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This document is an online Appendix to “A unified theory for ARMA models with varying coeffi-

cients: One solution fits all”. It is a continuation of the Appendices, included in the main body of the

paper. We shall here follow the notation as well as the numbering of equations, Sections, Theorems, etc.,

employed therein. For example eq. (1) (or eq. (B.1)) and Theorem 1 (or Proposition B1) are referred to

corresponding equations and statements in the main body of the paper. Some supportive supplements

as well as the proofs of statements already mentioned in the main body of the paper are presented here.

D Examples

In this Section we apply our results to three specific models, included in Subsection D1 and to the

ARMA(p, q) model with constant parameters in Subsection D2.

D1 Specific Models

The following models are built upon the TV-AR(1) process defined by

yt = ϕ(t)yt−1 + εt,

where ϕ(t) is identified with ϕ1(t) of eq. (1), {εt} is an orthogonal sequence (uncorrelated) defined

on L2 with constant variance σ2. The principal matrix Φt,r consists solely of two nonzero diagonals:

the superdiagonal whose elements are (−1)s and the main diagonal whose elements are ϕ(r + 1), ϕ(r +

2), ..., ϕ(t). Therefore the principal determinant is the product of the elements of the main diagonal, that

is:
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ξ(t, r) =

t∏
m=r+1

ϕ(m). (D.1)

The Wold-Crámer representation formula in eq. (18a) must be applied with ξq(t, r) = ξ(t, r) for all r

(since φ(r) = 0, ur = εr and θl(r) = 0 for any l ∈ [1..q]).

Example D.1 is concerned with the Logistic Smooth Transition AR (LSTAR) model (see, for example,

Teräsvirta, 1994). The other two are taken from Azrak and Mélard (2006), dealing with coefficients

of periodic and exponential functions, respectively. In all these specifications we explicitly formulate

the principal determinant function ξ(t, r) and we show that the conditions of Theorems 2 and 3 are

fulfilled. These results enable us to derive the Wold-Crámer representations explicitly. Besides, in view

of Proposition 2, the unconditional variance Var(yt) yields a closed form representation.

Example D.1 (Logistic Smooth Transition Model) In the LSTAR(1) model, the AR coefficient

ϕ(t) is build up as follows. First, define the logistic function: F (t; γ, τ) = [1 + eγ(t−τ)]−1, where γ ∈ R≥0

is the parameter of the logistic growth rate and τ ∈ Z is the t value of the function’s midpoint parameter.

Second, define the function: f(t) = ϕ1F (t; γ, τ) + ϕ2[1 − F (t; γ, τ)], where |ϕ1| < 1, ϕ2 < ϕ1. It is

decomposed into two regimes: ϕ1F (t; γ, τ) (regime 1) and ϕ2[1 − F (t; γ, τ)] (regime 2). F (t; γ, τ) is a

decreasing sigmoid function of time t with F (τ ; γ, τ) = 0.5. Moreover, F (t; γ, τ) → 1, as t → −∞,

F (t; γ, τ) → 0, as t → ∞, and 0 < F (t; γ, τ) < 1. Accordingly, f(t) → ϕ1, as t → −∞ and f(t) → ϕ2, as

t → ∞ and ϕ2 < ϕ(t) < ϕ1 for all t ∈ Z. The latter implies that f(t) is a bounded function of time with

horizontal asymptotes at y = ϕ1 and y = ϕ2. Choosing t1 small enough (t1 ≪ τ), then F (t1; γ, τ) ≈ 1

and regime 1 prevails, that is f(t) ≈ ϕ1 for t ≤ t1, whereas choosing t2 ≫ τ , then F (t2; γ, τ) ≈ 0 and

regime 2 prevails, that is f(t) ≈ ϕ2 for t ≥ t2. Clearly t2 > t1, since F (t; γ, τ) is a decreasing function in

t. Finally, the coefficient ϕ(t) of the LSTAR model, followed by relevant graphs, is:

ϕ(t) =


f(t1) if t ≤ t1 (constant function),

f(t) if t1 ≤ t ≤ t2,

f(t2) if t2 ≤ t (constant function),

(a) The graph of f(t) along with (ti, f(ti)), i = 1, 2. (b) The graph of the coefficient ϕ(t).

LSTAR(1) Model
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In all that follows we assume that r ≤ t1 < t2 ≤ t. The elements in the main diagonal of Φt,r are:

ϕ(r + 1), ..., ϕ(t1), ϕ(t1 + 1), ..., ϕ(t2 − 1), ϕ(t2), ..., ϕ(t),

or ϕ1, ..., ϕ1, ϕ(t1 + 1), ..., ϕ(t2 − 1), ϕ2, ..., ϕ2.

The principal determinant in eq. (D.1) takes the form:

ξ(t, r) = ϕt1−r+1
1

( t2−1∏
j=t1+1

ϕ(j)

)
ϕt−t2+1
2 .

On account of
∑t1

r=−∞ |ϕ1|t1−r+1 < ∞, since |ϕ1| < 1, the absolute summability condition in (17) holds,

that is for any fixed t:

t∑
r=−∞

|ξ(t, r)| = |ϕ2|t−t2+1
t2−1∏

j=t1+1

|ϕ(j)|
t1∑

r=−∞
|ϕ1|t1−r+1 < ∞.

As the conditions of Theorem 2 are fulfilled, the Wold-Crámer representation formula in eq. (18a), applied

with φt = 0 (zero drift) and θl(t) = 0 (zero moving average coefficients), yields an asymptotically stable

MA representation, which is of the form:

yt =

t∑
r=−∞

ξ(t, r)εr = ϕt−t2+1
2

t2−1∏
j=t1+1

ϕ(j)

t1∑
r=−∞

ϕt1−r+1
1 εr.

By virtue of Proposition 2, the unconditional variance Var(yt), can be derived from eq. (21b) using σ in

place of σ(r), that is

Var(yt) =
t∑

r=−∞
ξ2(t, r)σ2 = σ2ϕ

2(t−t2+1)
2

t2−1∏
j=t1+1

ϕ2(j)

t1∑
r=−∞

ϕ
2(t1−r+1)
1 .

A closed form representation of Var(yt) is obtained in what follows. Taking into account that |ϕ1| < 1,

it follows that

1∑
r=−∞

ϕ
2(t1−r+1)
1 = ϕ2t1

1 + ϕ2t1+2
1 + ϕ2t1+4

1 + ... = ϕ2t1
1 + ϕ2

1ϕ
2t1
1 + ϕ4

1ϕ
2t1
1 + ...

= ϕ2t1
1 (1 + ϕ2

1 + ϕ4
1 + ...) =

ϕ2t1
1

1− ϕ2
1

.

Without loss of generality, we assume that t1 ≥ 1. It follows that:

t1∑
r=−∞

ϕ
2(t1−r+1)
1 =

1∑
r=−∞

ϕ
2(t1−r+1)
1 +

t1∑
r=2

ϕ
2(t1−r+1)
1 =

t1∑
r=2

ϕ
2(t1−r+1)
1 +

ϕ2t1
1

1− ϕ2
1

.

Substituting the above result in the formula of Var(yt), the closed form of the latter is:

Var(yt) = σ2ϕ
2(t−t2+1)
2

t2−1∏
j=t1+1

ϕ2(j)

( t1∑
r=2

ϕ
2(t1−r+1)
1 +

ϕ2t1
1

1− ϕ2
1

)
.
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Example D.2 (Periodic) Consider the AR(1) model with time-varying coefficient ϕ(t) = βt−n⌊t/n⌋

(see Example 1 in Azrak and Mélard, 2006), where t ∈ Z, ⌊t/n⌋ is the integer part of the division t/n,

n ∈ Z2 and βj ∈ R for 0 ≤ j ≤ n − 1; both n, βj remain fixed throughout the example. It is also

assumed that |
∏n−1

j=0 βj | < 1. We first show that the above specification is an equivalent version to the

traditional periodic (PAR(1)) one which is grounded on the Euclidean division identity. In particular,

applying Euclid’s division Lemma for n ∈ Z2, it follows that for any t ∈ Z there exists a unique pair of

integers (T,R), called the quotient and the remainder of the division, respectively, such that:

t = nT +R

0 ≤ R ≤ n− 1.

 (D.2)

The remainder (inequality) condition in eq. (D.2) is essential, as it ensures the uniqueness of the pair

(T,R). In particular, eq. (D.2) meets the traditional interpretation of a PAR(1) model in which the time

t is expressed in terms of seasons (e.g., quarters), n ∈ Z2 is the number of seasons in a whole period (e.g.,

n = 4 is the number of quarters per year), T ∈ Z0 stands for the number of whole periods (e.g., years),

R = t−nT is the number of remaining seasons (e.g., quarters), after the elimination of all whole periods

included in t (nT ) and k = t− r > 0 is the total number of seasons (or periods) from season r + 1 up to

and including season t (e.g., quarters).

Since n is positive and ⌊t/n⌋ is the greatest integer less than or equal to t/n, the Euclidean division

identity in eq. (D.2) can be equivalently expressed by a single identity:

t = n⌊t/n⌋+R. (D.3)

This is due to the fact that the identity in eq. (D.3) necessarily implies both: 0 ≤ R ≤ n − 1 and

T = ⌊t/n⌋. As t/n is a rational number (division of integers), writing t − n⌊t/n⌋ = R, it follows from

eq. (D.3) that ⌊t/n⌋ and R are respectively the quotient and the remainder of the Euclidean division of

t by n. This establishes the equivalence of these models. For example if n = 4 and t = 7 (quarters), then

T = 1 (year) and R = 3 (quarters). If n = 4 and t = 8, then T = 2 and R = 0. These are in line with

ϕ(7) = β7−4⌊7/4⌋ = β7−4·1 = β3 and ϕ(8) = β8−4⌊8/4⌋ = β8−4·2 = β0.

Let β =
∏n−1

j=0 βj . We shall refer to β as a whole period product. Trivially
∏n+i−1

j=i βj for any i ∈ Z0,

is also a whole period product, since
∏n+i−1

j=i βj = β. The elements in the main diagonal of Φt,r are

βr+1−n⌊(r+1)/n⌋, βr+2−n⌊(r+2)/n⌋..., βt−1−n⌊(t−1)/n⌋, βt−n⌊t/n⌋

or in reverse order {βt−j−n⌊ t−j
n ⌋, j = 0, ..., t− r− 1} and the number of these elements is (t− r). In view

of eq. (D.1), the principal determinant ξ(t, r) (the product of the main diagonal elements) comprises

⌊ t−r
n ⌋ whole period products and the number of their elements is n⌊ t−r

n ⌋.

Consequently, we have:
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ξ(t, r) =

t−r−1∏
j=0

βt−j−n⌊ t−j
n ⌋

 =

t−r−1−n⌊ t−r
n ⌋∏

j=0

βt−j−n⌊ t−j
n ⌋

 t−r−1∏
j=t−r−n⌊ t−r

n ⌋

βt−j−n⌊ t−j
n ⌋

 .

As t − r − 1 − (t − r − n⌊ t−r
n ⌋) + 1 = n⌊ t−r

n ⌋, it follows that the number of terms in the second of the

above products coincide with the number of elements of whole period products contained in the main

diagonal of Φt,r, thereby: t−r−1∏
j=t−r−n⌊ t−r

n ⌋

βt−j−n⌊ t−j
n ⌋ = β⌊ t−r

n ⌋.

We thus conclude that:

ξ(t, r) = β⌊ t−r
n ⌋

t−r−1−n⌊ t−r
n ⌋∏

j=0

βt−j−n⌊ t−j
n ⌋

 .

For each fixed t, it follows from the assumption |β| < 1 that β⌊ t−r
n ⌋ → 0, as r → −∞. Additionally

t−r−1−n⌊ t−r
n ⌋∏

j=0

βt−j−n⌊ t−j
n ⌋ =


1 if r = t, t− n, ..., t− 2n, ...

βt−n⌊ t
n ⌋ if r = t− 1, t− n− 1, ..., t− 2n− 1, ...

...
...

...∏n−2
j=0 βt−j−n⌊ t−j

n ⌋ if r = t− n+ 1, t− 2n+ 1, ..., t− 3n+ 1, ...

,

(where we use:
∏−1

j=0(·) = 1) that is, there are only (n−1) possible outcomes of
∏t−r−1−n⌊ t−r

n ⌋
j=0 βt−j−n⌊ t−j

n ⌋

for all r ≤ t. Since |β| < 1, the absolute summability condition in (17) is fulfilled, as shown in what

follows:

t∑
r=−∞

|ξ(t, r)| =
t∑

r=−∞
|β|⌊

t−r
n ⌋

t−r−1−n⌊ t−r
n ⌋∏

j=0

|βt−j−n⌊ t−j
n ⌋|

= |β|0 · 1 + |β|0 · |βt−n⌊ t
n ⌋|+ ...+ |β|0 ·

n−2∏
j=0

|βt−j−n⌊ t−j
n ⌋|

+ |β| · 1 + |β| · |βt−n⌊ t
n ⌋|+ ...+ |β|

n−2∏
j=0

|βt−j−n⌊ t−j
n ⌋|

+ |β|2 · 1 + |β|2 · |βt−n⌊ t
n ⌋|+ ...+ |β|2

n−2∏
j=0

|βt−j−n⌊ t−j
n ⌋|+ ...

=|β|0
(
1 + |βt−n⌊ t

n ⌋|+ ...+

n−2∏
j=0

|βt−j−n⌊ t−j
n ⌋|

)

+|β|
(
1 + |βt−n⌊ t

n ⌋|+ ...+

n−2∏
j=0

|βt−j−n⌊ t−j
n ⌋|

)

+|β|2
(
1 + |βt−n⌊ t

n ⌋|+ ...+

n−2∏
j=0

|βt−j−n⌊ t−j
n ⌋|

)
+ ...

=(1 + |β|+ |β|2 + ...)

(
1 + |βt−n⌊ t

n ⌋|+ ...+

n−2∏
j=0

|βt−j−n⌊ t−j
n ⌋|

)
=

1

1− |β|

t∑
r=t−n+1

t−r−1−n⌊ t−r
n ⌋∏

j=0

|βt−j−n⌊ t−j
n ⌋| < ∞.
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As the conditions of Theorem 2 are fulfilled, the Wold-Crámer representation formula in eq. (18a) for a

PAR(1) model, applied with φt = 0 and θl(t) = 0, yields an asymptotically stable MA representation,

which is of the form:

yt =

t∑
r=−∞

ξ(t, r)εr =

t∑
r=−∞

β⌊ t−r
n ⌋

t−r−1−n⌊ t−r
n ⌋∏

j=0

βt−j−n⌊ t−j
n ⌋

 εr.

Proposition 2 entails that the unconditional variance is given by:

Var(yt) = σ2
t∑

r=−∞
ξ2(t, r) = σ2

t∑
r=−∞

β2⌊ t−r
n ⌋

t−r−1−n⌊ t−r
n ⌋∏

j=0

βt−j−n⌊ t−j
n ⌋

2

.

Replacing |ξ(t, r)| with ξ2(t, r) in the proof of the above formula of
∑t

r=−∞ |ξ(t, r)|, we can similarly

show that:

t∑
r=−∞

ξ2(t, r) =
1

1− β2

t∑
r=t−n+1

t−r−1−n⌊ t−r
n ⌋∏

j=0

β2
t−j−n⌊ t−j

n ⌋.

Therefore a closed form representation of the unconditional variance is given by:

Var(yt) =
σ2

1− β2

t∑
r=t−n+1

t−r−1−n⌊ t−r
n ⌋∏

j=0

βt−j−n⌊ t−j
n ⌋

2

.

This result coincides with eq. (4.2) in Azrak and Mélard, 2006 (under the aforementioned assignment).

Example D.3 (Exponential) In this example (see Example 2 in Azrak and Mélard, 2006), the coeffi-

cient of an AR(1) model is a decreasing exponential function of time in the interval [0, T ] and constant

elsewhere

ϕ(t) =


β if t ≤ 0,

βλt/T if 0 ≤ t ≤ T,

βλ if T ≤ t,

where T ∈ Z1 is the sample size, 0 < β < 1 and the true value of λ ranges over (0, 1) (as pictured below).

Exponential model
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Clearly βλ < β and so βλ ≤ ϕ(t) ≤ β for all t, that is ϕ(t), t ∈ Z is a bounded function.

If t ≥ T and r ≤ 0, then the elements of the main diagonal of Φt,r are

ϕ(r + 1), ..., ϕ(0), ϕ(1), ..., ϕ(T ), ϕ(T + 1), ..., ϕ(t),

or β, ..., β︸ ︷︷ ︸, βλ
1
T , ..., βλ︸ ︷︷ ︸, βλ, ..., βλ︸ ︷︷ ︸,

−r T t− T

the product of which yields the principal determinant ξ(t, r), given by (D.1). More specifically, we consider

the following cases:

If T ≤ r ≤ t, then: ξ(t, r) = ϕ(r + 1) . . . ϕ(t) = (βλ)t−r.

If 0 ≤ r ≤ T − 1 < T ≤ t, then 1 ≤ r + 1 ≤ T ≤ t and:

ξ(t, r)=
(
ϕ(r + 1) . . . ϕ(T )

)(
ϕ(T + 1) . . . ϕ(t)

)
=

( T∏
i=r+1

βλ
i
T

)
(βλ)t−T=βT−rλ

(r+1)+...+T
T βt−Tλt−T

=βt−rλt−Tλ
(T−r)(T+r+1)

2T = βtβ−rλtλ
T2+T−r2−r

2T −T = (βλ)tβ−rλ(− 2T2

2T +T2+T−r2−r
2T )

=(βλ)tβ−rλ
−T2+T−r2−r

2T = (βλ)tβ−rλ−T (T−1)+r(r+1)
2T = (βλ)tβ−rλ−(T−1

2 +
r(r+1)

2T ).

If −∞ < r ≤ 0 < 1 ≤ T − 1 < T ≤ t, since ξ(t, 0) =

(∏T
i=1 βλ

i
T

)
(βλ)t−T , it follows that

ξ(t, r) = β−r

( T∏
i=1

βλ
i
T

)
(βλ)t−T = β−rξ(t, 0).

The above results are summarized as follows:

ξ(t, r) =


(βλ)t−r if T ≤ r ≤ t,

(βλ)tβ−rλ−(T−1
2 +

r(r+1)
2T ) if 0 ≤ r ≤ T,

β−rξ(t, 0) if r ≤ 0.

On account of 0 < β < 1, the absolute summability condition in (17) is fulfilled by:

t∑
r=−∞

ξ(t, r) =

t∑
r=T

ξ(t, r) +

T−1∑
r=1

ξ(t, r) +

0∑
r=−∞

ξ(t, r)

=

t−T∑
r=0

(βλ)r +

T−1∑
r=1

(βλ)tβ−rλ−(T−1
2 +

r(r+1)
2T ) + ξ(t, 0)(1 + β + β2 + ...)

=
1− (βλ)t−T+1

1− βλ
+ (βλ)t

T−1∑
r=1

β−rλ−(T−1
2 +

r(r+1)
2T ) +

ξ(t, 0)

1− β
< ∞.

As the conditions of Theorem 2 are fulfilled, the Wold-Crámer representation formula in eq. (18a) for
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an exponential AR(1) model, applied with φt = 0 and θl(t) = 0, yields an asymptotically stable MA

representation, which is of the form:

t∑
r=−∞

ξ(t, r)εr =

t−T∑
r=0

(βλ)rεr + (βλ)t
T−1∑
r=1

β−rλ−(T+1
2 +

r(r+1)
2T )εr +

0∑
r=−∞

β−rξ(t, 0)εr.

Moreover, the unconditional variance yields a closed form representation:

Var(yt) =
t∑

r=−∞
ξ2(t, r)σ2 =

( t∑
r=T

ξ2(t, r) +

T−1∑
r=1

ξ2(t, r) +

0∑
r=−∞

ξ2(t, r)

)
σ2

=

(
1− (βλ)2(t−T+1)

1− (βλ)2
+ (βλ)2t

T−1∑
r=1

β−2rλ−(T+1+
r(r+1)

T ) +
ξ2(t, 0)

1− β2

)
σ2.

As pointed out by Azrak and Mélard in the above cited reference the use of variable coefficients, which

depend on the length of the series, is compatible with the approach of Dahlhaus (1996).

D2 ARMA with Constant Parameters

In this Subsection, we deal with ARMA(p, q) models with constant parameters:

yt = φ+

p∑
m=1

ϕmyt−m + εt +

q∑
l=1

θlεt−l for all t ∈ Z. (D.4)

In this case, the principal determinant is a determinant of a banded Toeplitz-Hessenberg matrix. We

have shown that the optimal linear predictor formula in eq. (23a) is of the form:

Ê(yt | Ks) =

p∑
m=1

ξ(m)(t− s)ys+1−m + φ

t∑
r=s+1

ξ(t− r) +

s∑
r=s+1−q

ξs,q(t− r)εr (D.5)

(see the analysis in Proposition 4). In what follows we show that eq. (D.5) coincides with the formula

established by Karanasos (2001), in his Theorem 1, eq. (2.7), that is

Ê(yt | Ks) =

p∑
m=1

p∑
l=1

ζlkγlmys+1−m + φ

(
1

Φ(1)
−

p∑
m=1

ζmk

(1− λm)

)
+

s∑
r=s+1−q

p∑
m=1

q∑
l=s+1−r

ζm0λ
t−r−l
m θlεr

(D.6)

where {λ1, ..., λp} are the distinct roots of the characteristic equation associated with eq. (D.4), that is

Φ(B) = 0, where Φ(B) = 1−
∑p

m=1 ϕmBm =
∏p

m=1(1− λmB) and

ζlk =
λk+p−1
l

m∏
j=1
j ̸=l

(λl − λj)
, γlm = (−1)m−1

m−1∧
j=1

p−m+j+1∑
ij=ij−1+1

ij ̸=l

m−1∏
n=1

λin ,

with γl1 = 1 and k = t− s.
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First, we introduce some additional notation. For each fixed m such that 2 ≤ m ≤ p, we define the

nested sum operator
m−1∧
j=1

p−m+j+1∑
ij=ij−1+1

def
=

p−m+2∑
i1=1

p−m+3∑
i2=i1+1

· · ·
p∑

im−1=im−2+1

By expressing the AR parameters in terms of the roots of the AR polynomial, it is not difficult to show

that

ϕm−1 = (−1)m
m∧
j=1

p−m+j∑
ij=ij−1+1

m∏
n=1

λin

and that
∑p

l=1 ζlkγlm =
∑p+1−m

r=1 ϕm−1+rξ(k − r), where ξ(k) is given by eq. (8). Now, it follows from

eq. (9) that:
ξ(m)(t− s) =

p+1−m∑
r=1

ϕm−1+rξ(t− s− r) =

p∑
l=1

ζlkγlm. (D.7a)

Similarly, it is straightforward to show that:

t∑
r=s+1

ξ(t− r) =

[
1

Φ(1)
−

p∑
m=1

ζmk

(1− λm)

]
. (D.7b)

Finally, eq. (8) entails that ξ(t− r − l) =
∑p

m=1 ζm0λ
t−r−l
m . It follows directly that:

ξs,q(t, r) =

q∑
l=s+1−r

ξ(t− r − l)θl =

p∑
m=1

q∑
l=s+1−r

ζm0λ
t−r−l
m θl. (D.7c)

Applying eqs. (D.7a), (D.7b) and (D.7c) to eq. (D.5), we obtain eq. (D.6), as asserted. We should

highlight the fact that eq. (D.5), unlike eq. (D.6), includes the case of multiple characteristic roots.

E Hessenbergians and the Green Function

In this Section, we show that the functions, ξq(t, r) and ξs,q(t, r), defined by eqs. (13) and (14), can be

expressed as banded Hessenbergians (for a discussion of Hessenbergians and their application to LDEs

with variable coefficients, see Paraskevopoulos and Karanasos (2021) and the references cited there).

Moreover, we discuss the Green function and its restriction involved in the solution of TV-LDEs(p).

E1 Hessenbergians

Formally, we can rephrase our results with n = max{p, q} in place of p and q. Therefore, without loss of

generality, in the following Proposition we shall assume that q = p.

Proposition E.1 ξq(t, r) defined in eq. (13) can be expressed as a banded Hessenbergian of order t−r+1,

whenever t− r + 1 > p, which is given by:
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ξq(t, r) = (E.1)∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 −1

θ1(r + 1) ϕ1(r + 1) −1

θ2(r + 2) ϕ2(r + 2) ϕ1(r + 2)
. . .

...
...

...
. . .

. . .

θq(r + q) ϕp(r + p) ϕp−1(r + p)
. . .

. . .
. . .

ϕp(r + p+ 1)
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . .

. . .

ϕp(t− 1) ϕp−1(t− 1) · · · ϕ1(t− 1) −1

ϕp(t) · · · ϕ2(t) ϕ1(t)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Proof. The cofactor of the first element in the first column of ξq(t, r) in eq. (E.1) coincides with ξ(t, r).

Similarly the cofactor of the element θl(r + l), l = 1, . . . , q, in the first column of ξq(t, r) coincides with

ξ(t, r + l) (see Lemma A1). As a consequence, the cofactor expansion of ξq(t, r) along its first column is

ξq(t, r) = ξ(t, r) +

q∑
l=1

ξ(t, r + l)θl(r + l),

which coincides with eq. (13).

Proposition E.2 ξs,q(t, r) in eq. (14) can be expressed as a banded Hessenbergian of order k, whenever

k > p :

ξs,q(t, r) =∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

θs+1−r(s+ 1) −1

θs+2−r(s+ 2) ϕ1(s+ 2) −1

θs+3−r(s+ 3) ϕ2(s+ 3) ϕ1(s+ 3)
. . .

...
...

...
. . .

. . .

θq(r + q) ϕp(r + p) ϕp−1(r + p)
. . .

. . .
. . .

ϕp(r + p+ 1)
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . .

. . .

ϕp(t− 1) ϕp−1(t− 1) · · · ϕ1(t− 1) −1

ϕp(t) · · · ϕ2(t) ϕ1(t)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.
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The proof of Proposition E.2 is similar to the proof of Proposition E.1 and, thus, it is omitted.

E2 Green Function

Let s ∈ Z. Also let the AR coefficients ϕm(t) of eq. (1) be defined on Zs. The Green function G(t, r)

associated with eq. (7) is a two variable function defined on the domain Zs+1−p ×Zs and takes the form

of a ratio of two determinants whose matrix entries are elements of any fundamental set of solutions

associated with eq. (7) (see Miller, 1968, p. 39 and Agarwal, 2000, p. 77). Having at our disposal

the fundamental solution set Ξs (see Section 3.1), an explicit representation of G(t, r) over the entire

domain Zs+1−p × Zs, is established by Paraskevopoulos and Karanasos (2021) (see their Theorem 4, eq.

(54)). Both determinants involved in the ratio formula of G(t, r) are expressed in terms of the elements

ξ(m)(t, r) of Ξs and, ultimately, by eq. (9), in terms of the principal determinant ξ(t, r) exclusively. It is

also shown there that the restriction of the Green function for t ∈ Zs+1−p and s ≤ r ≤ t− 1+ p, referred

to as H(t, r), coincides with the principal determinant function ξ(t, r).

F Origins and Proofs

This Section is primarily devoted to the origins and history of the central notion of the paper, the principal

determinant function, identified as a homogeneous solution to an infinite row-finite linear system. Some

proofs reported in Sections 4 and 5 are also presented in the remaining Subsections of this Section.

F1 The Origins of the Principal Determinant

Linear difference equations with varying coefficients of order p (in brief TV-LDEs(p)) associated with

TV-ARMA(p, q) processes (see eq. (3)) can be represented by infinite linear systems whose coefficient

matrix is row-finite, as shown below1


ϕp(s+ 1) ϕp−1(s+ 1) ϕp−2(s+ 1) ... ϕ1(s+ 1) −1 0 0 ...

0 ϕp(s+ 2) ϕp−1(s+ 2) ... ϕ2(s+ 2) ϕ1(s+ 2) −1 0 ...

0 0 ϕp(s+ 3) ... ϕ3(s+ 3) ϕ2(s+ 3) ϕ1(s+ 3) −1 ...

...
...

...
...

...
...

...





ys−p+1

ys−p+2

ys−p+3
.
..

ys

ys+1

ys+2

ys+3
...



= −


υs+1

υs+2

υs+3

...

 , (F.1)

or in more compact form as: As ys = vs. The elements of the coefficient matrix As are the AR

coefficients of eq. (1) at consecutive instances with starting instance: s + 1. Formally As is an N × N

row-finite matrix in generalized row echelon form (see Definition 2, in Paraskevopoulos, 2004).

1A row-finite matrix is an N× N infinite matrix, each row of which comprises a finite number of nonzero entries.
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Row-finite systems, in their general form, were first studied by Toeplitz (1909). Some results on finite

linear systems were extended there to cover infinite row-finite ones. The representation of their solution

was further developed by Fulkerson (1951). There he devised and proved the existence of a reduced form

(generalizing finite matrices in row-reduced echelon form) for any arbitrary row-finite matrix with the

aid of which the general solution of the system can be formulated. However, Fulkerson’s proof was based

on the countable axiom of choice, which is not constructive. The lack of a method for transforming row-

finite matrices into their row reduced echelon form has been highlighted in Paraskevopoulos (2012), who in

responding to this challenge has introduced a modified version of the Gauss-Jordan elimination algorithm

equipped with a new pivot elimination strategy (called Infinite Gauss-Jordan elimination algorithm,

briefly denoted as IGJEA). This strategy is grounded on the rightmost pivot nonzero elements of the

matrix, yielding a lower row reduced form of the original row-finite matrix. This turns out to be essential

for preserving the solutions of eq. (F.1) in the reduced system.2 In a companion paper, Paraskevopoulos

(2014) has further developed the IGJEA, focusing on the type and form of the general solution of row-finite

linear systems. The algorithm is effectively applied to the infinite system representation of TV-LDEs(p),

as in eq. (F.1), constructing the lower row reduced echelon form of As, which is denoted as LRREF(As)

(L(As) for short) and is given by

L(As) =


−ξ(p)(s+ 1, s) −ξ(p−1)(s+ 1, s) ... −ξ(1)(s+ 1, s) 1 0 0 ...

−ξ(p)(s+ 2, s) −ξ(p−1)(s+ 2, s) ... −ξ(1)(s+ 2, s) 0 1 0 ...

−ξ(p)(s+ 3, s) −ξ(p−1)(s+ 3, s) ... −ξ(1)(s+ 3, s) 0 0 1 ...
...

...
...
...
...

...
...

...
...

 .

This is a unique lower matrix form (called row canonical) of As, which preserves the homogeneous

solution of eq. (F.1), that is As = 0 ⇐⇒ L(As) = 0. The first p opposite signed columns in L(As) are

the p fundamental (or linearly independent) solution sequences of the homogeneous system As ys = 0,

which represents eq. (7) and they are denoted as ξ(m)(t, s) for t ≥ s + 1, taking on the initial values

ξ(m)(s+1−m, s) = 1 and ξ(m)(s+1− j, s) = 0 for 1 ≤ j ≤ p with j ̸= m. The principal determinant is:

ξ(t, s)
def
= ξ(1)(t, s). An alternative method to the generation of ξ(t, s) can be obtained by Cramer’s rule

(see Singh, 1980 and the references cited therein).

As an illustration, applying the IGJEA for p = 2, a few first terms of the principal determinant

sequence {ξ(t, s)}t≥s+1, taking on the initial values ys−1 = 0, ys = 1, are given below3:

ys+1 = ϕ1(s+ 1), ys+2 =

∣∣∣∣∣∣ ϕ1(s+ 1) −1

ϕ2(s+ 2) ϕ1(s+ 2)

∣∣∣∣∣∣, ys+3 =

∣∣∣∣∣∣∣∣∣
ϕ1(s+ 1) −1

ϕ2(s+ 2) ϕ1(s+ 2) −1

ϕ2(s+ 3) ϕ1(s+ 3)

∣∣∣∣∣∣∣∣∣ , ...
2The property preserving the solutions is known as left association and in the finite dimensional case as row-equivalence.
3The IGJEA produces direct expansions of the principal determinant sequence.
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Using the above values of y’s, each outcome of the matrix product As ys is easily verified to be 0. The

aforementioned solution sequence is the result of a rightmost pivot elimination strategy. As a counter

example, employing the TV-LDE(1) (or TV-AR(1) model), it is shown in the above cited reference

that the traditional (leftmost pivot) elimination strategy applied to the Gauss-Jordan algorithm fails to

preserve the general homogeneous solution of the original TV-LDE(1). This was the main barrier which

previously prevented researchers from implementing the Gauss-Jordan elimination algorithm for solving

TV-LDEs and more generally row-finite systems. Linear difference equations with variable coefficients of

irregular order are conveniently treated by the IGJEA too (see Paraskevopoulos, 2014).

Applying the same sequence of elementary operations, which reduce As to its L(As), to the sequence

of forcing terms {−υs+i}i≥1−p, a particular solution sequence is constructed. This is also represented by

a lower Hessenbergian given by eq. (12) (see Proposition A.4).

The general homogeneous solution of eq. (F.1) turns out to be a linear combination of the obtained

fundamental solutions with coefficients of any set of p initial condition values, say {cm ∈ R, 1 ≤ m ≤ p}.

These initial condition values occupy the first p terms of the solution sequence {yt}t≥s−p+1, that is

{ys−p+1 = c1, ys−p+2 = c2, ...ys−1 = cp−1, ys = cp}. The general (nonhomogeneous) solution of eq. (F.1)

is equal to the sum of the general homogeneous solution plus the particular one both of which have been

obtained above.

As the computational complexity for the calculation of banded-matrix determinants of order k (which

coincides with the forecasting horizon) is O(k), we conclude that the principal determinant representation

of the Green function restriction, involved in the solution of the associated TV-LDE, is computationally

tractable.4 This is due to the Gaussian elimination algorithm, which requires approximately
k(p+ 1)2

4
multiplies, where (p + 1) is the bandwidth of the principal matrix, to reduce the aforementioned k × k

matrix into its reduced row echelon form (see Thorson, 1979). Linear O(k) computational complexity is

comparable with the complexity of algorithms that calculate the Green function by recursion.

F2 Wold-Cramér Decomposition

In this Subsection, we show some results reported in Section 4.1 and in Appendix B.1.

F2.1 Proofs of Lemma B1 and Corollary B2

Proof of Lemma B1. i) Let us call θ̃l = supr |θl(l + r)| ∈ R≥0 for each l = 1, ..., q and Θ = max
0≤l≤q

θ̃l,

where θ0(t)
def
= 1 for all t. Now ξq(t, r) in eq. (13) can be rewritten as ξq(t, r) =

∑q
l=0 ξ(t, r + l)θl(r + l),

whence:

|ξq(t, r)| ≤

∣∣∣∣∣
q∑

l=0

ξ(t, r + l)θ̃l

∣∣∣∣∣ ≤ Θ

q∑
l=0

|ξ(t, r + l)| . (F.2)

4An explicit expression evaluated in polynomial running time is referred to as computationally tractable.
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Since ξ(t, r) = 0, whenever r > t, it follows that
∑t+l

r=t+1 |ξ(t, r)| = 0 for all t and any l such that

0 ≤ l ≤ q. The latter result along with condition (17), that is
∑t

r=−∞ |ξ(t, r)| < ∞, imply that

t∑
r=−∞

|ξ(t, r + l)| =
t+l∑

r=−∞
|ξ(t, r)| =

t∑
r=−∞

|ξ(t, r)|+
t+l∑

r=t+1

|ξ(t, r)| =
t∑

r=−∞
|ξ(t, r)| < ∞ (F.3)

for all t and any l : 0 ≤ l ≤ q. In view of (F.3), it follows that
∑q

l=0

∑t
r=−∞ |ξ(t, r+ l)| < ∞. Combining

the latter result with (F.2), it follows that:

t∑
r=−∞

|ξq(t, r)| ≤ Θ

t∑
r=−∞

q∑
l=0

|ξ(t, r + l)| = Θ

q∑
l=0

t∑
r=−∞

|ξ(t, r + l)| < ∞ for all t. (F.4)

Statement (i) of the Lemma follows from the inequalities in (F.4).

ii) The absolute summability condition in (17) and the boundedness of the drift-process, that is |φ(r)| ≤

N < ∞ for some N ∈ R≥0 and all r ∈ Z, imply the convergence of
∑t

r=−∞ |ξ(t, r)φ(r)|, since:

t∑
r=−∞

|ξ(t, r)φ(r)| ≤ N

t∑
r=−∞

|ξ(t, r)| < ∞.

Thus
∑t

r=−∞ ξ(t, r)φ(r) is a convergent numerical series in R for all t ∈ Z and therefore

E
( t∑
r=−∞

ξ(t, r)φ(r)
)
=

t∑
r=−∞

ξ(t, r)φ(r) ∈ R (finite)

for all t, as required.

iii) Recalling that ur =
∑q

l=0 θl(r)εr−l, and E(εr) = 0 the linearity of E entails that E(ur) = 0, whence

E(υr) = E(φ(r)) + E(ur) = φ(r) for all r. (F.5)

As E(ε2r) = σ2(r) and {εr} are uncorrelated, it follows that E(u2
r) =

q∑
l=0

θ2l (r)σ
2(r − l).5 Moreover, as

0 < σ2(r) ≤ M < ∞, we conclude that

Var(φ(r)+ur) = Var(ur) = E(u2
r) =

q∑
l=0

θ2l (r)σ
2(r− l) ≤ M

q∑
l=0

θ2l (r) ≤ M

q∑
l=0

Θ2 = M(q+1)Θ2 (F.6)

for all r, whence supr Var(υr) ≤ M(q + 1)Θ2 < ∞. Combining eqs. (F.5) with (F.6), we infer:

E(υ2
r) = Var(υr) + (E(υr))2 < M(q + 1)Θ2 +N2 for all r.

5By definition ur =
∑q

l=0 θl(r)εr−l. Taking expectations to both sides of the well known algebraic identity

( q∑
l=0

θl(r)εr−l

)2
=

q∑
l=0

θ2l (r)ε
2
r−l + 2

q∑
l=0

l−1∑
j=0

θl(r)θj(r)εr−lεr−j

on account of E(ε2r−l) = σ2(r − l) and ⟨εr−l, εr−j⟩ = E(εr−lεr−j) = 0, whenever j ≤ l − 1, the expectation of the double
summation in the right-hand side of the above identity becomes zero and the result follows.
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Letting V = M(q + 1)Θ2 +N2, the latter inequality shows that supt E(υ2
t ) ≤ V < ∞, as required.

Proof of Corollary B2. By virtue of eq. (B.3),
∑t

r=−∞ ξ(t, r)ur−zt = 0 or equivalently
∑t

r=−∞
(
ξ(t, r)ur−

ξq(t, r)εr
)
= 0 in L2, that is

lim
s→−∞

||
t∑

r=s+1

ξ(t, r)ur − zt||L2
= 0.

Thereby

lim
s→−∞

||
t∑

r=s+1

ξ(t, r)ur − zt||2L2
= 0. (F.7)

In view of eq. (15), the following equalities hold

lim
s→−∞

E

(
s∑

r=s+1−q

ξs,q(t, r)εr

)2

= lim
s→−∞

E

(
t∑

r=s+1

ξ(t, r)ur − zt

)2

(the norm definition of L2) = lim
s→−∞

||
t∑

r=s+1

ξ(t, r)ur − zt||2L2

(by eq. (F.7)) = 0,

as claimed.

F2.2 Remark F.1 and Proposition F.1

In the following Proposition, we show some results reported in Section 4.1, which support the proof of

Theorem 3. We start with the following Remark, which presents some well known results on L2 spaces.

Remark F.1 For each fixed t ∈ Z, the closed span of a subset et = {er,−∞ < r ≤ t} of the Hilbert

space L2, denoted here by Mt(e), is the smallest closed subspace of L2, which contains et. In all that

follows et is assumed to be an orthonormal set. Therefore Mt(e) turns into a separable Hilbert space

and et is called the orthonormal basis of Mt(e), that is every xt ∈ Mt(e) has a unique representation

xt =

t∑
r=−∞

⟨xt, er⟩er,

where the inner product of xt and er, i.e., ⟨xt, er⟩, are the Fourier coefficients of the orthonormal expansion

of xt. Moreover, the second order moment of xt is:

||xt||2L2
= E(x2

t ) =

t∑
r=−∞

|⟨xt, er⟩|2

(see, for example, Brockwell and Davis, 1991, Theorem 2.4.2).

As a consequence, let {λr, r ≤ t} be any sequence in R. Then xt =
∑t

r=−∞ λr er ∈ Mt(e) if and only if∑t
r=−∞ λ2

r < ∞. In this case λr = ⟨xt, er⟩ for all r ≤ t and E(x2
t ) =

∑t
r=−∞ λ2

r.
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Proposition F.1 i) Let {yt} be a second order process. Then the process {yt} satisfies eq. (1) if and

only if the processes {yt − E(yt)} and {E(yt)} simultaneously satisfy eqs. (19a) and (19b), respectively,

where {yt − E(yt)} is a zero mean random process and {E(yt)} is a nonrandom process. ii) Under the

conditions of Theorem 3, yt − E(yt) =
∑t

r=−∞ ξq(t, r)εr ∈ Mt(ε), which yields a mean zero process

{yt − E(yt)} in M(ε) and uniquely solves eq. (19a), whereas {E(yt)} solves eq. (19b) for µt = E(yt).

Proof. i) We start with the direct implication. Since yt ∈ L2, it follows that E(yt) exists. Moreover, as

E(εr) = 0, it follows from the linearity of the expectation operator that:

E(ut) = E(εt +
q∑

l=1

θl(t)εt−l) = 0.

Taking expectations to both sides of eq. (1), on account of E(φ(t)) = φ(t), it follows immediately that

E(yt) = φ(t) +

p∑
m=1

ϕm(t)E(yt−m) (F.8a)

and so E(yt) solves eq. (19b), when applied for µt = E(yt). Let us rewrite eq. (19b) (or eq. (F.8a)) as:

E(yt)−
p∑

m=1

ϕm(t)E(yt−m) = φ(t). Then eq. (1) can be rewritten as

yt = E(yt)−
p∑

m=1

ϕm(t)E(yt−m)︸ ︷︷ ︸
φ(t)

+

p∑
m=1

ϕm(t)yt−m + ut,

or equivalently as

yt − E(yt) =
p∑

m=1

ϕm(t)

(
yt−m − E(yt−m)

)
+ ut. (F.8b)

The latter shows that the process {yt − E(yt)} solves eq. (19a) and the direct implication follows.

To see the converse implication add eqs. (F.8a) and (F.8b) to get yt in eq. (1) and the equivalence is

complete. Finally since

E(yt − E(yt)) = E(yt)− E(yt) = 0,

{yt − E(yt)} is a mean zero random process, which satisfies (19a).

ii) As we have shown in Proposition B1(iii), under the assumptions of Theorem 3, the solution yt of eq.

(1) is second order and zt =
∑t

r=−∞ ξq(t, r)εr ∈ Mt(ε) yields a mean zero process in M(ε). To show

that zt solves eq. (19a), we proceed as follows. In view of eq. (B.3), proved in the main paper, we can

rewrite zt =
∑t

r=−∞ ξ(t, r)ur. Recalling that vt = φ(t) + ut and taking into account that φ(t) = 0, we
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can replace vt with ut in eq. (B.4) to get

t∑
r=−∞

ξ(t, r)ur =

p∑
m=1

ϕm(t)

t−m∑
r=−∞

ξ(t−m, r)ur + ut,

which shows that {zt} also solves eq. (19a) in M(ε), that is

zt =

p∑
m=1

ϕm(t)zt−m + ut.

To show the uniqueness of the solution zt =
∑t

r=−∞ ξq(t, r)εr consider any other mean zero process, say

xt, which also solves eq. (19a), that is

xt =

p∑
m=1

ϕm(t)xt−m + ut.

It follows that

zt − xt =

p∑
m=1

ϕm(t)
(
zt−m − xt−m

)
,

that is {zt − xt} is a nonrandom process and so Var(zt − xt) = 0. Moreover, as E(zt) = E(xt) = 0, it

follows that E(zt − xt) = 0. As a consequence, we have:

||zt − xt||2L2
= E

((
zt − xt

)2)
= Var(zt − xt) +

(
E(zt − xt)

)2

= 0.

We thus conclude that ||zt − xt||L2
= 0, whence zt = xt (in L2 sense).

The uniqueness result in Theorem 3 can be equivalently rephrased as follows. Under the conditions of

Theorem 3, any two distinct second order processes which solve eq. (1), say {yt}, {y∗t }, must differ only

in their first order moments. This follows from the fact that their demean random processes coincide

(in the L2 sense) on M(ε), that is: yt − E(yt) = y∗t − E(y∗t ) = zt for all t, whenever both processes

{E(yt)}, {E(y∗t )} satisfy eq. (19b).

F3 Explicit Representation of First Moment Vector Processes

The explicit form of the elements of the Casorati matrix Ξt,s
6 associated with the fundamental solution

set Ξs of eq. (7) is employed to obtain computationally feasible formulas for any p-dimensional vector

with components consecutive first moment solution {µt} of eq. (19b), provided that a p-dimensional

initial value first moment vector has been estimated from the information data. The explicit form of Ξt,s

has some computational advantages, discussed below eq. (F.12).

6According to Agarwal’s terminology and notation (see Agarwal, 2000, p.56) Ξt,s is called the principal fundamental
matrix and is denoted there as U(k, k0), that is U(k, k0) = Ξk,k0

for k ≥ k0. However, unlike the elements of Ξk,k0
, the

elements of U(k, k0) are not explicitly expressed. This has some remarkable consequences discussed in this Section.
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Let the estimated vector be µs = [µs, µs−1, ..., µs+1−p]. In particular, it is shown below that one can

directly calculate the first moment vector µt for all t ∈ Z, whose elements are generated by eq. (19b),

taking on the components of µs as initial values (see the explicit formulas in eq. (F.13) below). In doing

so we use the explicit form of Ξt,i (see Proposition A2, in the main paper), which is given by

Ξt,i =



ξ(1)(t, i) ξ(2)(t, i) ... ξ(p)(t, i)

ξ(1)(t− 1, i) ξ(2)(t− 1, i) ... ξ(p)(t− 1, i)

...
...

...
...
...

...

ξ(1)(t+ 1− p, i) ξ(2)(t+ 1− p, i) ... ξ(p)(t+ 1− p, i)


,

where i ≤ t and ξ(m)(t, i) are banded Hessenbergian coefficients, with entries the AR coefficients of the

model (see eq. (A.2)). Notice that ξ(m)(t, i), and therefore Ξt,i, are explicitly defined for t, i ∈ Z.

In the following two paragraphs, entitled “Forward” and “Backward”, we assume that t, i ∈ Z and

t ≥ i. Moreover, φi = [φ(i), 0, ..., 0], where φ(i) is the time-varying drift. Recall that Ξt,t is the identity

matrix for all t ∈ Z.

Forward: Given µs = [µs, µs−1, ..., µs+1−p], the vector µt for t > s is explicitly represented by:

µt = Ξt,sµs +

t∑
i=s+1

Ξt,iφi. (F.9)

To see this, we can rewrite eq. (19b), applied for t = s+ 1, in vector form as

µs+1 = φs+1 + Γs+1µs, (F.10)

where Γi is the p× p companion matrix, which is given by:

Γi =



ϕ1(i) ϕ2(i) ... ϕp−1(i) ϕp(i)

1 0 ... 0 0

0 1 ... 0 0

. . ... . .

. . ... . .

. . ... . .

0 0 ... 1 0


.

Following Paraskevopoulos and Karanasos (2021) (see Theorem 3 therein) we can write:

Ξt,s =


ΓtΓt−1...Γs+1, if t ≥ s+ 1

I, if t = s.

(F.11)
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Applying recursion to eq. (F.10), we obtain the sequence of vector means µs+2,µs+3, ...µt, ... as follows:

µt = ΓtΓt−1...Γs+1µs +

t−1∑
i=s+1

ΓtΓt−1...Γi+1φi +φt

(by eq. (F.11)) = Ξt,sµs +

t−1∑
i=s+1

Ξt,iφi +Ξt,tφt

(as Ξt,t = I) = Ξt,sµs +

t∑
i=s+1

Ξt,iφi

as stated in eq. (F.9).

Backward: Given µt, the vector µs for s < t is derived by solving eq. (F.9) for µs, that is by applying

the inverse of Ξt,s to both sides of eq. (F.9), which is given by:

µs = Ξ−1
t,sµt −

t∑
i=s+1

Ξ−1
t,sΞt,iφi.

As shown in Paraskevopoulos and Karanasos (2021), the matrix product Ξt,sΞ
−1
i,s for t ≥ s and i ≥ s,

coincides with the Green matrix G(t, i) associated with eq. (7). Let s ≤ i ≤ t. Then, we have:

Ξt,sΞ
−1
i,s = (ΓtΓt−1...Γi+1ΓiΓi−1...Γs+1)(ΓiΓi−1...Γs+1)

−1

(elementary property of invertible matrices) = ΓtΓt−1...Γi+1ΓiΓi−1...Γs+1Γ
−1
s+1...Γ

−1
i−1Γ

−1
i

(since s ≤ i ≤ t) = ΓtΓt−1...Γi+1

(by eq. (F.11)) = Ξt,i. (F.12)

Applying eq. (F.12) to eq. (F.9), we equivalently obtain the standard variation of constants formula (see

Agarwal, 2000, eq. (2.5.1)), that is:

µt = Ξt,sµs +

t∑
i=s+1

Ξt,sΞ
−1
i,sφi.

Thanks to the explicit form of Ξt,i for all i ≤ t, its replacement by Ξt,sΞ
−1
i,s , as in eq. (F.12), is not

required. This is due to the fact that both the matrix Ξt,i and its elements are functions of t, i, which

releases us from the need to work within the same set of fundamental solutions (Ξs), all of which started

at a fixed time point s. Accordingly, we can directly apply the fully explicit form in eq. (F.9), while t, i

vary, saving a significant amount of computational time.

As a consequence, the estimated vector µs = [µs, µs−1, ..., µs+1−p] can be used as the initial condition

vector to produce forward and backward vector means. Their components are elements of the process µt
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for t ∈ Z in eq. (19b), given by the unified formula:

µt =


Ξt,sµs +

t∑
i=s+1

Ξt,iφi if t ≥ s (forward)

Ξ−1
s,tµs −

s∑
i=t+1

Ξ−1
s,tΞs,iφi if t < s (backward).

(F.13)

The first (resp. second) branch of eq. (F.13) coincides with eq. (2.5.1) (resp. (2.5.2)) in Agarwal (2000).7

F4 Decomposable Bernoulli Shift

In Remark 1 (Section 4.1.), we discussed an application of yt in eq. (18a) in Theorem 2, which po-

tentially generates a decomposable Bernoulli shift. In this Subsection, we provide the Definition of an

Lv-decomposable Bernoulli shift, as introduced in Massacci and Trapani (2022).8

Definition F.1 The sequence {yt,−∞ < t < ∞} forms an Lv-decomposable Bernoulli shift if and

only if it holds that: yt = g(εt, εt−1, ...), where: g(·) : S∞ → R is a nonrandom measurable function;

{εt,−∞ < t < ∞} is an i.i.d. sequence with values in a measurable space S; E(yt) = 0, E(|yt|v) < ∞;∣∣∣yt − y∗t,l

∣∣∣
v
≤ c0l

−a, for some c0 > 0 and a > 0, where y∗t,l = g(εt, εt−1, ..., εt−l+1,ε
∗
t−l,t,l, ε

∗
t−l−1,t,l, . . .),

with {ε∗i,j,l,−∞ < i, j, l < ∞} i.i.d. copies of ε0 independent of {εt,−∞ < t < ∞}.

As pointed out in the above cited reference (see p.5 in their paper), “Since the seminal works by Wu

(2005) and Berkes et al. (2011) (see also Hörmann, 2009), decomposable Bernoulli shifts have proven a

very convenient way to model and study dependent time series, mainly due to their generality and to

the fact that it is much easier to verify whether a sequence forms a decomposable Bernoulli shift than

e.g., verifying mixing conditions. Virtually all the most commonly employed DGPs in econometrics and

statistics can be shown to generate decomposable Bernoulli shifts: [...], nonlinear time series models (such

as e.g., random coefficient autoregressive models and threshold models).”

F5 Regularity Conditions

Originating with the pioneering work of Neimi (1983) on nonstationary ARMA processes with constant

coefficients in a series of papers, AR and MA regularity conditions (regularity conditions for short) were

introduced to cover time-varying demean models, guaranteeing the existence and uniqueness of the second

order purely nondeterministic solution of eq. (19a) (see Singh and Peiris, 1987, Kowalski and Szynal,

7Due to the conventional notation employed in the definition of the principal fundamental matrix U(k, k0) in the second
branch of eq. (2.4.2) in Agarwal (2000), it turns out that U(k, k0) for k0 > k coincides with the inverse of Ξk0,k, that is

U(k, k0) = Ξ−1
k0,k

for k0 > k. Taking the inverses in the latter matrix equality, we conclude that U−1(k, k0) = Ξk0,k for

k0 > k. These verify the equivalence of eq. (2.5.2) with the second branch of eq. (F.13), when the latter is applied for
s = k0, t = k and i = ℓ.

8Thanks to an anonymous reviewer of this paper who provided us with the suitable references that cover a great deal of
the relevant material.

20



1991). In the former of the last two references, the regularity conditions imply UBLS (Uniformly Bounded

Linear Stationary), while in the latter, being more general, they do not. However, the Green function

solution representations in both references coincide and so do the Hessenbergian solution representations.

As a consequence, under the regularity conditions, we can obtain explicit solution formulas in L2, in

terms of banded Hessenbergians.

In what follows we consider eq. (1) with φ(t) = 0 for all t ∈ Z, which in a causal environment, generates

mean zero random solution processes described by eq. (19a), thus in this case using the identification:

yt = zt =
∑t

r=−∞ ξq(t, r)εr. The latter is also an explicit representation of the solution derived from

the regularity conditions (see, for example eq. (2.5), in Singh and Peiris, 1987). We have shown in

Proposition B1(ii) in Appendix B.1 that the condition
∑t

r=−∞ ξ2q (t, r) < ∞ is necessary and sufficient

for yt ∈ L2, provided that 0 < m ≤ σ2(r) ≤ M < ∞ for all r ∈ Z. The above results are summarized in

the following implications

{Regularity Conditions} =⇒ yt ∈ L2 ⇐⇒
t∑

r=−∞
ξ2q (t, r) < ∞,

which show that
∑t

r=−∞ ξ2q (t, r) < ∞ for all t ∈ Z is necessary for the regularity conditions to hold.

G Forecasting

The deferred proofs, reported in the homonymous matching Section of the main body of the paper, are

included herein.

G1 Invertibility

A second order mean zero DTV-ARMA(p, q) process zr is invertible if and only if εt can be expressed as

a convergent series of the present and past random variables zr (r ≤ t) (see Brockwell and Davis, 2016,

p.76). The main result of this Section is presented in Theorem G.1 below.

Eq. (1) applied with φ(t) = 0 (see also eq. (19a)) for all t can be rewritten as

εt = zt −
q∑

l=1

θl(t)εt−l −
p∑

m=1

ϕm(t)zt−m, (G.1)
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where zt = yt − E(yt). The principal matrix associated with the moving average part is defined by

Θt,s=



−θ1(s+ 1) −1

−θ2(s+ 2) −θ1(s+ 2)
. . .

...
...

. . .
. . .

−θq(s+ q) −θq−1(s+ q)
. . .

. . .
. . .

−θq(s+ q + 1)
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . .

. . .

−θq(t− 1) θq−1(t− 1) · · · −θ1(t− 1) −1

−θq(t) · · · −θ2(t) −θ1(t)



(G.2)

for t > s. The matrix Θt,s has a similar structure to the principal matrix associated with the AR

operator, Φt,s, that is both matrices are banded lower Hessenberg of order k. It is clear that for q ≥ t−s,

Θt,s is a full lower Hessenberg matrix.

For every pair (t, s) ∈ Z2 with t−s ≥ 1 we define the principal determinant associated with eq. (G.2):

ϑ(t, s) = det(Θt,s).

Formally ϑ(t, s) (and similarly to ξ(t, s)), is a banded Hessenbergian. We further extent its definition

by assigning the initial values: ϑ(s, s) = 1 and ϑ(t, s) = 0 for t < s. Accordingly, ϑ(t, s) is the Green

function associated with the MA(q) operator.

By analogy with the definition of ξq(t, r) (see eq. (13)), we define:

ϑp(t, r) = ϑ(t, r)−
p∑

m=1

ϑ(t, r +m)ϕm(r +m).

In the following Theorem we give a sufficient condition for a causal mean zero DTV-ARMA(p, q)

process determined by zt in M(ε) to be invertible.

Theorem G.1 Let the absolute summability condition in (17) hold. Also let the absolute summability

condition
∑t

r=−∞ |ϑ(t, r)| < ∞ hold for all t. Then the process {zt} is invertible, that is

εt =

t∑
r=−∞

ϑp(t, r)zr

and solves eq. (G.1).

The proof of Theorem G.1 essentially repeats the arguments of the proof in Proposition B.1(iii), switching

the roles of zr and εr, ξ(t, r) and ϑ(t, r) and ξq(t, r) and ϑp(t, r). Theorem G.1 recovers the formula devised
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by Hallin (1979) (see eq. (16) in his Theorem 3), but this time in a fully explicit form.

G2 Optimal Linear Forecasts

Forecasts Based on Infinite Observations. In an invertible environment, the inversion of zt in

Theorem G.1, yields an optimal linear predictor, based onMs(z), which is explicitly expressed exclusively

in terms of zr for r ≤ s as

P̂ (zt |Ms(z)) =

s∑
r=−∞

r∑
i=−∞

ξq(t, r)ϑp(t, i)zi.

Accordingly, the k-step-ahead optimal linear predictor of yt takes the form:

Ê(yt |Ms(z)) = E(yt) +
s∑

r=−∞

r∑
i=−∞

ξq(t, r)ϑp(t, i)zi.

Now the observable random variables are {zr}r≤s.

If the conditions of Theorem 2 hold, {yt} is a unique asymptotically stable second order solution

process given by eq. (18a). In this case the k-step-ahead optimal linear predictor formulas are modified

by replacing E(yt) with
∑t

r=−∞ ξ(t, r)φ(r).

Forecasts Based on finite Observations. Let {µt} be the estimated first moment process generated

by eq. (19b) and E(yt) = µt. Taking into account that zt is the unique mean zero solution process of eq.

(19a) in M(ε) and that yt = µt + zt, the optimal linear predictor in eq. (23a) takes the form:

Ê(yt | Ks) =

p∑
m=1

ξ(m)(t, s)zs+1−m +

p∑
m=1

ξ(m)(t, s)µs+1−m +

t∑
r=s+1

ξ(t, r)φ(r) +

s∑
r=s+1−q

ξs,q(t, r)εr.

As a consequence of the latter expression of Ê(yt | Ks), the observable random variables ys+1−m in eq.

(23a) are now replaced with the demean random variables zs+1−m for 1 ≤ m ≤ p. In an invertible

environment the q past observations of εr in the above equation are realizations of the prescribed random

variables εr =
∑r

i=−∞ ϑp(r, i)zi for s+ 1− q ≤ r ≤ s.

In what follows we show Proposition 4. Recall that a second order solution process of eq. (1) can be

expressed as yt = E(yt) +
∑t

r=−∞ ξq(t, r)εr (see eq. (20a)).

Proof of Proposition 4. Consider any arbitrary element S(εj , ym, 1) of Ks, that is any linear combi-

nation of the past observations: S(εj , ym, 1) =
∑p

m=1 amys+1−m+
∑q

j=1 bjεs+1−j + c, where am, bj , c are

arbitrary scalars. Subtracting eq. (23a) from eq. (16), we have yt−Ê(yt | Ks) =
∑t

r=s+1 ξq(t, r)εr, whence

FEt,s =
∑t

r=s+1 ξq(t, r)εr. As Ê(yt | Ks) ∈ Ks, it suffices to show that
(
yt − Ê(yt | Ks)

)
⊥ S(εj , ym, 1),

that is FEt,s ⊥ S(εj , ym, 1). In other words, we must show that the inner product ⟨FEt,s, S(εj , ym, 1)⟩ = 0

23



or equivalently that E
(
FEt,s S(εj , ym, 1)

)
= 0. Expanding the product

FEt,sS(εj , ym, 1) =

( t∑
r=s+1

ξq(t, r)εr

)( p∑
m=1

amys+1−m +

q∑
j=1

bjεs+1−j + c

)

we obtain:

FEt,sS(εj , ym, 1)=

p∑
m=1

t∑
r=s+1

amξq(t, r)εrys+1−m +

q∑
j=1

t∑
r=s+1

bjξq(t, r)εrεs+1−j + c

t∑
r=s+1

ξq(t, r)εr.

Taking expectations to both sides of the above formula, it follows from the linearity of the expectation

operator that:

E
(
FEt,s S(εj , ym, 1)

)
=

p∑
m=1

t∑
r=s+1

amξq(t, r) E(εrys+1−m) +

q∑
j=1

t∑
r=s+1

bjξq(t, r) E(εrεs+1−j)

+ c

t∑
r=s+1

ξq(t, r)E(εr). (G.3)

Since E(εr) = 0 for all r and E(εrεs+1−j) = 0 for all r ≥ s+ 1 and 1 ≤ j ≤ q, it follows that the last two

terms on the right-hand side of eq. (G.3) are zero. It remains to show that the first term in the right-hand

side is also zero. It suffices to show that E(εr ys+1−m) = 0 for all r ≥ s+1 and 1 ≤ m ≤ p. Substituting

E(ys+1−m) +
∑s+1−m

j=−∞ ξq(s+ 1−m, j)εj for ys+1−m and using the linearity of the expectation operator,

we have:

E(εr ys+1−m) = E
(
εrE(ys+1−m)

)
+ E

(
εr

s+1−m∑
j=−∞

ξq(s+ 1−m, j)εj
)

= E(ys+1−m)E(εr) +
s+1−m∑
j=−∞

ξq(s+ 1−m, j)E
(
εrεj

)
= 0.

Accordingly, all the terms in the right-hand side of eq. (G.3) are zero, as claimed.

H Modelling Inflation

In this Section we present some supplementary results reported in Section 7.

H1 Unit Root Tests

In Table H.1 below, a number of common unit roots tests are reported: ADF (Augmented Dickey–Fuller),

ERS, by Elliott et al. (1996), and MZ GLS, suggested by Perron and Ng (1996) and Ng and Perron (2001).

As recommended by Ng and Perron (2001), the choice of the number of lags is based on the modified
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Akaike information criterion (AIC).

Table H.1. Unit Root Tests.

Test Statistic

ADF −3.229∗∗

ERS −3.154∗∗

MZa −19.642∗

MZt −3.1331∗

The notations ∗,∗∗ indicate the statistical significance at 1% and 5%, respectively.

Table H.1 shows that, in general, we can reject the null hypothesis of a unit root in inflation series.

H2 Bai and Perron Methodology

For each l partition (T1, ..., Tl) the DAB-AR(2; l) model can be estimated using the least-squared principle

by minimizing the sum of the squared residuals where the minimization is taken over all partitions. Since

the break points are discrete parameters and can only take a finite number of values they can be estimated

by grid search using dynamic programming (see Bai and Perron, 2003, for more details).

Bai and Perron (2003) propose an F -type test for l versus l + 1 breaks, which we will refer to

as supFt(l + 1|l). The testing procedure allows for a specific to general modelling strategy for the

determination of the number of breaks in each series. The test is applied to each segment containing the

Ti−1 to Ti (i = 1, ..., l + 1). In particular, the procedure involves using a sequence of (l + 1) tests, where

the conclusion of a rejection in favour of a model with (l + 1) breaks if the overall minimal value of the

sum of squared residuals is sufficiently smaller than the sum of the squared residuals from the l break

model. Note that the sum of the squared residuals is calculated over all segments where an additional

break is included and compared with the residuals from the l model. Therefore, the break date selected

is the one associated with the overall minimum.

Bai and Perron (1998) address the problem of the estimation of the break dates and present an

efficient algorithm to obtain global minimizers of the sum of squared residuals based on the principle of

dynamic programming, which requires at most least squares operations of order O(T)2 for any number of

breaks. The limit distribution theory for inference about the break dates is considered in Bai and Perron

(1998). Note that a valid alternative test to use for point detection changes is proposed by Horváth

and Trapani (2021). The authors propose a family of CUSUM based statistics to detect the presence

of change points in the deterministic part of the AR parameter in a random coefficient autoregressive

sequence. An interesting feature of the test is that the inference procedure allows for heteroskedasticity

of unknown form.

The results of the structural break test are summarized in Panel A of Table 1. The first column in

Panel A compares the null hypothesis of l breaks against the alternative hypothesis of l + 1 breaks, the

second column reports the calculated value of the statistics and the third column the critical value of
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the test. Observing the calculated values of the test, it appears that the null hypothesis zero versus one

break is rejected in favour of the alternative hypothesis. Similarly, the hypothesis of one break versus

two breaks is rejected. However, the null hypothesis of two versus three breaks is not rejected, therefore

we conclude that there are two structural breaks.9

H3 Forecasting

We now consider the out-of-sample forecasting performance of the estimated model. In order to investigate

the effect of model misspecification on the forecasted inflation level we compare three models. The first

model, which we label as Model 1, is the estimated DAB-AR(2;2). The second model, which we refer to

as Model 2, is the true model which we obtained by simulating the inflation process using the estimated

parameters in Table 1 as a data generating process. Finally, the third model is the misspecified AR(2)

model with no time-varying parameters, which we label as Model 3 (see Panel B of Table 1).

The evaluation of the out-of-sample forecast exercise does not rely on a single criterion; for robustness

we compare the results of three different forecasting measures, namely, the root mean square forecast

error (RMSE), the mean absolute error (MAE) and Theil’s Inequality Coefficient (U Coefficient).

Table H.2 demonstrates the results of the forecasting exercise.10

Table H.2. Forecasting inflation in the United States: point predictive performances.

Forecast Horizon Forecast Error Measure Model 1 Model 2 Model 3

1 RMSE 0.0134 0.0110 0.0194

4 0.0141 0.0121 0.0167

8 0.0132 0.0149 0.0242

1 MAE 0.0166 0.0111 0.0944

4 0.0112 0.0101 0.0144

8 0.0112 0.0104 0.0208

1 U Coefficient 0.323 0.251 0.293

4 0.258 0.241 0.243

8 0.327 0.287 0.407

The table compares the out-of-sample point forecasts of three models. Model 1 is the DAB-AR (2;2) estimated model (see

Table 1). Model 2 is obtained using simulated data. Model 3 is an AR(2) process with no time-varying parameters. The

forecast measures are i) the RMSE, ii) the MAE, and iii) the U Coefficient. The forecast horizon is 1, 4, and 8 quarters.

In columns 1 and 2 the forecasting horizon and the performance measure are shown, respectively. Columns

3-5 show the forecasting results. It follows directly from the results of Table H.2 that according to the

RMSE and MAE criteria the DAB-AR (2;2) model performs better than its misspecified counterpart.

According to these two performance measures Model 1 has forecasting properties in line with those

9Note that breaks in the variance are permitted provided that they occur on the same dates as the break in the AR
parameters. Benati (2008) also used an AR model allowing for time-varying volatility. Cogley and Sargent (2005) also
estimated a model in which the variance of innovations can vary over time.

10For forecasting under structural breaks see, for example, Pesaran and Timmermann (2005).
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obtained using the true model, Model 2. However, looking at the U coefficient measure the results

are more mixed with Model 3 outperforming Model 1 in the short term and Model 1 having superior

performance in the longer term.

Having investigated the out-of-sample forecasting performance of the DAB-AR-(2;2) model, in Section

7.2 we investigate whether inflation and its volatility are highly persistent.

I Structural Breaks

The results on structural breaks reported in Subsection 7 (in the main body of the paper) are discussed

in the present Section.

I1 Solution Representation

Applying the results of Theorem 1, the following Corollary provides the solution representation (at time

t1 + l, l ∈ Z0) of eq. (32). But first, we define the following matrices.

Definition I.1 Let the two tridiagonal matrices of order r ∈ Z1, denoted by Φ
(j)
r , j = 1, 2, be defined as:

Φ(j)
r =



ϕ1,j −1

ϕ2,j ϕ1,j −1

ϕ2,j ϕ1,j −1

. . .
. . .

. . .

ϕ2,j ϕ1,j −1

ϕ2,j ϕ1,j


.

Definition I.2 i) The tridiagonal matrix (of order l − r) Φt1+l,t1+r, for r = 1, . . . , l − 1 and l ≥ 1, is

defined as:

Φt1+l,t1+r = Φ
(1)
l−r,

where its determinant is ξ(t1 + l, t1 + r) = |Φt1+l,t1+r| with initial values ξ(t1 + l, t1 + l) = 1 and

ξ(t1, t1 + r) = 0.

ii) The Hessenberg matrix Φt1+l,t1−r, for r = 0, . . . , t1 − t2 and r + l ≥ 1, is defined as:

Φt1+l,t1−r =

 Φ
(2)
r 0̄

0̃ Φ
(1)
l

 ,

where (for r, l ̸= 0) 0̄ is an r× l matrix of zeros except for −1 in its r× 1 entry, and 0̃ is an l× r matrix

of zeros except for ϕ2,1 in its 1× r entry. Notice that Φt1+l,t1−r is a block square matrix of order l + r.
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Its determinant is ξ(t1 + l, t1 − r) = |Φt1+l,t1−r| with initial value ξ(t1, t1) = 1.

Applying Theorem 1 to the DAB-AR(2; 2) model, we obtain the following Corollary.

Corollary I.1 The explicit representation of yt1+l in eq. (32) in terms of the prescribed values yt2 , yt2−1,

is given by

yt1+l =

t1+l∑
r=t2+1

ξ(t1 + l, r)(φ(r) + εr) + ξ(t1 + l, t2)yt2 + ϕ2,1ξ(t1 + l, t2 + 1)yt2−1, (I.1)

where φ(r) =

 φ2 if r ≤ t1

φ1 if r > t1.

I2 Second Moment Structure

In this Section we will examine the second moment structure of the DAB-AR(2; 2) model. To obtain the

time-varying variance of yt1+l, we will directly apply Corollary I.1.

First, let 1− ϕ1,iB − ϕ2,iB
2 = (1− λ1,iB)(1− λ2,iB), for i = 1, 2, 3.

Assumption I.1 [ Second-Order]: |λm,i| < 1, m = 1, 2 and i = 1, 3.

The above condition implies that the DAB-AR(2; 2)-process is second-order.

The following Proposition states expressions for the time-varying variance of yt1+l in eq. (I.1).

Proposition I.1 Consider the model in eq. (32). Under Assumption I.1, the variance Var(yt1+l) is

given by

Var(yt1+l) = At1+lσ
2
1 +Bt1+lσ

2
2 + Ct1+lσ

2
3 , (I.2)

where At1+l =
∑l

r=1 ξ
2(t1 + l, t1 + r), Bt1+l =

∑t1−t2−1
r=0 ξ2(t1 + l, t1 − r) and

Ct1+l =

[
(1− ϕ2,3)

(
ξ2(t1 + l, t2) + ϕ2

2,1ξ
2(t1 + l, t2 + 1)

)
+ 2ϕ1,3ξ(t1 + l, t2)ϕ2,1ξ(t1 + l, t2 + 1)

]
(1 + ϕ2,3)[(1− ϕ2,3)2 − ϕ2

1,3]
.

Furthermore, if in the above expression we set: t1 = t2, and therefore ϕm,1 = ϕm,2 for m = 1, 2, and

σ1 = σ2, then we obtain Var(yt2+l), which is equivalent to the case of one break (notice that in this case

Bt2+l = 0):

Var(yt2+l) = At2+lσ
2
2 + Ct2+lσ

2
3 .

Finally, if in addition we set l = 0 then we obtain Var(yt2), which (since At2 = 0, ξt2,t2 = 1, ξt2,t2+1 = 0)

is the well known formula for the time invariant AR(2) model:

Var(yt2) =
(1− ϕ2,3)σ

2
3

(1 + ϕ2,3)[(1− ϕ2,3)2 − ϕ2
1,3]

.

In the next Section, we will show how the above results can be used to generate a time-varying

second-order measure of persistence.
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I3 Second-Order Persistence

The most commonly applied time invariant measures of first-order (or mean) persistence are the largest

autoregressive root (LAR) and the sum of the AR coefficients (SUM); see, e.g., Pivetta and Reis (2007).

As pointed out by Pivetta and Reis in relation to the issue of recidivism by monetary policy its occurrence

depends very much on the model used to test the natural rate hypothesis, i.e., the hypothesis that the

SUM or the LAR for inflation data is equal to one. Obviously, if both measures ignore the presence

of breaks then they will potentially under or over estimate the persistence in the levels. The LAR has

been used to measure persistence in the context of testing for the presence of unit roots (see, for details,

Pivetta and Reis, 2007).

In what follows, we introduce a time-varying second-order (or variance) persistence measure that

is able to take into account the presence of breaks not only in the mean but in the variance as well.

Fiorentini and Sentana (1998) argue that any reasonable measure of shock persistence should be based

on the IRF’s. For a univariate process {xt} with i.i.d. errors {et}, they define the persistence of a shock

at a time point t as P2(xt |et )
def
=

Var(xt)

Var(et)
. Clearly P2(xt |et ) will take its minimum value of 1, whenever

xt is white noise, while it will not exist (will be infinite) for an I(1) process. It follows directly from eq.

(I.2) that P2(yt1+l |εt1+l ) =
Var(yt1+l)

σ2
1

, is given by

P2(yt1+l |εt1+l ) = At1+l +Bt1+l
σ2
2

σ2
1

+ Ct1+l
σ2
3

σ2
1

. (I.3)

If Assumption I.1 is violated, then conditional measures of second-order persistence can be constructed

using the variance of the forecast error instead of the unconditional variance (results are not reported

here, but are available upon request).

Having derived explicit formulas for time-varying second-order (or variance) persistence measures, in

Section 7, we show the empirical relevance of these results using U.S. inflation data.

J Time-Varying Persistence

In this Section we explain how we constructed the two pairs of Graphs in Section 7.2, starting with the first

pair concerning the time-varying second-order persistence of US inflation: P2(πt |εt ) = Var(πt)/Var(εt)

and Var(πt).

1. First case, when t ≤ t2. The persistence is constant and it is given by

P2(πt2 |εt2 ) =
Var(πt2)

σ2
3

=
(1− ϕ2,3)

(1 + ϕ2,3)[(1− ϕ2,3)2 − ϕ2
1,3]

,

where σ3 = 1.077, ϕ1,3 = 0.470, ϕ2,3 = 0.376.
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2. Second case, when t2 < t ≤ t1: t = t2 + l, l = 1, . . . , t1 − t2, where t1 − t2 = 39. The persistence, for

each l, is given by

P2(πt2+l |εt2+l ) =
Var(πt2+l)

σ2
2

= At2+l + Ct2+l
σ2
3

σ2
2

,

where σ2 = 2.300, and

At2+l =

l∑
r=1

ξ2(t2 + l, t2 + r),

Ct2+l =

[
(1− ϕ2,3)

(
ξ2(t2 + l, t2) + ϕ2

2,2ξ
2(t2 + l, t2 + 1)

)
+ 2ϕ1,3ξ(t2 + l, t2)ϕ2,2ξ(t2 + l, t2 + 1)

]
(1 + ϕ2,3)[(1− ϕ2,3)2 − ϕ2

1,3]
,

in which ξ(t2 + l, t2 + r) is an (l − r)-th order tridiagonal determinant given by

ξ(t2 + l, t2 + r) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ϕ1,2 −1

ϕ2,2 ϕ1,2 −1

ϕ2,2 ϕ1,2 −1

. . .
. . .

. . .

ϕ2,2 ϕ1,2 −1

ϕ2,2 ϕ1,2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (J.1)

with initial value ξ(t2 + l, t2 + l) = 1, where ϕ1,2 = 0.710, ϕ2,2 = 0.127.

A few values of At2+l for l = 1, 2, 3 are given below:

At2+1 = 1, At2+2 =

2∑
r=1

ξ2(t2 + 2, t2 + r) = 1 + ϕ2
1,2,

At2+3 =

3∑
r=1

ξ2(t2 + 3, t2 + r) = 1 + ϕ2
1,2 +

∣∣∣∣∣∣∣
ϕ1,2 −1

ϕ2,2 ϕ1,2

∣∣∣∣∣∣∣
2

,

At2+4 =

4∑
r=1

ξ2(t2 + 4, t2 + r) = 1 + ϕ2
1,2 +

∣∣∣∣∣∣∣
ϕ1,2 −1

ϕ2,2 ϕ1,2

∣∣∣∣∣∣∣
2

+

∣∣∣∣∣∣∣∣∣∣
ϕ1,2 −1

ϕ2,2 ϕ1,2 −1

ϕ2,2 ϕ1,2

∣∣∣∣∣∣∣∣∣∣

2

.

3. Third case, when t1 < t: t = t1 + l, l = 1, 2, .... The persistence, for each l, is given by

P2(πt1+l |εt1+l ) =
Var(πt1+l)

σ2
1

= At1+l +Bt1+l
σ2
2

σ2
1

+ Ct1+l
σ2
3

σ2
1

,

(see eq. (I.3)) where σ1 = 2.160 and
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i)

At1+l =

l∑
r=1

ξ2(t1 + l, t1 + r),

in which ξ(t1 + l, t1 + r) is an (l − r)-th order tridiagonal determinant given by

ξ(t1 + l, t1 + r) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ϕ1,1 −1

ϕ2,1 ϕ1,1 −1

ϕ2,1 ϕ1,1 −1

. . .
. . .

. . .

ϕ2,1 ϕ1,1 −1

ϕ2,1 ϕ1,1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (J.2)

with initial value ξ(t1 + l, t1 + l) = 1, where ϕ1,1 = 0.247, ϕ2,1 = −0.314.

As an example for l = 4 the value of At1+4 is given by:

At1+4 =

4∑
r=1

ξ2(t1 + 4, t1 + r) = 1 + ϕ2
1,1 +

∣∣∣∣∣∣∣
ϕ1,1 −1

ϕ2,1 ϕ1,1

∣∣∣∣∣∣∣
2

+

∣∣∣∣∣∣∣∣∣∣
ϕ1,1 −1

ϕ2,1 ϕ1,1 −1

ϕ2,1 ϕ1,1

∣∣∣∣∣∣∣∣∣∣

2

.

ii)

Bt1+l =

t1−t2−1∑
r=0

ξ2(t1 + l, t1 − r),

where ξ(t1 + l, t1 − r) is an (r + l)-th order Hessenbergian of the form

ξ(t1 + l, t1 − r) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ϕ1,2 −1

ϕ2,2 ϕ1,2 −1

. . .
. . .

ϕ2,2 ϕ1,2 −1

ϕ2,1 ϕ1,1 −1

. . .
. . .

. . .

ϕ2,1 ϕ1,1 −1

ϕ2,1 ϕ1,1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (J.3)

in which the last l rows and columns form a tridiagonal submatrix whose nonzero elements are ϕ2,1, ϕ1,1

and (−1); the first r rows and columns form a tridiagonal submatrix whose nonzero elements are ϕ2,2,

ϕ1,2 and (−1); the first r rows and the last l columns form a submatrix of zeros except for the (−1) in its
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r × 1 entry; the last l rows and the first r columns form a submatrix of zeros except for ϕ2,1 in its 1× r

entry.

As an example for l = 2 the value of Bt1+2 is given by

Bt1+2 =

∣∣∣∣∣∣∣
ϕ1,1 −1

ϕ2,1 ϕ1,1

∣∣∣∣∣∣∣
2

︸ ︷︷ ︸
r=0

+

∣∣∣∣∣∣∣∣∣∣
ϕ1,2 −1

ϕ2,1 ϕ1,1 −1

ϕ2,1 ϕ1,1

∣∣∣∣∣∣∣∣∣∣

2

︸ ︷︷ ︸
r=1

+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ϕ1,2 −1

ϕ2,2 ϕ1,2 −1

ϕ2,1 ϕ1,1 −1

ϕ2,1 ϕ1,1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2

︸ ︷︷ ︸
r=2

+

+ · · ·+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ϕ1,2 −1

ϕ2,2 ϕ1,2 −1

. . .
. . .

. . .

ϕ2,2 ϕ1,2 −1

ϕ2,2 ϕ1,2 −1

ϕ2,1 ϕ1,1 −1

ϕ2,1 ϕ1,1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2

︸ ︷︷ ︸
r=t1−t2−1=38

,

where the last Hessenbergian in the above summation is of order 2 + 38 = 40.

iii)

Ct1+l =

[
(1− ϕ2,3)

(
ξ2(t1 + l, t2) + ϕ2

2,1ξ
2(t1 + l, t2 + 1)

)
+ 2ϕ1,3ξ(t1 + l, t2)ϕ2,1ξ(t1 + l, t2 + 1)

]
(1 + ϕ2,3)[(1− ϕ2,3)2 − ϕ2

1,3]
,

where ξ(t1 + l, t2) and ξ(t1 + l, t2 + 1) are as in case (ii), derived by ξ(t1 + l, t1 − r) for r = t1 − t2 and

r = t1 − t2 − 1, respectively.

Finally, we explain how we have constructed the second pair of graphs, concerning the time-varying

first-order persistence of US inflation, as measured by E(πt) and P1(πt |εt ) = E(πt)/φ(t), where

φ(t) =


φ3 if t ≤ t2

φ2 if t2 < t ≤ t1

φ1 if t1 < t.

Case I: t ≤ t2. The persistence is constant and it is given by
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E(πt) =
φ3

1− ϕ1,3 − ϕ2,3
,

where

φ3 = 0.496, ϕ1,3 = 0.470, ϕ2,3 = 0.376.

Case II: t2 < t ≤ t1. That is t = t2 + l, l = 1, . . . , t1 − t2 and t1 − t2 = 39. The persistence, for each

l, is given by

E(πt) = At2+lφ2 + Ct2+lφ3,

where φ2 = 3.637, and

At2+l =

l∑
r=1

ξ(t2 + l, t2 + r),

Ct2+l = ξ(t2 + l, t2) + ϕ2,2ξ(t2 + l, t2 + 1),

in which ξ(t2 + l, t2 + r) has been defined in eq. (J.1).

Case III: t1 < t. That is t = t1 + l, l = 1, 2, .... The persistence, for each l, is given by

E(πt) = At1+lφ1 +Bt1+lφ2 + Ct1+lφ3,

where φ1 = 2.859 and

At1+l =

l∑
r=1

ξ(t1 + l, t1 + r),

Bt1+l =

t1−t2−1∑
r=0

ξ(t1 + l, t1 − r),

Ct1+l = ξ(t1 + l, t2) + ϕ2,1ξ(t1 + l, t2 + 1),

in which ξ(t1 + l, t1 + r) and ξ(t1 + l, t1 − r) are given by eqs. (J.2) and (J.3), respectively.
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Berkes, I., Hörmann, S. and Schauer, J. (2011) Split invariance principles for stationary processes. Annals

of Probability 39, 2441 – 2473.

Brockwell, P.J. and Davis, R.A. (1991) Time Series Theory and Methods. Springer.

Brockwell, P.J. and Davis, R.A. (2016) An Introduction to Time Series and Forecasting. Springer.

Cogley, T. and Sargent, T.J. (2005) The conquest of US inflation: Learning and robustness to model

uncertainty. Review of Economic Dynamics 8, 528 – 563.

Dahlhaus, R. (1996) Maximum likelihood estimation and model selection for locally stationary processes.

Journal of Nonparametric Statistics 6, 171 – 191.

Elliott, G., Rothenberg, T.J. and Stock, J.H. (1996) Efficient tests for an autoregressive unit root.

Econometrica 75, 813 – 836.

Fiorentini, G. and Sentana, E. (1998) Conditional means of time series processes and time series processes

for conditional means. International Economic Review 39, 1101 – 1018.

Fulkerson, D.R. (1951) Quasi-Hermite forms of row-finite matrices. Ph.D. Thesis. University of Wiscon-

sin, URL: http://www.researchgate.net/publication/36218809.

Hallin, M. (1979) Mixed autoregressive-moving average multivariate processes with time-dependent

coefficients. Journal of Multivariate Analysis 8, 567 – 572.
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