy1, where I/-L]-(xl,ij) is a leave-one-out local
polynomial estimator and

¢1(Wz‘/Wj) %(y H(Xl-))Kl(xlh_HX})Kz(X]Zh—HX?>
( Sur(x!, X3)" y(xllh;xlleh;Xf)>,



2 2
_1 T 21 %2 %2V a(+l X2 ' -X] X —Xi
P2 (W, W) —@(H(Xi)—y(Xi —x, X2 = xP) (!, X3) ) Ka ( - L) ka )

2 2
Xl —xl X *Xj))
hy ~  hy )

. (e;sn,,(xl, X2)7u(

The rest of the proof establishes the asymptotic representation of Ty, Tz, T3y, and Tyy,. It is accom-

plished in four steps. The asymptotic representation of T1,, characterizes the stochastic leading term,
and T3, characterizes the leading bias term.

Step 1. For Ty,
E[ip1 (Wi, W;) W]
1 xl—X]

LoX gy X2-X2 X2 X2
[ (snnlet, XD (=, =) ) k(L s (XX

dox!
— Lk hHXl ) (% — H(X); (5, + Ohs)

‘/'V(Xil—xl X?*X]z)LK (XJZXZZ) PX2(X]2)
: N hy
1 =X\ v, - H(X)) x-X1
=—K L) - Lol S, VI ([ ——L) {14+ 0(h

L (xl—X}) Y; — H(X;)
=g

h‘fj hu le\x2(x1|xz'2)

1—X-1
X l) +O(huCm),
hy

ei S (

where the last second equation is given by change of variable and first order Taylor expansion, and
the last equation is based on the proof of Theorem 6 in Masry (1996). Thus, Ty, can be written as

1 ¢ =X\ Y, - H(X)) xl-Xx1
Ty, = — Ky ! L L_ehs vt ———L +O(hH§H1)-
s 5 ) et ()

Step 2. For T, it can be decomposed as

Ton _n(nl—l) Yy (. (Wi, Wy) — E[ i (Wi, ;) [ W] )

i=1 j£i

:n%lz‘}{iéKl (xlh—HX}) . L : ; (1. (Wi, W) — B[ (Wi, W) [ W] )
zo(log(n)z),

a2
nh'y

2

- X—X; B X1yl Xl.foz
where 1 (W;, W) = hgz K2< o )(Yi —H(x;)) (e’lsn,p(xl,XJZ) Lu( ’th TE )),and the last equal-
H

ity is obtained by applying Lemma 1 of Horowitz (1998) (or Theorem 2.37 of Pollard (1984)).?

2A similar argument is used by Horowitz (1998) to establish its (C.5).



Step 3. For T3,,, the summand E[¢(W;, W;)|W,] can be simplified as
E[a(W;, W;) | W]

:E[l(H(Xi)—y(X}—xl,Xz X]?)’a(xl,xf))Kl(

hd !
M,j‘|

(H(Xi) (X! -t X2 X]?)’a(xl,xf))

xl—X! X?-X}
hu )K2 hy )
x! _ 4l X2 —X?
A 1 yw2y-1 i : ]
(elsn,r(x /X]) ‘u( hH 7 hH ))
1
Iy

=) S, (2, XJZ)*l /

xl—Xx] XP-XP\  Xl—xl XP-X?
K he )ke( ha Ju P
1
:e’lsw(xl,X]Z)_1 ) —|DSH(x1,X]2)/usy(u)pX(XjJthu)du'hgl+o(h’1j1)

ls|=r+1 5"
=€} S (!, X3) 7! (hgls;y(xl,xf)Hm(xl, X?) + o,,(h}f))
=h e S ST H 1 (x, XF) + 0, (W), )

where the last second equality is derived by change of variable in the integration and Taylor expansion,
and the last equality is due to the approximations S, (x) ™! = {px(x)} 1S + O(hy) and S,/ (x) =
px(x)SI*1 + O(hy) in the proof of Proposition 3.1 in Kong, Linton, and Xia (2010).> Thus, the
weighted sum can be represented as

1 n
Ton =— Y E[p2(W;, Wj) W]
=1

]
=hi el S, TSI E [Hypq (2, X2)] + 0p (Wi ).

_ 1 &
=hite s, st <n Hr+1(x1/X]2)PX(x1/X]2)> + o (W)
=1

Step 4. For Ty, note that

E l(” i 1 ]; [IIJZ(Wi/ W;) — E[¢2(Wj,%)|wi]>21

T i ik {(IPZ(WZ’ Wi) — E[2(Wy, W1)|W1D2}

1
SmE {(¢2(W2/ Wl))z}
h27+2
H

=0(=)

where the last equality is obtained by Taylor expansion similar to Step 3. By applying Lemma 1 of

3When r is even, ¢} 5, 1S/t = 0 and thus the first term on the right hand side of the last equality (2) vanishes. In this case,
the bias term is of order O(h"+?) if we further assume that all functions and densities are (r + 2) continuously differentiable.



Horowitz (1998) (or Theorem 2.37 of Pollard (1984)), we derive

Ty = g; [2(Wi, Wy) — E[ga (Wi, W) W]
1=17#1

% i — Z [lpz WZ,W) [lPZ(Wi/ V\]])’WZH
i=1 '

log(n)

_ r+1t08\1

=0 (h [ — ) .

With the bandwidths satisfying Assumption 6, combining steps 1-4 yields

() = 2a(x)
I
=Ti + Tou + Ton + Tan + O(&}) + o Oig/(;))
1 & =X Y —H(X) XX
=— YK iy, ti e s v 1
nhdl; 1( I ) PXI\XZ(x1|Xi2) 1 1( hy )

+ 1S, ST E [Hyqq (2, X2) |1t

log(n log(n)? log(n
2 g(n) g(n) r+1 r+1log(n)
+O(§H+hHCH1)+0< NG + ]2 +hy 4Ry — )

=Jum (') + Dy (x)ft + o)

in probability as n — co uniformly over x! € Sy1, where the first term on the right hand side of
the last equality is given by the definition of J,1(x!) in (A.2), and E[J,,1(x!)] = 0.* The asymptotic
representation of { (x') — {1 (x!) is hence established.

Following an idea similar to the proof of Theorem 6 of Masry (1996), we have

Aol 1_y1
ZKl *Xi ) Yi—H(Xz')2 6/1571‘/#(9‘ Xi)
nhd hy le‘xz(x”Xi) b hy

:O< log(n)> 3)

sup
xlesS x1

in probability as n — 0. Based on the asymptotic representation, this implies that sup,i g 1’61 (x1) —
X

a(h|=0(m+ 1‘:51—311)) =O(&p) in probability as n — co. This completes the proof. O
H

S.24 LemmaS.4

Lemma S.4 characterizes the uniform convergence rate and asymptotic representation of the Local
linear estimators. There are three terms in the leading part (excluding all higher order remainders) of
the difference #(z) — H(z). The first term in the asymptotic representation is the oracle term with
true ¢1(-) and {»(-). The second and third terms represent the error by estimating {1 (-) and {»(+),
respectively. Note that g1 > ¢rp > 0 due to dy > dp. This implies that O(¢r1 + ¢r2) = O(CHa)-

1
41t is easy to obtain E[J,1(x!)] = E 41 K (x T X

1S 1VI4( )E[Yi—H(Xi)\Xi} = 0 by the law of

S ")
) le‘Xz(Xl\Xz)

iterative expectations.



Lemma S.4. Suppose that Assumptions 1-6 hold. Then

sup |By (B(z) — B(z))| = O(&x + Em)

z€Sy

in probability as n — co. Moreover, the asymptotic representation of B(z) — B(z) is given by
By (B(z) — B(2))

no 1_ x1
:Lz ZSn,r(z)*lk(z gl( z)
nhy, i3

hy

(=200 1y ) — 2o b (5L=2)

hy

o Y50 l(;f,uw, Y5 2)R(u) + H(u, Y 2)K(n)

+ # i gn,r(Z)J [(aauzt(u/ Y z)K(u) + t(u, Yi?z)azk(”)) LX) (€2(X1 ) — 0(X; ))
H i=1 Tigg

+O(& + i)

as n — oo in probability uniformly over z € Sy, where B(z) is the r-th order local polynomial estimator of true
value B(z), u = (ut,u?), and t(u,Y;z) = ji(u)(Y; — fi(u)'ByB(2)). By, Sny(z) and fi(u) are defined in
Appendix S.1.

Proof. Note that
By (B(z) = B(2)) = Bu(B(z) — B(2)) + Bu(B(2) — B(2)).
First we consider By (B(z) — B(2)).

By (E(z) - ,B(Z)) =[Sns(z, Z)_l = Snr(z, C)_l]Qn,(z, ) + Snr(z, g)_l[Qn,r(Zr Z) — Qu(z,0)]
+ [Snr(z, Z)_l = Sus(z, g)_l] [Qnr(z, Z) — Qnr(z,0)]. 4)
Sur(-) and Qy,(-) are defined in Appendix S.1. As for Q,,(2,{) — Qu(2,{), we apply Taylor
expansion. By Lemma 1 of Horowitz (1998) (or Theorem 2.37 of Pollard (1984)) and our Lemma S.3,
Qur(2,0) = Qui(z,4) = h3 2 {DeQ}(2,0)(Gi(X}) = 2a(xX])) + D; @ (2,0) (22(XP) = ©2(XD)) | +O(eH)
©)

and Qy,(z, Z) — Qus(2,0) = O(Cy1) in probability as n — oo uniformly over z € Sz, where
D; Q}n(z, 7)is an N, x 1 vector with

[D; 0}, (0], =
{M;,izra( ), n=0
)" [k

():Z}?Zle)rl +rlK(z—£7({Xi)) (gl()iliz*zl)rl_l}, r 21 '

1



where 7 = (r1, 1) is the correspondent power numbers of the I-th entry of 9, ,(z,{), i.e

[Qnr(2.0)], = nill%{ ;1 (Z_hi_([X))?K(Z—g(Xi))'

hy

Similarly, we can define D; Q2 (2, ).
As for Sy (z, Z )’1 —Su(z,C )’1, Similarly, we can derive that

8:(2.0) ~ Su(z.0) = ;3{ ):1 {DeSk (2.0 (G(x) — T (X)) + DS 2.0 (G(X) — 0a(X0) } + O(E),

and S, (z,0) — Su(z,0) = O(Ey1) as n — oo in probability uniformly over z € Sz, where matrix
D;S7 (z,0) (v = 1,2) satisfies that its (/,k)-entry (I,k = 1,2,...,N;) is

(DS}, (2, @]

<< >a<H>,H - n=0
[ 5 Cl(iﬁ*z )71+r1K(Z—I§7({Xi))(§1(Xi)*Z )V1—1}, rn>1

hyy

where 7 = (r1, 1) is the power number of the (I, k)-element of S, (z,{). Similarly, we can define
Dé-Sizn (z,Q). Similar to the arguments in the proof of Theorem 3.2 in Kong, Linton, and Xia (2010), we
have sup, g, [Sn(z,0) — Snr(z)| = O(&y) as n — oo in probability. Thus, the triangular inequality
implies that

Su(2,0) = Sur(z) = O(&r1 + En)

as n — oo in probability uniformly over z € Sz. Therefore, we can derive that

Su(z,0) 7" = Sulz,0) !

:_gn@,zr( 1(2,0) = 8a(z,0)) Sul(z,0) !

~

= h3 anr {DgS O(&(X}) = (X)) + D S2 (2,0) (32(X?) —§2(Xi2))}5~n,r(2)71
)

+O0(Gy - Cm +8in (6)
and S,,(z,0) 1 — Su(z,0) ! = O(&y1) as n — oo in probability uniformly over z € S Z Also, we have
Qu(2,¢) = Su(z,{)Bup(z). By Theorem 6 in Masry (1996), sup, s, |By (B(z (z))| = O(&x) in

probability as n — co. Therefore, we have

Qu(z,0) = Sur(z)Bup(z) = O(Ew) @)

as 1 — oo in probability uniformly over z € Sz. According to (5), (6) and (7), (4) can be rewritten as

2,0) 7 = 8u(2,0) (S (2)BuB(z) + OEn)) + (Sur(2) 7! +0(Ew)) [Qn(2,0) — Qu(z,0)]



:# ign,r(z)—l [ — DS} (2,0)ByB(2) + D; QL (2, 0] (G (XD) — G (XD))
Hi=1

+ # flﬁn,r<z>l [— DS (2, 0)Brp(z) + D Q4 (2 0)] (C2(XF) — Ga(X7))
H i=

+0(n - Cm +Cin)

1 n

:? 2 gnrr(z)il [(aalt(u, Yl-;z)IZ(u) + t(u, Ygz)&)ﬂ?(u)) (Zl(Xll) — {1 (Xll))
n Y u

0(Xj)—z

u= T "

i=1

(G2(XP) = La(xD))

0(X))—z
hyy

# ilgn,r(z)_l l(aauzt(u, Y;z)K(u) + t(u, Y,;z)&ﬂ((@)
=

u=

+O0(& + &) 8)

and By (B(z) — B(z)) = O(Em) in probability as n — co uniformly over z € Sz.
Second we consider By (B(z) — B(z)). The asymptotic linear representation is a direct application of
Theorem 3.2 in Kong, Linton, and Xia (2010), that is,

By (B(z) - B(2))

n 1_ 1 2 _ 2 , A
:nhl%{;S“n,r(zrlk(Z 5;(&)),{( gi(Xl)>{Yiﬁ(§(Xi)Z) ﬁ(z)}ﬂ(g()zi S
+0(&) 9)

and By (B(z) — B(z)) = O(Cy) in probability as n — co uniformly over z € Sz. Finally, the desired
representation of By, (B(-) — B(+)) can then be established by (8) and (9). O

S.2.5 LemmaS.5

9 H (z) is the r-th order local polynomial estimator of first derivatives 9, (z) (k = 1,2) based on
data {Y;, T1(Xy), L (X)) }?:1' while 9;7{(z) is the infeasible version with data {Y;, {1(X;), {2(X;) }?:1.
Lemma S.5 studies the asymptotic properties of 0y (z). It shows the uniform convergence and asymp-
totic representation of such statistics. Particularly, the first two terms in the asymptotic representation
come from the (asymptotic) representation of infeasible estimator ;7 (z), while the third term is
the additional bias appearing in the difference between feasible and infeasible estimators, namely
A H (z) — A (2).

Lemma S.5. Suppose that Assumptions 1-6 hold. Then for k = 1,2, (i) sup,. s, \a,ﬁ(z) — o H(z)| =
O(&%, + Cpn) in probability as n — oo; (i) 0 H (z) — O M (z) has an asymptotic representation as

ﬁl o H 1 g /G —1p - Xi Xz‘ - r r
8/1778] B [a;%iﬂ :@i;edsm(z) 1K(Z;i_5>)(Yi_H(Xz‘))V<€()Z> +D(2)Hy, + D)

log(n) = log(n)
r hr+1 0] 8
oy + ) + (Tlh;}{—’—nh?})

in probability as n — oo uniformly over z € Sz.
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Proof. Note that

BTZE;] B Bﬁﬂ =¢4(B(z) — B(2)) = eiBy," - B (B(2) — B(2))

~ ety B (Bl) — B(:)).

Thus, part (i) is trivial by Lemma S.5. To find the asymptotic representation, we just need to further

decompose B(z) — B(z). According to Lemma S.4, we just need to derive the asymptotic representation
of the following three parts,

zZ — g(Xz)

1 2 ~ a4
Ar(z) = @ ;e;Sn,r(z) 1K( T
i=

) (¥~ iz - 0(x0) B e (A2,
1 &,

Azn(z) - ? Zedsn,r(z)71
My i=1

Asu(2) = ﬁ Y ehSur(@)! l(azzt(u, Yi;2)R (1) + £, Vi;2)0:K () )

(%t(u, Yi;2)R(u) + t(u, Yl-;z)alIZ(u))

First we consider Ay,(z),

nte) = 1) R (g 00) e 2000 o) (S E2)
1 & - = Z_g(Xz) Z_g(X1>
o ()R ) [ (e (5 )
=t A1 (2) + A12a(2). (19)

As for A11,,(z), note that

E[A114(2)]

(2) iz~ 2)'8) (52 ) pa(2)az

1 1
=—c¢ S
h‘;’_[ d nr h?-l

h%

—S, (2 ¥ D) / ()R () pz (2 + hygu)du - Wy + o(H)
il=r+1 )’

=e&§nr( ) 1S (2) Hyy (2) - Wy + 0(Hy)
=€, S, ST H, 1 (2) - Wy, + o(KYy),

where the second equality is derived by change of variables and Taylor expansion, and the last equality
is due to the approximations Sy, (z) ™! = S 1pz(z) ™' 4+ O(hy) and S} (z) = S 1pz(z) + O(hy) in
the proof of Proposition 3.1 in Kong, Linton, and Xia (2010). Also, by Lemma 1 of Horowitz (1998) (or
Theorem 2.37 of Pollard (1984)), we derive

A11n(2)
=E[A114(2)] 4 (A114(2) — E[A114(2)])

11



.1 log(n
eSS Ay 1 (2) - iy 4 0(05) + o (B ngl(/2>)

=4S, 15T 1 (2) - Wy + o(RYy).

Therefore by (10), we derive

Aln(z)
1 ¢ ’ & 15,2 C(Xi — (X ! &G—1ar r
:@ Z; edSn,’r(Z) 1K(Zh€7§)) (Yz - H(X1)>V (Zhi_([)> + edS’r 1Sr+1H1’+1(Z) . hH
+o(hy). (11)

Second we consider Ay, (z), plugging the asymptotic representation of Zl(Xll) — 01(X}) given by

Lemma S.3 into Ay, (z), under Assumption 6,
Aon (Z)

~ 1 X
:e&Snlr (Z) -1 <nh4 Z

H i=1

(%t(u, Y 2)R(u) + Hu, Y2 K(w) ) Dy(x)) -

0(Xj)—z

u=
hyy

Inl (le)>

u= g()}f;)[z

+ nhl%{g [(aault(u, Y;;z)K(u) + t(u, Yi;z)alﬁ(u)>

+o(HFh)
=S, (z) " (A1 (2) + Ao (z)) + 0o(Hif ). (12)

As for Az1,(z), note that by the product rule of derivatives

0(Xj)—z
hyy

(5250 Y52 R () + 1, Y 2)nR ()

u=

=2 {tw 2R (W) )

PR

— (%~ M) (5 (AR ()}

11:5(),272
o[} H(z + hyu);z)K
+ o {Hu, H (4 g 2) <u>}ug<2_z

d

— ()R (u)] fx)- ST @ g

where t(u, Y;;z)K(u) = fi(u) (Y; — fi(u)' By p(z))K(u). Thus, we can further decompose A1, (z) as

A1 (2)
_Lf(y —H(g(x')))Dl(xl)(7{ﬁ(u)g(u)}> e
nh%{ = i 1 1 aul u:a};;)[z H
1 & 0 _
+ ﬁ l; FmE t(u, H(z +hHu);z)K(u)} - Q;f;)[Z Dy (X)) - Wi

12



d 1
N—z ;{ 'D }( -h 1
nh3 Zf ‘u— hl) dz1 (Z)z (%) 1( 1) hH

=:A011n(2) 4+ Ap124(2) + Ap13n(2).

By Lemma 1 of Horowitz (1998) (or Theorem 2.37 of Pollard (1984)),

hog(n)
Anin(z) = 0(%),

and

Ao (2)
=E[An24(2)] + (A212n (z) — E[Az2n (Z)})

Ly ~ 1 P g

/al (1, 1z + )i DRG0 b ) EID1(XDIGX) = Z)p2(2)aZ + o (1 A 7800 )
hyy
hrJrl

_ hr+1h(’*5)/zl
/{t(u,?—[(z+hHu);z)K(u)}B%E[Dl(X})M(X,):z+hHu]pZ(z+hrHu)du+o( T "g(”))

H
2
hH

0 hﬁthS)/zlog(n))

=O(Wift-1y,) + 7

where the last second equality is derived by change of variable and integration by parts, and the last
equality is due to Taylor expansion. As for Ay;3,(z), similar to A1z, (z), by Lemma 1 of Horowitz
(1998) (or Theorem 2.37 of Pollard (1984)), we have

A134(2)
=E[A213,(2)] + (A213n(2) — E[An134(2)])
r+1 r+1
B [ BRI, | EIDODIE) = ZIpe(2)47-+o( ML)

h1’+1

:—Wgﬁwwmﬁmmﬁ%m@~ﬂ

—Wma{gﬂ®wMEM%h%m®}Mﬁ

dz!
— Vrﬂ(Z);:_z{;le(z)E[Dl(X})g(Xi) = Z]pz(z)} i

W log(n)
+1 H
0<h§1 + 722, ),

where V' = J a(u)K(u)du, Vi = [u'fi(u)K(u)du, and vi(2) = [ u?fi(u)K(u)du. Therefore, by
adding up Agnn(z), A212n( ), and Anzn(z ), we derlve

¢Snr(2) " Any
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=¢(5'pz(2) " +O0(hw)) ( VI LM EDU(XIE(X) = 2lpa(e) by

- vf‘<1>pz<z>1;;{;;H<z>fswl<x3>|c<xi> - Z]Pz(z)} s

)

~ VI (2)pz(2) 52 {;ZlH(Z)E[Dl(X})IC(Xi) = Z]PZ(Z)} 'h?Tl)

hyi tlog ("))

r+1
+ o(hH + nl/zh;’_t

- —apz(z)-l;;{;H@)E[Dl(x})mxi) - z]m(z)} L

J )
- Esz(z)1(922{821H(Z)E[D1(X})|C(Xi) = Z]PZ(Z)} k!
hr+1l
vo(igt + ML), 13)

where the last equality is due to the facts that §,’1Vf = ¢, S;lVfl(l) = (0,1,0,---,0)/, and
S, 1vl() = (0,0,1,---,0).
As for Ayy(z), note that by (3) in Lemma S.3,

log(n)
sup [Ju(x))| =0
xlesxl‘ ' ’ ( nh?_} )

in probability as n — oo, and E[],;1(X})| X! = x!] = 0. Thus by Lemma 1 of Horowitz (1998) (or
Theorem 2.37 of Pollard (1984)),

Ay (2)
_ Ly atY‘-K tHu,Y;z)01K x!
=i (sort(u, Y 2)R () + H, Yis2)n R (w)) ey | (XD
log(n)*?
1'H

Plugging (13) and (14) into (12), we get
Agy (Z)
az!l | 9zt

=—51Pz(z)la{ 9 H()ED(X)[Z(X,) =zJpz<z>} W

nrl

~apz(@) g {QH(z)E[m(x}mxn = z]m(z)} !

(15)

i llog(m) , Wiy log(n) | log(n)%y

+o (h’“ +
H /203, ni/2 nh%h‘f} /2
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Similarly, we have the decomposition for A3, (z). By adding up the representations of A1, (z), Az, (z),
and A3, (z), The desired conclusion therefore follows from Assumption 6. O

S.2.6 Lemma S.6

Let fk() be an infeasible estimator of fi(-) with an (infeasible) data of {Y;, {1 (X}), {>(X?)},, while
?k() be a feasible estimator of fi.(-) with a data of {Y;, {; (x1H), Cz(Xz) 1- Lemma S.6 establishes the
uniform convergence rate and asymptotic representation of the fea51b1e estimator of transformed
component function f;(-) for k = 1,2. In particular, the first three terms in the asymptotic representa-
tion come from the (asymptotic) representation of infeasible estimator fk( k), while the fourth term

is the additional bias appearing in the difference between feasible and infeasible estimators, namely

i) = fil@).

Lemma S.6. If Assumptions 1-6 hold, then for k = 1,2, (i) fk( ) — fil(z ) = Ju(2) — E[5u ()] +
I Bi(2) + 1 B(2) + 0y (5, + Wi 1), and (i) F(29) — () = O, (1,

Pg(n) L i1y g — oo
uniformly over z5 € S

l’lh';.‘

Proof. Only the case for k = 2 is proved. The proof for k = 1 is similar. The definition of ]AEZ() yields

2)—//3:33 gjzgz;]wg(vl)dvldvz. (16)

By applying Taylor expansion to the integrand,

RH() H()
WH(w) OH()
DR M 50)0,34(0)] 0 +Ek )
~2(0) ( B;:ﬁm - Bﬁgz; ) +0(Gn e3P )
in probability as 11 — co uniformly over v € Sz, where g2(v) = | — oy, 5] (U)} By Lemma S.5

and plugging the representations of d;H (v) — 9 H(v) into (17), we derive

7] vV — Xi i) —
L) I ) E 0 R 0 ()
+q2(v)D (V) + g2 (v) D(v) W
+o(l}, +hr+1)+o(log( )+ og<”>) (18)

4 dq
Tll’l nhH

in probability as n — oo uniformly over z € Sz. Therefore by integrating (18) and Assumption 6,
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— / "2<V>’eéz5w<V>‘1K<vfﬁ> (1= HO) (5= Ym0 ?

H i=1
+ By (22) Iy, + Bo(22)W T + o (I, + K. (19)

The rest of the proof is to analyse the first term of the right hand side in (19). A change of variables

and a Taylor expansion show that

ey Z/Z /Q2 edSn, (ﬂ)(yl *H(Xi))y(w)wg(vl)dvldvz

H i=1 h?—l hH
ey (Vo 0(XF)) Yi—HX) pb(XF) -
nhizzl [ tcahyes; e R (B e
;E/Z/QZ 1) = {pz 0} 15

K(iv —(X) V(Y — H(X;))m (LXJ — V)w3(v1)dvld1/2

hy hy

1 (B =0(X)/hy 9 ) , )

T z-, XY+ h u)e g1
ni—l/(zogz( Xi))/hy oz! 92(z°, Ga(X7) i) 'esS,

(Y; — H(X;)) ws(z') 1, 1y 4,1 2\ .2 1

. wlii () (uDdut Yo (u?)du? + o =

pz (24, 0o(X?) + hyu) zl_§1(xl){/ fi(u)ky (u™) }2( ) <n>

=:Q1,(2%) + Q2n(2%) + Qau(2%) + o (Wi ), (20

where 0(1/n) = o(hlf!) is due to Assumption 6. By Lemma 1 in Horowitz (1998) (or Theorem 2.37
in Pollard (1984)) and Assumption 6, Qz,(z%) = o(h}f') and Qs,(22) = o(hf ). As for Q1,(z2), an
integration by parts implies that

an(ZZ)
_ 1y siea Yi—H(X) _ar0(XF)—2? 22— 3H(X?)
_%g [%(Q(X}),ZZ)edS,lpZ(gl(X}),zz)vzﬂ( 2 - )w3(gl( WCZ(T)

I E— Yi_H(Xi) ji g(Xiz)_Zz 27€(Xi2)
— (G (XD), 23) edsrlpZ@l(X})’Z%)Vf< 2 ™ 0)w3(C1( ))’Cz(%)

1 & p@E=aX))/h g 1y 2\ &1
”Z%/& ~0a(X0)) /g azzlqz(gl(xi)fz )'eqSy
(Y= HX))ws(8a(x1))

pz(L1(X}),22)

=Jn2(z%) + Quan(2%), (21)

vy (u)

where /Cp (1 f ko (t)dt. By Lemma 1 in Horowitz (1998) (or Theorem 2.37 in Pollard (1984)) and
Assumptlon 6, Q124(22) = o(Hf!) in probability as n — oo uniformly over z2 € S,.. Rearranging
(19), (20), and (21), then part (i) is proved Also, an argument similar to the proof of Theorem 6 in

Masry (1996) shows that sup_» Jn(z?)| =0 lOg ( ). Thus, part (ii) follows from Assumption
y Pz2es,, p p p
6. O

16



References

HOROWITZ, J. (1998): “Nonparametric estimation of a generalized additive model with an unknown
link function,” Working paper, University of lowa.

KONG, E., O. LINTON, AND Y. XIA (2010): “Uniform Bahadur representation for local polynomial
estimates of m-regression and its application to the additive model,” Econometric Theory, 26(5),
1529-1564.

MASRY, E. (1996): “Multivariate local polynomial regression for time series: uniform strong consis-
tency and rates,” Journal of Time Series Analysis, 17(6), 571-599.

POLLARD, D. (1984): Convergence of stochastic processes. Springer-Verlag.

POwWELL, J. L., J. H. STOCK, AND T. M. STOKER (1989): “Semiparametric estimation of index coeffi-
cients,” Econometrica, pp. 1403-1430.

17



	Additional Notation on Local Polynomial Regression
	Technical Lemmas
	Lemma S.1
	Lemma S.2
	Lemma S.3
	Lemma S.4
	Lemma S.5
	Lemma S.6


