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Abstract

Sections S1-S3 of this supplementary material provide mathematical preliminaries and proofs
of the theoretical results given in the main article. In connection with the numerical examples
therein, Section S4 provides some additional simulation results and discussions. Section S5
discusses computation of the FIVE and F2SLSE. Section S6 provides an extension of the FIVE
with a general weighting operator, and Section S7 discusses a significance test in functional
endogenous linear models.
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S1 Preliminaries

Let (S,F,P) denote the underlying probability space and let H be a separable Hilbert space equipped
with the inner product ⟨·, ·⟩ and the usual Borel σ-field.

S1.1 Random elements of Hilbert spaces

A H-valued random variable X is defined by a measurable map from S to H. We say that such
a random variable X is integrable (resp. square-integrable) if E[∥X∥] < ∞ (resp. E[∥X∥2] < ∞),
where ∥ · ∥ is the norm induced by the inner product. If X is integrable, there exists a unique
element E[X] ∈ H satisfying E[⟨X, ζ⟩] = ⟨E[X], ζ⟩ for every ζ ∈ H. The element E[X] is called the
expectation of X.

Let Y be another H-valued random variable. We let ⊗ denote the tensor product defined as
follows: for all ζ1, ζ2 ∈ H,

ζ1 ⊗ ζ2(·) = ⟨ζ1, ·⟩ζ2. (S1.1)

Note that ζ1 ⊗ ζ2 is a linear map from H to H. If E[∥X∥∥Y ∥] < ∞, we may well define a linear
map CXY from H to H as follows: CXY = E[(X − E[X]) ⊗ (Y − E[Y ])]. CXY is called the cross-
covariance operator of X and Y . If X = Y and X is square-integrable, we then may define CXX
similarly, and this is called the covariance operator of X. If the cross-covariance operator of two
random variables X and Y is a nonzero operator, X is said to be correlated with Y .

S1.2 Bounded linear operators on H

Let LH denote the space of bounded linear operators acting on H, equipped with the operator
norm ∥T ∥op = sup∥ζ∥≤1 ∥T ζ∥. For any T ∈ LH, the adjoint of T (denoted T ∗) is the unique
element of LH satisfying that ⟨T ζ1, ζ2⟩ = ⟨ζ1, T ∗ζ2⟩ for all ζ1, ζ2 ∈ H. The range (denoted ran T )
and kernel (denoted ker T ) of T ∈ LH are respectively given by ran T = {T ζ : ζ ∈ H} and
ker T = {ζ ∈ H : T ζ = 0}. T is said to be nonnegative if ⟨T ζ, ζ⟩ ≥ 0 for all ζ ∈ H, and positive if
the inequality is strict. An element T ∈ LH is called compact if there exist two orthonormal bases
{ζ1j}j≥1 and {ζ2j}j≥1 of H, and a sequence of real numbers {aj}j≥1 tending to zero, such that
T =

∑∞
j=1 ajζ1j ⊗ ζ2j . In this expression, it may be assumed that ζ1j = ζ2j and a1 ≥ a2 ≥ . . . ≥ 0

if T is self-adjoint (i.e., T = T ∗) and nonnegative (Bosq, 2000, p.35). In this case, aj becomes
an eigenvalue of T and hence ζ1j is the corresponding eigenfunction, and moreover, we may define
T 1/2 by replacing aj with √

aj . It is well known that the covariance of a H-valued random variable
is self-adjoint, nonnegative and compact if exists. A linear operator T is called a Hilbert-Schmidt
operator if its Hilbert-Schmidt norm ∥T ∥HS = (

∑∞
j=1 ∥T ζj∥2)1/2 is finite, where {ζj}j≥1 is an

arbitrary orthonormal basis of H. It is well known that ∥T ∥op ≤ ∥T ∥HS holds and the collection
of Hilbert-Schmidt operators consists of a strict subclass of LH; see Section 1.5 of Bosq (2000).
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S2 Appendix to Section 3 on “Functional IV estimator"

We will hereafter let a = α−1 and use both interchangeably for convenience.

S2.1 Proofs of the results in Section 3.2

Proof of Theorem 1

Note that
Â = Ĉ∗

yzĈxz(Ĉ∗
xzĈxz)−1

K = AΠ̂K + Ĉ∗
uzĈxz(Ĉ∗

xzĈxz)−1
K , (S2.1)

where Π̂K =
∑K
j=1 f̂j ⊗ f̂j . Since ∥Ĉxz(Ĉ∗

xzĈxz)−1
K ∥op ≤ a

−1/2 and ∥Ĉuz∥HS = Op(T−1/2), we find
that ∥Â − AΠ̂K∥HS ≤ Op(a−1/2T−1/2). Thus the proof becomes complete if ∥AΠ̂K − A∥HS

p→ 0 is
shown. From nearly identical arguments used to derive (8.63) of Bosq (2000), it can be shown that

∥AΠ̂K − A∥2
HS ≤

∞∑
j=K +1

∥Af̂j∥2 ≤
∞∑

j=K +1
∥Afsj ∥2 + 2∥A∥2

op∥Ĉ∗
xzĈxz − C∗

xzCxz∥op

K∑
j=1

τj , (S2.2)

where fsj = sgn{⟨f̂j , fj⟩}fj . Since A is Hilbert-Schmidt,
∑∞
j=K +1 ∥Afsj ∥2 converges in probability

to zero as T gets larger (note that K diverges almost surely as T → ∞). In addition,

∥Ĉ∗
xzĈxz − C∗

xzCxz∥op ≤ ∥Ĉ∗
xz∥op∥Ĉxz − Cxz∥op + ∥Ĉ∗

xz − C∗
xz∥op∥Cxz∥op = Op(T−1/2), (S2.3)

which in turn implies that the second term of the right hand side of (S2.2) is op(1). Combining all
these results, we find that ∥AΠ̂K − A∥HS is op(1), which implies the desired result.

Proof of Theorem 2

To show (i), we note that CxzC∗
xz =

∑∞
j=1 λ

2
jξj ⊗ ξj and there exists an orthonormal basis {ξ̂j}j≥1

such that ĈxzĈ∗
xz =

∑∞
j=1 λ̂

2
j ξ̂j ⊗ ξ̂j . Moreover, the following can be shown: Ĉ∗

xz ξ̂j = λ̂j f̂j , Ĉxz f̂j =
λ̂j ξ̂j , C∗

xzξj = λjfj , and Cxzfj = λjξj . We first note that Cxz(C∗
xzCxz)−1

K =
∑K
j=1(λsj)−1fsj ⊗ ξsj ,

where fsj = sgn{⟨f̂j , fj⟩}fj , ξsj = sgn{⟨ξ̂j , ξj⟩}ξj and λsj = sgn{⟨f̂j , fj⟩} sgn{⟨ξ̂j , ξj⟩}λj . Let aj =
sgn{⟨f̂j , fj⟩} sgn{⟨ξ̂j , ξj⟩} and assume λj ≥ 0 and λ̂j ≥ 0 without loss of generality (see Bosq 2000,
p. 34). From the foregoing properties of fj , f̂j , ξj and ξ̂j , we have aj = sgn{⟨f̂j , fj⟩} sgn{⟨f̂j , fj⟩ +
λ−2
j ⟨C∗

xz(Ĉxz − Cxz)f̂j , fj⟩}. Observe that

∥Ĉxz(Ĉ∗
xzĈxz)−1

K −Cxz(C∗
xzCxz)−1

K ∥op ≤ ∥
K∑
j=1

((λsj)
−1 − λ̂−1

j )fsj ⊗ ξsj∥op +∥
K∑
j=1

λ̂−1
j (f̂j ⊗ ξ̂j −fsj ⊗ ξsj )∥op.

(S2.4)
The first term of (S2.4) is bounded above by sup1≤j≤K |λ̂−1

j −(λsj)
−1|, where |λ̂−1

j −(λsj)
−1| = |(λsj −

λ̂j)λ̂−1
j λ−1

j | = |(λ2
j − λ̂2

j )λ̂−1
j λ−1

j (λsj + λ̂j)−1|. Since sup1≤j≤K |λ̂2
j −λ2

j | ≤ ∥ĈxzĈ∗
xz−CxzC∗

xz∥op (Bosq,
2000, Lemma 4.2) and |λsj λ̂j | ≤ |λ̂2

j + λsj λ̂j | uniformly in j = 1, . . . ,K for large enough T (because
sup1≤j≤K |aj − 1| = op(1), which can be deduced from that sup1≤j≤K |λ−2

j ⟨C∗
xz(Ĉxz − Cxz)f̂j , fj⟩| ≤
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λ−2
K Op(T−1/2) p→ 0), we find that

∥
K∑
j=1

((λsj)
−1 − λ̂−1

j )fsj ⊗ ξsj∥op ≤ sup
1≤j≤K

|λ̂2
j − λ2

j |
|λsj ||λ̂jλsj + λ̂2

j |
≤ sup

1≤j≤K

|λ̂2
j − λ2

j |
|λsj ||λ̂jλsj |

≤ ∥ĈxzĈ∗
xz − CxzC∗

xz∥op√
aλ2

K
,

(S2.5)

As ∥f̂j−fsj ∥ ≤ τj∥Ĉ∗
xzĈxz−C∗

xzCxz∥op and ∥ξ̂j−ξsj∥ ≤ τj∥ĈxzĈ∗
xz−CxzC∗

xz∥op (Bosq, 2000, Lemma 4.3),

∥
K∑
j=1

λ̂−1
j (f̂j ⊗ ξ̂j − fsj ⊗ ξsj )∥op ≤ a

−1/2
K∑
j=1

(∥f̂j − fsj ∥ + ∥ξ̂j − ξsj∥)

≤ a
−1/2

K∑
j=1

τj(∥Ĉ∗
xzĈxz − C∗

xzCxz∥op + ∥ĈxzĈ∗
xz − CxzC∗

xz∥op). (S2.6)

From (S2.3), we know that ∥Ĉ∗
xzĈxz−C∗

xzCxz∥op = Op(T−1/2) and ∥ĈxzĈ∗
xz−CxzC∗

xz∥op = Op(T−1/2).
Moreover, it can be shown that λ−2

K ≤ (λ2
K−λ2

K +1)−1 ≤ τK ≤
∑K
j=1 τj , so the terms given in the right

hand sides of (S2.5) and (S2.6) are op(1) under our assumptions. We thus deduce from (S2.4) that√
T

θK(ζ)(Â − AΠ̂K)ζ =
(

1√
TθK(ζ)

T∑
t=1

zt ⊗ ut

)
Cxz(C∗

xzCxz)−1
K ζ + op(1).

Let ζt = (θK(ζ))−1/2[zt ⊗ ut]Cxz(C∗
xzCxz)−1

K ζ = (θK(ζ))−1/2⟨zt, Cxz(C∗
xzCxz)−1

K ζ⟩ut. Then, we have

E[ζt ⊗ ζt] = Cuu, (S2.7)

as in the proof of Theorem 3.10 of Park and Qian (2012) by Assumption M.(c). Thus, under
Assumption M, {⟨ζt, ψ⟩}t≥1 is a martingale difference sequence for any ψ ∈ H. By the standard
central limit theorem for such a sequence, we have

1√
T

T∑
t=1

⟨ζt, ψ⟩ d→ N (0, ⟨Cuuψ,ψ⟩). (S2.8)

Let ζ̈T = T−1/2∑T
t=1 ζt. If there exists an orthonormal basis {ℓj}j≥1 satisfying

lim sup
n→∞

lim sup
T

P

 ∞∑
j=n+1

⟨ζ̈T , ℓj⟩2 > m

 = 0 (S2.9)

for every m > 0, then (S2.8) implies that ζ̈T
d→ N (0, Cuu) (van der Vaart and Wellner, 1996,

Theorem 1.8.4). Let {ℓj}j≥1 be the eigenfunctions of Cuu and let Ln =
∑∞
j=n+1 ℓj⊗ℓj . Observe that

E

 ∞∑
j=n+1

⟨ζ̈T , ℓj⟩2

 ≤ 1
TθK(ζ)

T∑
t=1

E
[
⟨zt, Cxz(C∗

xzCxz)−1
K ζ⟩2∥Lnut∥2

]
=

∞∑
j=n+1

⟨Cuuℓj , ℓj⟩2, (S2.10)
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where the equality follows from that {ut}t≥1 is a martingale difference sequence (with respect to
Ft−1). Since Cuu is Hilbert-Schmidt, the right hand side of (S2.10) converges to zero as n → ∞.
Combining this result with the Markov’s inequality, we find that for anym > 0, P(

∑∞
j=n+1⟨ζ̈T , ℓj⟩2 >

m) ≤ m−1∑∞
j=n+1⟨Cuuℓj , ℓj⟩2, from which (S2.9) follows. Thus, the desired result is obtained.

(ii) follows from that ∥Ĉzz − Czz∥op and ∥Ĉxz(Ĉ∗
xzĈxz)−1

K − Cxz(C∗
xzCxz)−1

K ∥op are all op(1).

S2.2 Proofs of the results in Section 3.3

We first state a useful lemma and then provide our proofs of the main results given in Section 3.3.

Lemma S1. Suppose that Assumptions E2.(a) and E2.(b) hold and δ > 1. Then the following
hold: (i)

∑
ℓ ̸=j

λ2
ℓ ℓ

−δ

(λ2
j−λ2

ℓ
)2 ≤ O(jρ+2−δ) and (ii)

∑
ℓ ̸=j

λ2
j ℓ

−δ

(λ2
j−λ2

ℓ
)2 ≤ O(jρ+2−δ).

Proof of Lemma S1. We only show (i), because the remaining result can be obtained in a similar
manner. As in Imaizumi and Kato (2018), we can choose j0 ≥ 1 and C > 1 large enough so that
λ2
j/λ

2
⌊j/C⌋ ≤ 1/2 and λ2

⌊jC⌋+1/λ
2
j ≤ 1/2 for all j ≥ j0, where ⌊·⌋ denotes the floor function. In

addition, because of Assumption E2.(b) we have (λ2
j − λ2

ℓ )2 ≥ O(1)j−2ρ−2(j − ℓ)2 for ℓ ̸= j and
⌊j/C⌋ < ℓ < ⌊Cj⌋ (Imaizumi and Kato 2018, p. 29). Using these, for δ > 1, we find that

⌊j/C⌋∑
ℓ=1

λ2
ℓℓ

−δ

(λ2
j − λ2

ℓ )2 ≤
⌊j/C⌋∑
ℓ=1

λ2
ℓℓ

−δ

λ4
ℓ (1 − λ2

j/λ
2
⌊j/C⌋)2 ≤ 4

⌊j/C⌋∑
ℓ=1

ℓ−δ

λ2
j

≤ O(jρ),

and ∞∑
ℓ=⌊jC⌋+1

λ2
ℓℓ

−δ

(λ2
j − λ2

ℓ )2 ≤ 4λ−2
j

∞∑
ℓ=⌊jC⌋+1

ℓ−δ ≤ O(jρ).

Moreover, by using the inequality λ2
ℓ ≤ |λ2

ℓ − λ2
j | + λ2

j and the property stated at the beginning of
the proof, we have

⌊jC⌋∑
ℓ=⌊j/C⌋+1, ̸=j

λ2
ℓℓ

−δ

(λ2
j − λ2

ℓ )2 ≤
⌊jC⌋∑

ℓ=⌊j/C⌋+1, ̸=j

ℓ−δ

|λ2
ℓ − λ2

j |
+

⌊jC⌋∑
ℓ=⌊j/C⌋+1,̸=j

λ2
jℓ

−δ

(λ2
j − λ2

ℓ )2

≤ j1+ρ
⌊jC⌋∑

ℓ=⌊j/C⌋+1,̸=j

ℓ−δ

|ℓ− j|
+ j2+ρ

⌊jC⌋∑
ℓ=⌊j/C⌋+1,̸=j

ℓ−δ

|ℓ− j|2

≤ j1+ρ
⌊jC⌋∑

ℓ=⌊j/C⌋+1,̸=j

ℓ−δ+1

|ℓ− j|2
+ 2j2+ρ

⌊jC⌋∑
ℓ=⌊j/C⌋+1,̸=j

ℓ−δ

|ℓ− j|2
≤ O(j2+ρ−δ),

where the last two inequalities are obtained by using the fact that |ℓ − j| ≤ ℓ + j and ℓ−δ+1 ≤
(j/C)−δ+1 ≤ Cδ−1j−δ+1 for all ℓ > ⌊j/C⌋ + 1.
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Proof of Theorem 3

We first note that a ≤ λ̂2
K = λ̂2

K − λ2
K + λ2

K ≤ ∥Ĉ∗
xzĈxz − C∗

xzCxz∥op + c◦ K−ρ ≤ Op(T−1/2) + c◦ K−ρ

and a
−1T−1/2 = o(1). These imply that

K ≤ (1 + op(1))a−1/ρ. (S2.11)

Using the fact that λ2
j ≥

∑∞
ℓ=j(λ2

ℓ − λ2
ℓ+1) ≥ ρ−1c−1

◦ j−ρ and a
−1T−1/2 = o(1), we also find that

(c◦ρ)−1(K +1)−ρ ≤ λ2
K +1 = λ2

K +1 − λ̂2
K +1 + λ̂2

K +1 ≤ Op(T−1/2) + a ≤ (op(1) + 1)a. (S2.12)

We will now obtain stochastic orders of ∥Â − AΠ̂K∥HS, ∥AΠ̂K − AΠK∥HS, and ∥A(I − ΠK)∥HS.
From (S6.6), we know that ∥Â − AΠ̂K∥HS ≤ ∥Ĉuz∥HS∥Ĉxz(Ĉ∗

xzĈxz)−1
K ∥op ≤ Op(a−1/2T−1/2). More-

over, we have

∥A(I − ΠK)∥2
HS =

∞∑
ℓ=K +1

∞∑
j=1

⟨Afℓ, ξj⟩2 ≤ c◦

∞∑
ℓ=K +1

∞∑
j=1

ℓ−2ςj−2γ ≤ O((K +1)−2ς+1) ≤ Op(a(2ς−1)/ρ),

(S2.13)
where the first inequality immediately follows from Assumption E2.(c), and the second and third
inequalities follow from (S2.12), Assumption E2, and the Euler-Maclaurin summation formula for
the Riemann zeta-function (see e.g., (5.6) of Ibukiyama and Kaneko, 2014). We then focus on the
remaining term ∥AΠ̂K − AΠK∥HS and find that

∥AΠ̂K − AΠK∥2
HS ≤ 2∥

K∑
j=1

f̂j ⊗ A(f̂j − fsj )∥2
HS + 2∥

K∑
j=1

(f̂j − fsj ) ⊗ Afsj ∥2
HS. (S2.14)

We observe that

∥f̂j − fsj ∥2 = Op(j2T−1), (S2.15)

∥A(f̂j − fsj )∥2 = Op(T−1)(j2−2ς + jρ+2−2ς). (S2.16)

These will be proved below after discussing the main result of interest. Specifically, we can show
the second term in (S2.14) satisfies that

∥
K∑
j=1

(f̂j − fsj ) ⊗ Afsj ∥2
HS =

∞∑
ℓ=1

∥
K∑
j=1

⟨Afj , fℓ⟩(f̂j − fsj )∥2 ≤
∞∑
ℓ=1

 K∑
j=1

|⟨Afj , fℓ⟩|∥f̂j − fsj ∥

2

≤
∞∑
ℓ=1

ℓ−2γ

 K∑
j=1

j−ς∥f̂j − fsj ∥

2

= Op(T−1)

 K∑
j=1

j1−ς

2

=

Op(T
−1) if ς > 2,

Op(T−1 max{log2
a

−1,a(2ς−4)/ρ}) if ς ≤ 2,
(S2.17)

where the first equality follows from the properties of the Hilbert-Schmidt norm and the remaining
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relationships follow from (S2.15), Assumption E2, and the fact that
∑K
j=1 j

1−ς = Op(1) if ς > 2 and∑K
j=1 j

1−ς = Op(max{log a−1,a(ς−2)/ρ}) otherwise. Similarly, the first term in (S2.14) satisfies that

∥
K∑
j=1

f̂j ⊗ A(f̂j − fj)∥2
HS =

K∑
j=1

∥A(f̂j − fj)∥2 = Op(T−1)
K∑
j=1

(j2−2ς + jρ+2−2ς)

=

Op(T
−1) if ς > ρ/2 + 3/2,

Op(T−1 max{log a−1,a(2ς−ρ−3)/ρ}) if ς ≤ ρ/2 + 3/2,
(S2.18)

where (S2.16) is used to establish the second equality. Since 2ς − ρ− 3 < 2ς − 4, a log a−1 = o(1),
and a log2

a
−1 = o(1), (S6.7) is deduced from (S2.13), (S2.17) and (S2.18).

Proofs of (S2.15) and (S2.16): We first show (S2.15). Note that for each j,

f̂j − fsj =
∑
ℓ̸=j

(λ̂2
j − λ2

ℓ )−1⟨(Ĉ∗
xzĈxz − C∗

xzCxz)f̂j , fsℓ ⟩f sℓ + ⟨f̂j − fsj , f
s
j ⟩fsj . (S2.19)

Then, using the arguments used to derive (4.48) of Bosq (2000) and the expansion of ⟨f̂j − fsj , f
s
ℓ ⟩

that was used to derive (S2.19), it can be shown that

∥f̂j − f sj ∥2 ≤ 4
∑
ℓ̸=j

(λ̂2
j − λ2

ℓ )−2⟨(Ĉ∗
xzĈxz − C∗

xzCxz)f̂j , fℓ⟩2. (S2.20)

Since Ĉ∗
xzĈxz − C∗

xzCxz = (Ĉ∗
xz − C∗

xz)Ĉxz + C∗
xz(Ĉxz − Cxz), the sum given in (S2.20) satisfies that

∑
ℓ ̸=j

(λ̂2
j − λ2

ℓ )−2⟨(Ĉ∗
xzĈxz − C∗

xzCxz)f̂j , fℓ⟩2

≤ 2
∑
ℓ ̸=j

(λ̂2
j − λ2

ℓ )−2⟨(Ĉ∗
xz − C∗

xz)λ̂j ξ̂j , fℓ⟩2 + 2
∑
ℓ̸=j

(λ̂2
j − λ2

ℓ )−2⟨(Ĉxz − Cxz)f̂j , λℓξℓ⟩2. (S2.21)

The second term of (S2.21) satisfies that

∑
ℓ̸=j

(λ̂2
j − λ2

ℓ )−2⟨(Ĉxz − Cxz)f̂j , λℓξℓ⟩2

≤ 2
∑
ℓ̸=j

(λ̂2
j − λ2

ℓ )−2λ2
ℓ ⟨(Ĉxz − Cxz)(f̂j − fsj ), ξℓ⟩2 + 2

∑
ℓ ̸=j

(λ̂2
j − λ2

ℓ )−2λ2
ℓ ⟨(Ĉxz − Cxz)fsj , ξℓ⟩2

≤ 2∆1j∥f̂j − fsj ∥2 + 2
∑
ℓ ̸=j

(λ̂2
j − λ2

ℓ )−2λ2
ℓ ⟨(Ĉxz − Cxz)fsj , ξℓ⟩2, (S2.22)

where ∆1j =
∑
ℓ̸=j(λ̂2

j − λ2
ℓ )−2λ2

ℓ∥Ĉxz − Cxz∥2
op. Similarly, for the first term of (S2.21), we have

∑
ℓ̸=j

(λ̂2
j − λ2

ℓ )−2λ̂2
j ⟨(Ĉ∗

xz − C∗
xz)ξ̂j , fℓ⟩2

≤
∑
ℓ ̸=j

(
(λ̂2
j − λ2

ℓ )−2λ2
ℓ ⟨(Ĉ∗

xz − C∗
xz)ξ̂j , fℓ⟩2 + (λ̂2

j − λ2
ℓ )−1⟨(Ĉ∗

xz − C∗
xz)ξ̂j , fℓ⟩2

)
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≤ 2
∑
ℓ̸=j

(λ̂2
j − λ2

ℓ )−2λ2
ℓ ⟨(Ĉ∗

xz − C∗
xz)(ξ̂j − ξsj ), fℓ⟩2 + 2

∑
ℓ ̸=j

(λ̂2
j − λ2

ℓ )−2λ2
ℓ ⟨(Ĉ∗

xz − C∗
xz)ξsj , fℓ⟩2

+ 2
∑
ℓ ̸=j

(λ̂2
j − λ2

ℓ )−1⟨(Ĉ∗
xz − C∗

xz)(ξ̂j − ξsj ), fℓ⟩2 + 2
∑
ℓ ̸=j

(λ̂2
j − λ2

ℓ )−1⟨(Ĉ∗
xz − C∗

xz)ξsj , fℓ⟩2

≤ 2(∆1j + ∆2j)∥ξ̂j − ξsj∥2 + 2
∑
ℓ ̸=j

(λ̂2
j − λ2

ℓ )−2λ̂2
j ⟨(Ĉ∗

xz − C∗
xz)ξsj , fℓ⟩2, (S2.23)

where ∆2j = maxℓ̸=j,1≤j≤K(λ̂2
j − λ2

ℓ )−1∥Ĉxz − Cxz∥2
op and the second inequality simply follows from

the decomposition ξ̂j = (ξ̂j − ξsj ) + ξsj and the fact that (a+ b)2 ≤ 2a2 + 2b2 for a, b ∈ R. Let

∆3j = ∆3j,1 + ∆3j,2, (S2.24)

where

∆3j,1 =
∑
ℓ̸=j

(λ̂2
j−λ2

ℓ )−2λ2
ℓ ⟨(Ĉxz−Cxz)fsj , ξℓ⟩2, ∆3j,2 =

∑
ℓ̸=j

(λ̂2
j−λ2

ℓ )−2λ̂2
j ⟨(Ĉ∗

xz−C∗
xz)ξsj , fℓ⟩2. (S2.25)

We then deduce from (S2.20)-(S2.25) that

∥f̂j − fsj ∥2 ≤ 16∆1j∥f̂j − fsj ∥2 + 16(∆1j + ∆2j)∥ξ̂j − ξsj∥2 + 16∆3j . (S2.26)

A similar bound for ∥ξ̂j − ξsj∥2 can be obtained from nearly identical arguments to derive (S2.26),
from which the following can be deduced with a little algebra:

∥f̂j − fsj ∥2 ≤ 16(1 + 16∆2j)
(1 − 16∆1j)2 − 162(∆1j + ∆2j)2 ∆3j .

From (S2.12), the condition α = a
−1 = o(T ρ/(2ρ+2)), and similar arguments used in the proof of

Theorem 1 of Imaizumi and Kato (2018), we find that

P{|λ̂2
j − λ2

ℓ | ≥ |λ2
j − λ2

ℓ |/
√

2, for j = 1, . . . ,K and ℓ ̸= j} → 1. (S2.27)

Because of (S2.11), (S2.27), and the condition α = a
−1 = o(T ρ/(2ρ+2)), we find that ∆1j ≤

Op(T−1) maxℓ̸=j,1≤j≤K |λ̂2
j − λ2

ℓ |−2 ≤ Op(T−1 K2ρ+2) ≤ Op(T−1
a

−(2ρ+2)/ρ) = op(1). Similarly, from
(S2.11), (S2.27) and Assumption E2.(b), we also deduce that ∆2j ≤ Op(Kρ+1 ∥Ĉ∗

xz − Cxz∥2
op) ≤

Op(a−(ρ+1)/ρT−1) = op(1). Combining these results, the following is established:

∥f̂j − fsj ∥2 ≤ 16(1 + op(1))∆3j . (S2.28)

We now focus on ∆3j . First note that

|∆3j,1| ≤ Op(1)
∑
ℓ̸=j

(λ2
j − λ2

ℓ )−2λ2
ℓ ⟨(Ĉxz − Cxz)f sj , ξℓ⟩2 ≤ Op(j2T−1);
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this may be deduced from (S2.27), Assumption E2, Lemma S1(i) and the fact that

TE[⟨(Ĉxz − Cxz)fsj , ξℓ⟩2] ≤
T∑
s=0

E[υt(j, ℓ)υt−s(j, ℓ)] ≤ O(1)E[⟨xt, fj⟩2⟨zt, ξℓ⟩2]

≤ E[∥ζℓ∥2∥⟨xt, fj⟩zt∥2] ≤ O(1)λ2
j ,

where the second inequality follows from Assumption E2.(d). To obtain the third inequality, we
note that E[⟨xt, fj⟩2⟨zt, ξℓ⟩2] = E[⟨⟨xt, fj⟩zt, ξℓ⟩⟨⟨zt, ξℓ⟩xt, fj⟩] ≤ E[∥⟨xt, fj⟩zt∥∥⟨zt, ξℓ⟩xt∥] and then
apply the Cauchy-Schwarz inequality and Assumption E2.(d). In a similar manner, we also find
that |∆3j,2| ≤ Op(j2T−1), and thus |∆3j | ≤ Op(j2T−1). Combining this result with (S2.28), we
find that the desired result (S2.15) holds.

We next show (S2.16). Note that

A(f̂j − f sj ) =
∑
ℓ ̸=j

(λ̂2
j − λ2

ℓ )−1⟨(Ĉ∗
xzĈxz − C∗

xzCxz)f̂j , fsℓ ⟩Afsℓ + ⟨f̂j − fsj , f
s
j ⟩Afsj , (S2.29)

where ∥⟨f̂j − fsj , f
s
j ⟩Afsj ∥2 ≤ Op(T−1)j2−2ς . For each j = 1, . . . ,K, the first term in (S2.29) is

bounded above as follows:

(
∑
ℓ̸=j

(λ̂2
j − λ2

ℓ )−1⟨(Ĉ∗
xzĈxz − C∗

xzCxz)f̂j , fsℓ ⟩Afsℓ )2 ≤ O(1)(
∑
ℓ ̸=j

|λ̂2
j − λ2

ℓ |−1ℓ−ς |⟨(Ĉ∗
xzĈxz − C∗

xzCxz)f̂j , fℓ⟩|)2

≤ O(1)(
∑
ℓ̸=j

|λ̂2
j − λ2

ℓ |−1ℓ−ςλℓ|⟨(Ĉxz − Cxz)f̂j , ξℓ⟩|)2 +O(1)(
∑
ℓ̸=j

|λ̂2
j − λ2

ℓ |−1ℓ−ς λ̂j |⟨(Ĉ∗
xz − C∗

xz)ξ̂j , fℓ⟩|)2

≤ O(1)∥Ĉxz − Cxz∥2
op

∑
ℓ̸=j

(λ̂2
j − λ2

ℓ )−2λ2
ℓℓ

−2ς +
∑
ℓ̸=j

(λ̂2
j − λ2

ℓ )−2λ̂2
jℓ

−2ς


≤ Op(T−1)

∑
ℓ̸=j

(λ̂2
j − λ2

ℓ )−2λ2
ℓℓ

−2ς +
∑
ℓ̸=j

(λ̂2
j − λ2

ℓ )−2(λ̂2
j − λ2

j )ℓ−2ς +
∑
ℓ̸=j

(λ̂2
j − λ2

ℓ )−2λ2
jℓ

−2ς


≤ Op(T−1)

jρ−2ς+2 + (Op(T−1/2)λ−2
j + 1)

∑
ℓ ̸=j

(λ̂2
j − λ2

ℓ )−2λ2
jℓ

−2ς


≤ (1 +Op(T−1/2

a
−1))Op(T−1jρ−2ς+2) ≤ (1 + op(1))Op(T−1jρ−2ς+2), (S2.30)

where the second inequality follows from Assumption E2, and the remaining inequalities follow
from the Hölder’s inequality, Lemma S1(i)-(ii), and the fact that ∥Ĉxz − Cxz∥op = Op(T−1/2). From
(S2.29) and (S2.30), we find that (S2.16) holds.

Proof of Theorem 4

In this proof, we consider the scenario where ρ/2 + 2 ≥ ς + δζ , thus incorporating the complemen-
tary result presented in Section S2.3.2. The whole proof is divided into two parts.

1. Proof of the convergence results: For the subsequent discussion, we first need to obtain an
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upper bound of ⟨f̂j − fsj , ζ⟩. From the expansion given in (S2.19), we have

⟨f̂j − fsj , ζ⟩ =
∑
ℓ ̸=j

(λ̂2
j − λ2

ℓ )−1⟨(Ĉ∗
xzĈxz − C∗

xzCxz)f̂j , fℓ⟩⟨fℓ, ζ⟩ + ⟨f̂j − fsj , f
s
j ⟩⟨fsj , ζ⟩. (S2.31)

Note that the second term in (S2.31) satisfies that (⟨f̂j − fj , f
s
j ⟩⟨fsj , ζ⟩)2 ≤ Op(T−1j−2δζ+2), for all

j = 1, . . . ,K. Moreover, the first term in (S2.31) satisfies the following:

(
∑
ℓ̸=j

(λ̂2
j − λ2

ℓ )−1⟨(Ĉ∗
xzĈxz − C∗

xzCxz)f̂j , fℓ⟩⟨fℓ, ζ⟩)2 ≤ O(1)(
∑
ℓ̸=j

|λ̂2
j − λ2

ℓ |−1ℓ−δζ |⟨(Ĉ∗
xzĈxz − C∗

xzCxz)f̂j , fℓ⟩|)2

≤ O(1)(
∑
ℓ ̸=j

|λ̂2
j − λ2

ℓ |−1ℓ−δζλℓ|⟨(Ĉxz − Cxz)f̂j , ξℓ⟩|)2 +O(1)(
∑
ℓ̸=j

|λ̂2
j − λ2

ℓ |−1ℓ−δζ λ̂j |⟨(Ĉ∗
xz − C∗

xz)ξ̂j , fℓ⟩|)2

≤ O(1)∥Ĉxz − Cxz∥2
op

∑
ℓ̸=j

(λ̂2
j − λ2

ℓ )−2λ2
ℓℓ

−2δζ +
∑
ℓ̸=j

(λ̂2
j − λ2

ℓ )−2λ̂2
jℓ

−2δζ


≤ Op(T−1)

∑
ℓ̸=j

(λ̂2
j − λ2

ℓ )−2λ2
ℓℓ

−2δζ +
∑
ℓ̸=j

(λ̂2
j − λ2

ℓ )−2(λ̂2
j − λ2

j )ℓ−2δζ +
∑
ℓ ̸=j

(λ̂2
j − λ2

ℓ )−2λ2
jℓ

−2δζ


≤ Op(T−1)

jρ−2δζ+2 + (Op(T−1/2)λ−2
j + 1)

∑
ℓ ̸=j

(λ̂2
j − λ2

ℓ )−2λ2
jℓ

−2δζ


≤ Op(T−1)jρ−2δζ+2(1 +Op(T−1/2)jρ), (S2.32)

where the first inequality follows from the assumption on ⟨fℓ, ζ⟩ and the remaining inequali-
ties are deduced from similar arguments that are used to obtain (S2.30). Because T−1/2jρ ≤
Op(T−1/2

a
−1) = op(1) uniformly in j = 1, . . . ,K, we conclude that, for each j = 1, . . . ,K,

⟨f̂j − fsj , ζ⟩2 = Op(T−1)j−2δζ+2 +Op(T−1)j−2δζ+2+ρ(1 + op(1)). (S2.33)

We next show the following:

∥Ĉxz(Ĉ∗
xzĈxz)−1

K ζ − Cxz(C∗
xzCxz)−1

K ζ∥op = op(1). (S2.34)

Given that ∥Ĉxz − Cxz∥op = op(1), the asymptotic results given in Theorem 2.(i) and 2.(ii) are
deduced without difficulty from (S2.34) and similar arguments used in our proofs given in Section
S2. From the decomposition given in (S2.4), it can be deduced that the desired result (S2.34) is
established if the following terms are all op(1): ∥

∑K
j=1((λsj)

−1 − λ̂−1
j )⟨fsj , ζ⟩ξ̂j∥, ∥

∑K
j=1((λsj)

−1 −
λ̂−1
j )⟨f̂j − fsj , ζ⟩ξ̂j∥, ∥

∑K
j=1(λsj)−1⟨fsj , ζ⟩(ξ̂j − ξsj )∥, and ∥

∑K
j=1(λsj)−1⟨f̂j − fsj , ζ⟩ξ̂j∥.

First, from similar arguments used in our proof of Theorem 2, we may deduce the following:

∥
K∑
j=1

((λsj)
−1 − λ̂−1

j )⟨fsj , ζ⟩ξ̂j∥2 =
K∑
j=1

((λsj)
−1 − λ̂−1

j )2⟨f sj , ζ⟩2 ≤
K∑
j=1

(λ2
j − λ̂2

j )2

λ2
j (λ̂2

j + λsj λ̂j)2
cζj

−2δζ
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≤
K∑
j=1

(λ2
j − λ̂2

j )2

λ4
j λ̂

2
j

cζj
−2δζ ≤ Op(T−1

a
−1

K∑
j=1

j2ρ−2δζ ) ≤ Op(T−1 max{a−(3ρ−2δζ+1)/ρ,a−(1+ρ)/ρ}),

(S2.35)

where the last inequality follows from (S2.11). In addition, using (S2.33) and the arguments used
to derive (S2.35), we find that

∥
K∑
j=1

((λsj)
−1 − λ̂−1

j )⟨f̂j − fsj , ζ⟩ξ̂j∥2 =
K∑
j=1

((λsj)
−1 − λ̂−1

j )2⟨f̂j − fsj , ζ⟩2

≤ Op(T−2
a

−1)
K∑
j=1

j2ρ−2δζ+2 +Op(T−2
a

−1)
K∑
j=1

j3ρ−2δζ+2

≤ Op(T−2) max{a−(4ρ−2δζ+3)/ρ,a−(1+ρ)/ρ}. (S2.36)

Note that T−1
a

−(1+ρ)/ρ = o(1) and T−2
a

−(4ρ−2δζ+3)/ρ = T−1
a

−(3ρ−2δζ+1)/ρT−1
a

−(ρ+2)/ρ = o(1) by
(3.8). These imply that the terms given in (S2.35) and (S2.36) are all op(1). We also find that

∥
K∑
j=1

(λsj)−1⟨fsj , ζ⟩(ξ̂j − ξsj )∥ ≤
K∑
j=1

∥λ−1
j ⟨fsj , ζ⟩(ξ̂j − ξsj )∥

≤ Op(T−1/2)
K∑
j=1

j−δζ+ρ/2+1 ≤ Op(T−1/2 max{a−1/ρ,a(δζ−ρ/2−2)/ρ}) = op(1), (S2.37)

where the first inequality follows from the triangular inequality and the second inequality is deduced
from Assumption E2.(b) and the fact that ∥ξ̂j−ξsj∥2 ≤ Op(T−1j2) for j = 1, . . . ,K (this can obtained
from nearly identical arguments used to derive (S2.15)). The remaining inequalities are deduced
since 2δζ > 1 and (S2.11) holds. It only remains to show that ∥

∑K
j=1(λsj)−1⟨f̂j −fsj , ζ⟩ξ̂j∥2 = op(1).

This can be obtained from Assumption E2.(a) and (S2.33); specifically, we observe that

∥
K∑
j=1

(λsj)−1⟨f̂j − f sj , ζ⟩ξ̂j∥2 ≤ Op(T−1) max{a−(2ρ−2δζ+3)/ρ,a−1/ρ} = op(1). (S2.38)

Hence, from the results given in (S2.35)-(S2.38), (S2.34) is established.

2. Analysis on the regularization bias: Next, we focus on the regularization bias term,
∥A(Π̂K − ΠK)ζ∥. For convenience, we let

A(Π̂K − I)ζ = F1 + F2 + F3 + F4,

where F4 = A(ΠK − I)ζ,

F1 =
K∑
j=1

⟨f̂j − fsj , ζ⟩A(f̂j − fsj ), F2 =
K∑
j=1

⟨fsj , ζ⟩A(f̂j − f sj ), F3 =
K∑
j=1

⟨f̂j − fsj , ζ⟩Afsj ,
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and thus F1 + F2 + F3 = A(Π̂K − ΠK)ζ. Then, by using (S2.16) and (S2.33), we find that

∥F1∥ ≤
K∑
j=1

|⟨f̂j − fsj , ζ⟩|∥A(f̂j − f sj )∥ ≤ Op(T−1)
K∑
j=1

jρ−ς−δζ+2 ≤ op(T−1/2)
K∑
j=1

jρ/2−ς−δζ+1,

where the last bound is obtained since α = o(T ρ/(2ρ+2)). In a similar manner, it can be shown that

∥F2∥ ≤
K∑
j=1

|⟨fsj , ζ⟩|∥A(f̂j − fsj )∥ ≤ Op(T−1/2)
K∑
j=1

jρ/2−ς−δζ+1,

and

∥F3∥ ≤
K∑
j=1

|⟨f̂j − fsj , ζ⟩|∥Afsj ∥ ≤ Op(T−1/2)
K∑
j=1

jρ/2−ς−δζ+1.

Therefore, ∥F1∥, ∥F2∥ and ∥F3∥ are bounded by the following quantity:

Op(T−1/2)
K∑
j=1

jρ/2−ς−δζ+1 ≤

Op(T
−1/2) if ρ/2 + 2 < ς + δζ ,

Op(T−1/2 max{log a−1,a−(ρ/2−ς−δζ+2)/ρ}) if ρ/2 + 2 ≥ ς + δζ .

Lastly, the following can be shown:

∥F4∥2 ≤
∞∑

j=K +1
∥⟨fj , ζ⟩Afj∥2 ≤

∞∑
j=K +1

j−2δζ∥Afj∥2 = Op(
∞∑

j=K +1
j−2δζ−2ς) ≤ Op(a(2ς+2δζ−1)/ρ).

This concludes the proof.

S2.3 Supplementary results

S2.3.1 Strong consistency of the FIVE

We first review essential mathematics to establish the strong consistency of our estimators. The
space of Hilbert-Schmidt operators, denoted SH, is a separable Hilbert space with respect to the
inner product given by ⟨T1, T2⟩SH =

∑
j,k≥1⟨T1ζ1j , ζ2k⟩⟨T2ζ1j , ζ2k⟩ for two arbitrary orthonormal

bases {ζ1j}j≥1 and {ζ2j}j≥1 of H; this inner product does not depend on the choice of orthonormal
bases (Bosq, 2000, Chapter 1). We then note that {xt ⊗ zt − Cxz}t≥1 is a zero-mean stationary and
geometrically strongly mixing sequence in SH, and, in the sequel, employ the following assumption:
below, {Λj}j≥1 is the sequence of eigenvalues of the covariance operator of dt = xt ⊗ zt − Cxz.

Assumption S1. (a) supt≥1 ∥xt∥ ≤ mx, supt≥1 ∥zt∥ ≤ mz, and supt≥1 ∥ut∥ ≤ mu a.s., (b) Λj ≤ abj

for some a > 0 and 0 < b < 1.

As shown by Corollaries 2.4 and 4.2 of Bosq (2000), Assumption S1 combined with Assumption
M.(b) helps us obtain a stochastic bound of ∥Ĉxz − Cxz∥op, which is given as follows:
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Lemma S2. Under Assumptions M.(b) and S1, the following holds almost surely:

∥Ĉxz − Cxz∥op = O(T−1/2 log3/2 T ).

We omit the proof of Lemma S2 since it is a direct consequence of Theorem 2.12 and Corollary
2.4 of Bosq (2000) and the fact that supt≥1 ∥dt∥ ≤ md holds for some md > 0 under the employed
assumptions. Based upon this result, we can establish the strong consistency of the FIVE as follows:

Theorem 1 (continued). If Assumption S1 is additionally satisfied, τ(α) = o(T 1/2 log−3/2 T ) a.s.,
and αT−1 log T → 0, then ∥Â − A∥op → 0 a.s.

Proof. It can be easily shown from our proof of Theorem 1 that ∥Â−AΠ̂K∥op ≤ a
−1/2∥T−1∑T

t=1 zt⊗
ut∥op holds a.s. Under Assumptions M and S1, the sequence of zt ⊗ ut is a martingale difference,
and ∥zt ⊗ut∥HS and E∥zt ⊗ut∥2

HS are uniformly bounded, and we thus know from Theorem 2.14 of
Bosq (2000) that ∥T−1∑T

t=1 zt ⊗ut∥op = O(T−1/2 log1/2 T ), a.s. This implies that ∥Â − AΠ̂K∥op =
O(a−1/2T−1/2 log1/2 T ) a.s. Moreover, we note that ∥AΠ̂K − A∥2

op is bounded above by the term
given in the right hand side of (S2.2), and deduce from Lemma S2 that ∥Ĉ∗

xzĈxz − C∗
xzCxz∥op =

O(T−1/2 log3/2 T ) a.s. These results imply that ∥AΠ̂K − A∥2
op = o(1) a.s.

S2.3.2 Refinements of the general asymptotic results for the FIVE

We now provide a complementary result to Theorem 4 for the case where ρ/2 + 2 ≥ ς + δζ .
Specifically, the following can be shown:

Theorem 4 (Continued). Let everything be as in Theorem 4 but with ρ/2 + 2 ≥ ς + δζ . Then,
Theorem 2 holds and

∥A(Π̂K − ΠK)ζ∥ = Op(T−1/2 max{logα,α(ρ/2−ς−δζ+2)/ρ}),

∥A(ΠK − I)ζ∥ = Op(α(1/2−ς−δζ)/ρ).

Our proof of the above result is already contained in the proof of Theorem 4 given in Section
S2.2, and hence omitted.

S3 Appendix to Section 4 on “Functional two-stage least square
estimator"

As in Section S2, we will hereafter let a1 = α−1
1 and a2 = α−1

2 , and use them interchangeably. We
first provide a useful lemma that is related to our discussion on the F2SLSE in Section 4.

Lemma S3. There exist unique bounded linear operators Rxz and R∗
yz satisfying the following:

C1/2
zz RxzC1/2

xx = Cxz, Rxz[ran C1/2
xx ]⊥ = {0}, R∗

xz[ran C1/2
zz ]⊥ = {0},

C1/2
yy R∗

yzC1/2
zz = C∗

yz, R∗
yz[ran C1/2

zz ]⊥ = {0}, Ryz[ran C1/2
yy ]⊥ = {0},
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where V ⊥ denotes the orthogonal complement of V ⊂ H.

Lemma S3 directly follows from Theorem 1 of Baker (1973). From the properties of Rxz (resp.
Ryz) given above, it can be understood as the cross-correlation operator of xt and zt (resp. yt and
zt). Let C−1/2

zz be defined by
∑∞
j=1 µ

−1/2
j gj⊗gj , which is not a bounded linear operator since µj → 0

as j → ∞. However, even with this property, we know as a direct consequence of Lemma S3 that
C−1/2
zz Cxz and C∗

yzC
−1/2
zz are well defined bounded linear operators and they are respectively given by

C−1/2
zz Cxz = RxzC1/2

xx and C∗
yzC−1/2

zz = C1/2
yy R∗

yz.

We thus find that
C∗
yzC−1

zz Cxz = C∗
yzC−1/2

zz C−1/2
zz Cxz = C1/2

yy R∗
yzRyzC1/2

zz =: P,

C∗
xzC−1

zz Cxz = C∗
xzC−1/2

zz C−1/2
zz Cxz = C1/2

xx R∗
xzRxzC1/2

xx =: Q.

As desired, P and Q are uniquely defined elements of LH, and moreover, they are compact since
C1/2
xx and C1/2

yy are compact.

S3.1 Proofs of the results in Section 4.2

Proof of Theorem 5

Since ∥Ĉuz∥HS = Op(T−1/2), we find that

∥Ã − AΠ̃K2∥HS ≤ ∥Ĉuz∥HS∥(Ĉzz)−1/2
K1

∥op∥(Ĉzz)−1/2
K1

ĈxzQ̂−1
K2

∥op ≤ Op(a−1/4
1 a

−1/4
2 T−1/2). (S3.1)

Thus, ∥Ã−AΠ̃K2∥HS = op(1), and hence it suffices to show that ∥AΠ̃K2 −A∥2
HS = op(1). Note that

∥AΠ̃K2 − A∥2
HS ≤

∞∑
j=K2 +1

∥Ahsj∥2 + |R|, (S3.2)

where hsj = sgn{⟨ĥj , hj⟩}hj and R =
∑∞
j=K2 +1(∥Aĥj∥2 − ∥Ahsj∥2). Since A is Hilbert-Schmidt, the

first term of (S3.2) is op(1). It thus only remains to verify that |R| = op(1). To show this, we first
deduce the following inequality from similar arguments used to derive the equation between (8.62)
and (8.63) of Bosq (2000):

|R| ≤ 2∥A∥2
op

K2∑
j=1

∥ĥj − hsj∥. (S3.3)

We find that Qĥj − νj ĥj = (Q − Q̂)ĥj + (ν̂j − νj)ĥj . Hence, by Lemma 4.2 of Bosq (2000),

∥Qĥj − νj ĥj∥ ≤ 2∥Q̂ − Q∥op. (S3.4)

Moreover, it can be shown from similar arguments used in the proof of Lemma 4.3 of Bosq (2000)
that ∥ĥj − hsj∥ ≤ τ2,j∥Qĥj − νj ĥj∥/2, which, combined with (S3.4), implies that

∥ĥj − hsj∥ ≤ τ2,j∥Q̂ − Q∥op. (S3.5)
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We then deduce from (S3.3) and (S3.5) that

|R| ≤ 2∥A∥2
op

 K2∑
j=1

τ2,j

 ∥Q̂ − Q∥op. (S3.6)

Then the following can be shown:

∥Q̂ − Q∥op ≤ ∥BΠ̂K1 ĈzzΠ̂K1B∗ − BCzzB∗∥op + ∥S∥op, (S3.7)

where S = Ĉ∗
vzΠ̂K1B∗ + BΠ̂K1 Ĉvz + Ĉ∗

vz(Ĉzz)−1
K1

Ĉvz. Let ΠK1 =
∑K1
j=1 gj ⊗ gj and let

T = B(I − ΠK1)Czz(I − ΠK1)B∗.

We further find that

∥BΠ̂K1 ĈzzΠ̂K1B∗ − BCzzB∗∥op ≤ ∥BΠ̂K1 ĈzzΠ̂K1B∗ − BΠK1CzzΠK1B∗∥op + ∥T ∥op

≤ ∥B∥2
op∥

K1∑
j=1

(µ̂j − µj)ĝj ⊗ ĝj∥op + 2∥B∥2
op

K1∑
j=1

µj∥ĝj − gsj∥ + ∥T ∥op

≤

∥B∥2
op + 2∥B∥2

op

K1∑
j=1

µjτ1,j

 ∥Ĉzz − Czz∥op + ∥T ∥op ≤ Op

 K1∑
j=1

µjτ1,j

 ∥Ĉzz − Czz∥op + ∥T ∥op,

(S3.8)

where gsj = sgn{⟨ĝj , gj⟩}gj . From (S3.6), (S3.7) and (S3.8), the following is established:

|R| ≤

Op
 K1∑
j=1

µjτ1,j

 ∥Ĉzz − Czz∥op + ∥S∥op + ∥T ∥op

Op
 K2∑
j=1

τ2,j

 . (S3.9)

Since ∥Ĉvz∥HS = Op(T−1/2), ∥Π̂K1∥op ≤ 1 and ∥(Ĉzz)−1
K1

∥op ≤ a
−1/2
1 , we have

∥S∥op ≤ Op(T−1/2) +Op(a−1/2
1 T−1). (S3.10)

Note that ∥Ĉzz − Czz∥op = Op(T−1/2) and ∥T ∥op
∑K2
j=1 τ2,j = op(1) (which follows from the fact

that ∥T ∥op ≤ ∥B∥2
op
∑∞
j=K1 +1 µj). Combining these results with (S3.9) and (S3.10), we find

that |R| ≤ Op(T−1/2(
∑K1
j=1 µjτ1,j)(

∑K2
j=1 τ2,j)) + Op((T−1/2 + a

−1/2
1 T−1)

∑K2
j=1 τ2,j). Given that

a
−1
1 T−1 → 0 and

∑K2
j=1 τ2,j ≤ Op((

∑K1
j=1 µjτ1,j)(

∑K2
j=1 τ2,j)) = op(T 1/2) (the inequality follows from

that µ−1
1 τ−1

1,1 (
∑K1
j=1 µjτ1,j) ≥ 1), it may be easily deduced that |R| = op(1) as desired.

Proof of Theorem 6

To show (i), we will first verify that

∥(Ĉzz)−1
K1

ĈxzQ̂−1
K2

− (Czz)−1
K1

CxzQ−1
K2

∥op ≤ E1 + E2 + E3 = op(1), (S3.11)
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where E1, E2 and E3 are defined as follows:

E1 = ∥((Ĉzz)−1
K1

− (Czz)−1
K1

)ĈxzQ̂−1
K2

∥op, E2 = ∥(Czz)−1
K1

(Ĉxz − Cxz)Q̂−1
K2

∥op,

E3 = ∥(Czz)−1
K1

Cxz(Q̂−1
K2

− Q−1
K2

)∥op.

Note first that ∥ĈxzQ̂−1
K2

∥op = Op(a−1/2
2 ), and thus

E1 ≤ Op(a−1/2
2 )

∥
K1∑
j=1

(µ−1
j − µ̂−1

j )gsj ⊗ gsj∥op + ∥
K1∑
j=1

µ̂−1
j (ĝj ⊗ ĝj − gsj ⊗ gsj )∥op

 ,
where gsj = sgn{⟨ĝj , gj⟩}gj . We then find that

∥
K1∑
j=1

(µ−1
j − µ̂−1

j )gsj ⊗ gsj∥op ≤ sup
1≤j≤K1

|µ̂−1
j − µ−1

j | = sup
1≤j≤K1

∣∣∣∣∣ µ̂j − µj
µjµ̂j

∣∣∣∣∣ ≤ a
−1/2
1 µ−1

K1
∥Ĉzz − Czz∥op

(S3.12)
and

∥
K1∑
j=1

µ̂−1
j (ĝj ⊗ ĝj − gsj ⊗ gsj )∥op ≤ 2a−1/2

1

K1∑
j=1

∥ĝj − gsj∥ ≤ 2a−1/2
1 ∥Ĉzz − Czz∥op

K1∑
j=1

τ1,j . (S3.13)

Since µ−1
K1

≤
∑K1
j=1 τ1,j = op(a1/2

1 T 1/2) and ∥Ĉzz − Czz∥op = Op(T−1/2), the right hand sides of
(S3.12) and (S3.13) are op(1), and hence E1 = op(1). Since ∥(Czz)−1

K1
∥op ≤ µ−1

K1
, ∥Q̂−1

K2
∥op ≤ a

−1/2
2 ,

and ∥Ĉxz − Cxz∥op = Op(T−1/2), we also find that

E2 ≤ µ−1
K1
Op(a−1/2

2 T−1/2) ≤ Op(a−1/2
2 T−1/2)

K1∑
j=1

τ1,j = op(1).

Given that ∥(Czz)−1
K1

Cxz∥op ≤ ∥B∗∥op = Op(1), it remains to show that ∥Q̂−1
K2

− Q−1
K2

∥op = op(1)
since this implies E3 = op(1) (and thus the desired result (S3.11) is obtained). To show this, we
first note that

∥Q̂−1
K2

− Q−1
K2

∥op ≤ ∥
K2∑
j=1

(ν−1
j − ν̂−1

j )hj ⊗ hj∥op + ∥
K2∑
j=1

ν̂−1
j (ĥj ⊗ ĥj − hj ⊗ hj)∥op.

Let S = Ĉ∗
vzΠ̂K1B∗ + BΠ̂K1 Ĉvz + Ĉ∗

vz(Ĉzz)−1
K1

Ĉvz. We then deduce from our proof of Theorem 5 that

∥Q̂ − Q∥op ≤ Op

 K1∑
j=1

µjτ1,j

 ∥Ĉzz − Czz∥op + ∥S∥op + ∥T ∥op. (S3.14)
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As in (S3.12), it can be shown that ∥
∑K2
j=1(ν−1

j − ν̂−1
j )hj ⊗ hj∥op ≤ a

−1/2
2 ν−1

K2
∥Q̂ − Q∥op, hence

∥
K2∑
j=1

(ν−1
j − ν̂−1

j )hj ⊗ hj∥op ≤ a
−1/2
2 ν−1

K2

Op
 K1∑
j=1

µjτ1,j

 ∥Ĉzz − Czz∥op + ∥S∥op + ∥T ∥op

 .
(S3.15)

We also deduce the following from (S3.5), (S3.13) and (S3.14):

∥
K2∑
j=1

ν̂−1
j (ĥj⊗ ĥj−hj⊗hj)∥op ≤ 2a−1/2

2

K2∑
j=1

τ2,j

Op
 K1∑
j=1

µjτ1,j

 ∥Ĉzz − Czz∥op + ∥S∥op + ∥T ∥op

 .
(S3.16)

We find that ν−1
K2

≤
∑K2
j=1 τ2,j ≤ Op((

∑K1
j=1 µjτ1,j)(

∑K2
j=1 τ2,j)) = op(a1/2

2 T 1/2), which follows from
that µ−1

1 τ−1
1,1 (

∑K1
j=1 µjτ1,j) ≥ 1. Moreover, note that

K1∑
j=1

µjτ1,j ≤ ν1ν
−1
K2

K1∑
j=1

µjτ1,j ≤ ν1

 K1∑
j=1

µjτ1,j

 K2∑
j=1

τ2,j

 = op(a1/2
2 T 1/2),

and

ν−1
K2

∥T ∥op ≤
K2∑
j=1

τ2,j∥T ∥op ≤ ∥B∥2
op

 ∞∑
j=K1 +1

µj

 K2∑
j=1

τ2,j

 = op(a1/2
2 ).

From these results, (S3.10) and the fact that ∥Ĉzz − Czz∥op = Op(T−1/2), we may deduce that the
right hand sides of (S3.15) and (S3.16) are all op(1), and thus E3 = op(1) and (S3.11) holds.

We thus know that

√
T (Ã − AΠ̃K2)ζ =

(
1√
T

T∑
t=1

zt ⊗ ut

)
(Czz)−1

K1
CxzQ−1

K2
ζ + op(1).

Define ζt = (ϕK2(ζ))−1/2[zt ⊗ ut](Czz)−1
K1

CxzQ−1
K2
ζ and let ζ̈T = T−1/2∑T

t=1 ζt. Then from nearly
identical arguments used to derive (S2.7), (S2.8) and (S2.9), we find that, for any ψ ∈ H and m > 0,
T−1/2∑T

t=1⟨ζt, ψ⟩ d→ N (0, ⟨Cuuψ,ψ⟩) and lim supn→∞ lim supT P(
∑∞
j=n+1⟨ζ̈T , ℓj⟩2 > m) = 0, where

{ℓj}j≥1 denote the eigenfunctions of Cuu. Hence (i) is established.
Given that ∥Q̂−1

K2
− Q−1

K2
∥op = op(1), (ii) is immediately deduced.

S3.2 Proofs of the results in Section 4.3

We hereafter define
QK1 = C∗

xz(Czz)−1
K1

Cxz,

which is repeatedly used in the subsequent proofs.
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Proof of Theorem 7

We will show the following:

K2 ≤ (1 + op(1))a−1/ρν
2 , (S3.17)

(c◦ρ)−1(K2 +1)−ρν ≤ (1 + op(1))a2, (S3.18)

∥ĥj − hsj∥2 ≤ Op(a1)jρν−4γµ+2, (S3.19)

∥A(ĥj − hsj)∥2 ≤ Op(a1)jρν−2ςν−4γµ+2 +Op(dT )jρν−2ςν+2, (S3.20)

where hsj is defined as in our proof of Theorem 5 and dT is defined by

dT = a
(4ςµ+ρµ−2)/ρµ
1 + T−1 max{a−1/ρµ

1 ,a
−(ρµ−2ςµ+3)/ρµ
1 }. (S3.21)

Note that

∥Ã − A∥HS ≤ ∥Ã − AΠ̃K2∥HS + ∥AΠ̃K2 − AΠK2∥HS + ∥(I − ΠK2)A∥HS,

where ∥Ã − AΠ̃K2∥HS = Op(a−1/4
1 a

−1/4
2 T−1/2) as shown in (S3.1). Using (S3.18), we also find that

∥(I − ΠK2)A∥2
HS =

∞∑
ℓ=K2 +1

∥Ahℓ∥2 ≤ O(1)
∞∑

ℓ=K2 +1

∞∑
j=1

ℓ−2ςν j−2γν ≤ Op(a(2ςν−1)/ρν
2 ). (S3.22)

We next focus on the remaining term ∥AΠ̃K2 − AΠK2∥HS. Note that

2−1∥AΠ̃K2 − AΠK2∥2
HS ≤ ∥

K2∑
j=1

ĥj ⊗ A(ĥj − hsj)∥2
HS + ∥

K2∑
j=1

(ĥj − hsj) ⊗ Ahj∥2
HS. (S3.23)

We know from (S3.19) and (S3.23) that

∥
K2∑
j=1

(ĥj − hsj) ⊗ Ahsj∥2
HS =

∞∑
ℓ=1

∥
K2∑
j=1

⟨Ahj , hℓ⟩(ĥj − hsj)∥2 ≤
∞∑
ℓ=1

 K2∑
j=1

|⟨Ahj , hℓ⟩|∥ĥj − hsj∥

2

≤ Op(a1)

 K2∑
j=1

jρν/2−2γµ−ςν+1

2

=

Op(a1) if ςν > 2 + ρν/2 − 2γµ,

Op(a1 max{log2
a

−1
2 ,a

(2ςν−ρν+4γµ−4)/ρν
2 }) if ςν ≤ 2 + ρν/2 − 2γµ.

(S3.24)

Moreover, from (S3.20) and the fact that dTa−1
1 = o(1), the following may be deduced:

∥
K2∑
j=1

ĥj ⊗ A(ĥj − hsj)∥2
HS ≤

K2∑
j=1

∥A(ĥj − hsj)∥2 ≤ Op(a1)
K2∑
j=1

jρν−2ςν−4γµ+2 +Op(dT )
K2∑
j=1

jρν−2ςν+2
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≤

Op(a1) if ρν/2 + 3/2 < ςν ,

Op(a1 max{log a−1
2 ,a

(2ςν−ρν−3)/ρν
2 }) if ρν/2 + 3/2 ≥ ςν .

(S3.25)

Since 4γµ − 4 > −3, a2 log a−1
2 = o(1), and a2 log2

a
−1
2 = o(1), (4.2) may be deduced from (S3.22),

(S3.24) and (S3.25).

Proofs of (S3.17)-(S3.20): To obtain the desired results, we first need to consider ∥(Q̂ − Q)hℓ∥
and ∥Q̂ − Q∥HS. Note that, for any ℓ,

2−1∥(Q̂ − Q)hℓ∥2 ≤ ∥(Q̂ − QK1)hℓ∥2 + ∥(QK1 − Q)hℓ∥2. (S3.26)

The second term in (S3.26) is bounded above as follows:

∥(QK1 − Q)hℓ∥2 = ∥
∞∑

j=K1 +1
µj⟨Bgj , hℓ⟩Bgj∥2 ≤ O(1)

∞∑
j=K1 +1

µ2
j∥Bgj∥2

∞∑
j=K1 +1

j−2ςµℓ−2γµ

≤ O(1)µ2
K1 +1(K1 +1)−4ςµ+2ℓ−2γµ ≤ Op(1)a(4ςµ+ρµ−2)/ρµ

1 ℓ−2γµ , (S3.27)

where the first inequality follows from the Hölder’s inequality and the second is obtained because
2γµ > 1,

∑∞
j=K1 +1 j

−2ςµ ≤ (K1 +1)−2ςµ+1, and µ2
j ≤ µ2

K1 +1 for j > K1. The last inequality is
obtained using the arguments that are used to derive (S2.12). We now focus on the first term in
(S3.26). Note that

4−1∥(Q̂ − QK1)hℓ∥2 ≤ ∥Ĉ∗
vz(Ĉzz)−1

K1
Ĉvzhℓ∥2 + ∥Ĉ∗

vzΠ̂K1B∗hℓ∥2 + ∥BΠ̂K1 Ĉvzhℓ∥2

+ ∥(B(Π̂K1 ĈzzΠ̂K1 − ΠK1CzzΠK1)B∗)hℓ∥2,

where ∥ĈzvΠ̂K1B∗hℓ∥2 ≤ ℓ−2γµOp(T−1). Moreover, we have ∥BΠ̂K1 Ĉvzhℓ∥2 ≤ ℓ−2γµOp(T−1) and
∥Ĉ∗

vz(Ĉzz)−1
K1

Ĉvzhℓ∥2 ≤ Op(a−1
1 T−1)∥Ĉvzhℓ∥2 ≤ Op(T−2

a
−1
1 )ℓ−ρν/2 since

TE[∥Ĉvzhj∥2] = T−1E[∥
T∑
t=1

⟨vt, hj⟩zt∥2] ≤ O(1)E[∥⟨vt, hj⟩zt∥2] ≤ O(1)νj≤ O(j−ρν/2), (S3.28)

where the inequalities are obtained from Assumption E2∗; specifically, under the assumption,
we have that E[∥⟨vt, hj⟩zt∥2] ≤ E[∥⟨xt, hj⟩zt∥2] ≤ c◦∥Cxzhj∥2 ≤ ∥ΠK1Czz∥op∥(Czz)−1/2

K1
Cxzhj∥2 ≤

O(1)νj . Lastly, using the arguments used to obtain (S2.16), we can show that ∥ĝj − gsj∥2 ≤
Op(T−1)j2 and ∥B(ĝj − gsj )∥2 ≤ Op(T−1)(j2−2ςµ + jρµ+2−2ςµ). Using this bound, we find that

4−1∥(B(Π̂K1 ĈzzΠ̂K1 − ΠK1CzzΠK1)B∗)hℓ∥2

≤ ∥
K1∑
j=1

(µ̂j − µj)⟨ĝj ,B∗hℓ⟩Bĝj∥2 + ∥
K1∑
j=1

µj⟨ĝj − gsj ,B∗hℓ⟩Bgj∥2

+ ∥
K1∑
j=1

µj⟨gsj ,B∗hℓ⟩B(ĝj − gsj )∥2 + ∥
K1∑
j=1

µj⟨ĝj − gsj ,B∗hℓ⟩B(ĝj − gsj )∥2
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≤ K1 ∥B∥2
op∥Ĉzz − Czz∥2

op∥B∗hℓ∥2 + ∥Czz∥2
HS

K1∑
j=1

∥ĝj − gsj∥2∥B∗hℓ∥2∥Bgj∥2

+ ∥Czz∥2
HS

K∑
j=1

∥B∗hℓ∥2∥B(ĝj − gsj )∥2 + ∥Czz∥2
HS∥B∗hℓ∥2

K1∑
j=1

∥ĝj − gsj∥4

≤ ℓ−2γµ
a

−1/ρµOp(T−1) + ℓ−2γµOp(T−1)
K1∑
j=1

j−2ςµ+2

+ ℓ−2γµOp(T−1)
K1∑
j=1

(j−2ςµ+2 + jρµ−2ςµ+2) + ℓ−2γµOp(T−2)
K1∑
j=1

j4

≤ ℓ−2γµOp(T−1 max{a−1/ρµ
1 ,a

−(ρµ−2ςµ+3)/ρµ
1 }), (S3.29)

where the second inequality is obtained by using Lemma 4.2 in Bosq (2000) and noting that
∥
∑K1
j=1 µj⟨ĝj − gj ,B∗hℓ⟩Bgj∥2 ≤ (

∑K1
j=1 µ

2
j )(
∑K1
j=1 ∥Bgj∥2⟨ĝj − gj ,B∗hℓ⟩2) holds by the Hölder’s

inequality. The last two inequalities are deduced from Assumption M, Assumption E2∗, and that
∥B∗hℓ∥2 ≤ O(1)ℓ−2γµ and a

−1
1 = α1 = o(T ρµ/(2ρµ+2)). Then, from the results given in (S3.26)-

(S3.29) and the definition of dT given in (S3.21), we conclude the following: for any ℓ ≤ K2,

∥(Q̂ − Q)hℓ∥2 ≤ ℓ−2γµOp(dT ), (S3.30)

from which we also find that
∥Q̂ − Q∥2

HS = Op(dT ). (S3.31)

We now verify (S3.17) and (S3.18). It can be shown without difficulty that dT = O(a1). Given
that a−1

1 = o(T 1/2) and a
−1
2 a

1/2
1 = o(1), we find that a−1

2 d
1/2
T = o(1), from which the following is

deduced:
a2 = ν̂2

K2 − ν2
K2 + ν2

K2 ≤ ∥Q̂ − Q∥op + c◦ K−ρ
2 ≤ o(1)a2 + c◦ K−ρν

2 .

Then (S3.17) follows from the above. Similarly as in (S2.12), it can be shown that

(c◦ρ)−1(K2 +1)−ρν ≤ ν2
K2 +1 = ν2

K2 +1 − ν̂2
K2 +1 + ν̂K2 +1 ≤ (1 + op(1))a2,

and thus we find that (S3.18) holds.
We then show (S3.19). To this end, it should first be noted that, under the employed assump-

tions, (S2.27) holds if λ̂j (resp. λℓ) is replaced by ν̂j (resp. νℓ) . Moreover, note that the eigenfunc-
tions of Q2 and Q̂2 are, respectively, equivalent to those of Q and Q̂. Therefore, by applying the
arguments that are used in our proof of Theorem 3, we can show that

8−1∥ĥj − hsj∥2 ≤
∑
ℓ̸=j

(ν̂2
j − ν2

ℓ )−2ν2
ℓ ⟨(Q̂ − Q)ĥj , hℓ⟩2 +

∑
ℓ ̸=j

(ν̂2
j − ν2

ℓ )−2ν̂2
j ⟨(Q̂ − Q)ĥj , hℓ⟩2. (S3.32)
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From similar arguments used to derive (S2.22), the first term in (S3.32) is bounded above as follows:

∑
ℓ̸=j

(ν̂2
j − ν2

ℓ )−2ν2
ℓ ⟨(Q̂ − Q)ĥj , hℓ⟩2 ≤ 2∆̃1j∥ĥj − hsj∥2 + 2

∑
ℓ̸=j

(ν̂2
j − ν2

ℓ )−2ν2
ℓ ⟨hj , (Q̂ − Q)hℓ⟩2, (S3.33)

where ∆̃1j =
∑
ℓ̸=j(ν̂2

j − ν2
ℓ )−2ν2

ℓ ∥(Q̂ − Q)hℓ∥2. Moreover, by using similar arguments that are used
to obtain (S2.23), we can show that

∑
ℓ ̸=j

(ν̂2
j − ν2

ℓ )−2ν̂2
j ⟨(Q̂ − Q)ĥj , hℓ⟩2 ≤ 2

∑
ℓ̸=j

(ν̂2
j − ν2

ℓ )−2ν̂2
j ⟨(Q̂ − Q)hj , hℓ⟩2 + 2(∆̃1j + ∆̃2j)∥ĥj − hsj∥2,

(S3.34)
where ∆̃2j =

∑
ℓ̸=j(ν̂2

j − ν2
ℓ )−1∥(Q̂ − Q)hℓ∥2. We then use the results given in (S3.30) and (S3.31)

to obtain the following bounds of ∆̃1j and ∆̃2j : for j = 1, . . . ,K2,

∆̃1j ≤ Op(dT )
∑
ℓ̸=j

(ν2
j − ν2

ℓ )−2ν2
ℓ ℓ

−2γµ ≤ jρν+2−2γµOp(dT ) ≤ Op(a
−(2γµ−2−ρν)/ρν
2 dT ) = op(1),

(S3.35)
where the second inequality follows from Lemma S1(i) and the last equality follows from that
γµ ≤ 1 + 3

2ρν and a
−1
2 d

1/2
T = op(1). Similarly, for j = 1, . . . ,K2,

∆̃2j ≤ max
1≤ℓ≤K2

(ν2
j − ν2

ℓ )−1∑
ℓ̸=j

∥(Q̂ − Q)hℓ∥2 ≤ j1+ρνOp(dT ) ≤ O(a−(1+ρν)/ρν
2 dT ) = op(1). (S3.36)

From (S3.32)-(S3.36), we have

∥ĥj − hsj∥2 ≤ O(1)(1 + op(1))∆̃3j (S3.37)

for j = 1, . . . ,K2, where

∆̃3j =
∑
ℓ̸=j

(ν̂2
j − ν2

ℓ )−2ν̂2
j ⟨(Q̂ − Q)hj , hℓ⟩2 +

∑
ℓ ̸=j

(ν̂2
j − ν2

ℓ )−2ν2
ℓ ⟨(Q̂ − Q)hj , hℓ⟩2. (S3.38)

We will analyze the above term using the decomposition Q̂ − Q = Q̂ − QK1 + QK1 − Q. Note that

⟨(QK1 − Q)hj , hℓ⟩2 ≤

 ∞∑
i=K1 +1

µ2
i ⟨gi,B∗hj⟩2

 ∞∑
i=K1 +1

⟨gi,B∗hℓ⟩2

 ≤ Op(a1)ℓ−2γµj−2γµ , (S3.39)

where the first inequality follows from the Hölder’s inequality, and the second is deduced from
Assumption E2∗ and similar arguments used to derive (S2.12). From (S3.39), Lemma S1(i) and a
result similar to (S2.27), we find that

∑
ℓ̸=j

(ν̂2
j − ν2

ℓ )−2ν2
ℓ ⟨(QK1 − Q)hj , hℓ⟩2 ≤ Op(a1)jρν−4γµ+2. (S3.40)
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Similarly, for j = 1, . . . ,K2, we have

∑
ℓ̸=j

(ν̂2
j − ν2

ℓ )−2ν̂2
j ⟨(QK1 − Q)hj , hℓ⟩2

≤ |ν̂2
j − ν2

j |
∑
ℓ̸=j

(ν̂2
j − ν2

ℓ )−2ν2
j ν

−2
j ⟨(QK1 − Q)hj , hℓ⟩2 +

∑
ℓ̸=j

(ν̂2
j − ν2

ℓ )−2ν2
j ⟨(QK1 − Q)hj , hℓ⟩2

≤ (Op(d1/2
T )jρν + 1)Op(a1)jρν−4γµ+2, (S3.41)

where the second inequality follows from that |ν̂2
j − ν2

j | ≤ ∥Q̂2 − Q2∥op ≤ Op(1)∥Q̂ − Q∥op. Given
that a−1

2 d
1/2
T = o(1), (S3.41) is bounded above by Op(a1)jρν−4γµ+2. Next, we will obtain an upper

bound of ⟨(Q̂ − QK1)hj , hℓ⟩2. Observe that

4−1⟨(Q̂ − QK1)hℓ, hj⟩2 ≤ ⟨Ĉ∗
vz(Ĉzz)−1

K1
Ĉvzhℓ, hj⟩2 + ⟨Ĉ∗

vzΠ̂K1B∗hℓ, hj⟩2 + ⟨BΠ̂K1 Ĉvzhℓ, hj⟩2

+ ⟨(B(Π̂K1 ĈzzΠ̂K1 − ΠK1CzzΠK1)B∗)hℓ, hj⟩2

≤ a
−1
1 νjνℓOp(T−2) + νjℓ

−2γµOp(T−1) + νℓj
−2γµOp(T−1)

+ ⟨(B(Π̂K1 ĈzzΠ̂K1 − ΠK1CzzΠK1)B∗)hℓ, hj⟩2, (S3.42)

where the last inequality is obtained from (S3.28). The last term in (S3.42) satisfies the following:

4−1⟨(B(Π̂K1 ĈzzΠ̂K1 − ΠK1CzzΠK1)B∗)hℓ, hj⟩2

≤ (
K1∑
i=1

(µ̂i − µi)⟨ĝi,B∗hℓ⟩⟨Bĝi, hj⟩)2 + (
K1∑
i=1

µi⟨ĝi − gi,B∗hℓ⟩⟨Bĝi, hj⟩)2

+ (
K1∑
i=1

µi⟨gi,B∗hℓ⟩⟨B(ĝi − gi), hj⟩)2

≤ max
1≤i≤K1

|µ̂i − µi|2∥Π̂K1B∗hℓ∥2∥Π̂K1B∗hj∥2 +
K1∑
i=1

µ2
i ∥ĝi − gi∥2∥B∗hℓ∥2∥Π̂K1B∗hj∥2

+
K1∑
i=1

µ2
i ∥ĝi − gi∥2∥B∗hℓ∥2∥ΠK1B∗hj∥2

≤ ℓ−2γµj−2γµOp(T−1
a

−1/ρµ
1 ), (S3.43)

where the last inequality follows from Assumptions M∗ and E2∗. Combining the results given in
(S3.42) and (S3.43), we find that

4−1⟨(Q̂ − QK1)hℓ, hj⟩2

≤ Op(T−1)(a−1
1 T−1j−ρν/2ℓ−ρν/2 + j−ρν/2ℓ−2γµ + j−2γµℓ−ρν/2 + a

−1/ρµ
1 ℓ−2γµj−2γµ)

≤ Op(T−1)a−1/ρµ
1 ℓ−2γµj−2γµ +Op(T−1)(j−ρν/2ℓ−2γµ + j−2γµℓ−ρν/2).
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Together with Lemma S1(i), this implies that

∑
ℓ̸=j

(ν̂2
j − ν2

ℓ )−2ν2
ℓ ⟨(Q̂ − QK1)hℓ, hj⟩2 ≤ Op(T−1

a
−1/ρµ
1 )jρν−4γµ+2 +Op(T−1)jρν/2−2γµ+2

≤ Op(T−1
a

−1/ρµ
1 )jρν−4γµ+2, (S3.44)

where the inequalities follow from Lemma S1(i) and the fact that the first term is dominant under
the condition γµ ≤ ρν/4 + 1/2. In addition, from the arguments that are used to derive (S3.41)
and the fact that a−1

2 d
1/2
T = o(1), the following is deduced: for j = 1, . . . ,K2,

∑
ℓ̸=j

(ν̂2
j − ν2

ℓ )−2ν̂2
j ⟨(Q̂ − QK1)hℓ, hj⟩2 ≤ (Op(a−1

2 d
1/2
T ) + 1)Op(T−1

a
−1/ρµ
1 )jρν−4γµ+2

= Op(T−1
a

−1/ρµ
1 )jρν−4γµ+2. (S3.45)

From (S3.37), (S3.38), (S3.40), (S3.41), (S3.44), (S3.45), and the decomposition Q̂ − Q = Q̂ −
QK1 + QK1 − Q, we conclude that

∥ĥj − hsj∥2 ≤ (1 + op(1))∆̃3j ≤ Op(a1)jρν−4γµ+2 +Op(T−1
a

−1/ρµ
1 )jρν−4γµ+2 ≤ Op(a1)jρν−4γµ+2,

where the last inequality follows from a
−1
1 = o(T ρµ/(2ρµ+2)). This completes our proof of (S3.19).

Lastly, to show (S3.20), we note that

A(ĥj − hsj) =
∑
ℓ̸=j

(ν̂2
j − ν2

ℓ )−1⟨(Q̂2 − Q2)ĥj , hℓ⟩Ahℓ + ⟨ĥj − hsj , hj⟩Ahj , (S3.46)

where ∥⟨ĥj − hsj , hj⟩Ahj∥2 ≤ Op(a1)jρν−2ςν−4γµ+2. The first term in (S3.46) is bounded above as
follows:

(
∑
ℓ̸=j

(ν̂2
j − ν2

ℓ )−1⟨(Q̂2 − Q2)ĥj , hℓ⟩Ahℓ)2 ≤ (
∑
ℓ̸=j

|ν̂2
j − ν2

ℓ |−1|⟨(Q̂2 − Q2)ĥj , hℓ⟩|∥Ahℓ∥)2

≤ O(1)∥Q̂ − Q∥2
op

∑
ℓ̸=j

(ν̂2
j − ν2

ℓ )−2ν2
ℓ ℓ

−2ςν +
∑
ℓ̸=j

(ν̂2
j − ν2

ℓ )−2ν̂2
j ℓ

−2ςν


≤ Op(dT )

∑
ℓ̸=j

(ν̂2
j − ν2

ℓ )−2ν2
ℓ ℓ

−2ςν +
∑
ℓ̸=j

(ν̂2
j − ν2

ℓ )−2(ν̂2
j − ν2

j )ℓ−2ςν +
∑
ℓ̸=j

(ν̂2
j − ν2

ℓ )−2ν2
j ℓ

−2ςν


≤ Op(dT )

jρν−2ςν+2 + (Op(d1/2
T )ν−2

j + 1)
∑
ℓ̸=j

(ν̂2
j − ν2

ℓ )−2ν2
j ℓ

−2ςν


≤ (1 + op(1))Op(dT )jρν−2ςν+2. (S3.47)

Combining (S3.46) and (S3.47), we obtain (S3.20) as desired.
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Proof of Theorem 8

In this proof, we allow the case where ρν/2+2 ≥ ςν +δζ , thereby encompassing the complementary
result provided in Section S3.3.2 as a special case. The whole proof is divided into two parts.
1. Proof of the convergence results: We need an upper bound of ⟨ĥj − hsj , ζ⟩, which is
importantly used in the following discussion. Using the expansion in (S2.19), we find that

⟨ĥj − hsj , ζ⟩ =
∑
ℓ̸=j

(ν̂2
j − ν2

ℓ )−1⟨(Q̂ − Q)ĥj , hℓ⟩⟨hℓ, ζ⟩ + ⟨ĥj − hsj , h
s
j⟩⟨hsj , ζ⟩.

Note that (⟨ĥj − hsj , h
s
j⟩⟨hsj , ζ⟩)2 ≤ Op(a1)jρν−4γµ−2δζ+2 for j = 1, . . . ,K2, because of (S3.19).

Moreover, using similar arguments that are used to derive (S2.32) and (S3.47), we find that

(
∑
ℓ̸=j

(ν̂2
j − ν2

ℓ )−1⟨(Q̂ − Q)ĥj , hℓ⟩⟨hℓ, ζ⟩)2 ≤ (1 + op(1))Op(dT )jρν−2δζ+2. (S3.48)

Hence, we conclude that, for j = 1, . . . ,K2,

⟨ĥj − hsj , ζ⟩2 ≤ Op(a1)jρν−4γµ−2δζ+2 +Op(dT )jρν+2−2δζ ≤ Op(a1)jρν−2δζ+2, (S3.49)

where the last inequality follows from that dTa−1
1 = o(1) and j−γµ ≤ 1.

Using the result given in (S3.49), we will show that

∥(Ĉzz)−1
K1

ĈxzQ̂−1
K2
ζ − (Czz)−1

K1
CxzQ−1

K2
ζ∥ = op(1), (S3.50)

∥Q̂−1
K2
ζ − Q−1

K2
ζ∥ = op(1). (S3.51)

To show (S3.50), we observe that

∥(Ĉzz)−1
K1

ĈxzQ̂−1
K2
ζ−(Czz)−1

K1
CxzQ−1

K2
ζ∥ ≤ ∥(Ĉzz)−1

K1
Ĉxz(Q̂−1

K2
−Q−1

K2
)ζ∥+∥((Ĉzz)−1

K1
Ĉxz−(Czz)−1

K1
Cxz)Q−1

K2
ζ∥.

(S3.52)
Because (Ĉzz)−1

K1
Ĉxz = Π̂K1B∗ + (Ĉzz)−1

K1
Ĉvz and ∥(Ĉzz)−1

K1
Ĉvz∥op = Op(a−1/2

1 T−1/2), the first term in
(S3.52) satisfies that

∥(Ĉzz)−1
K1

Ĉxz(Q̂−1
K2

− Q−1
K2

)ζ∥ ≤ Op(1)∥(Q̂−1
K2

− Q−1
K2

)ζ∥. (S3.53)

Moreover, under the employed assumptions, the following holds:

∥Q−1
K2
ζ∥2 = ∥

K2∑
j=1

ν−1
j ⟨hj , ζ⟩hj∥2 ≤ O(1)

K2∑
j=1

jρν−2δζ ≤ O(max{a−1/ρν
2 ,a

−(ρν−2δζ+1)/ρν
2 }). (S3.54)

Given that a1/2
1 a

−1
2 = o(1), we have a1a

−1/ρν
2 ≤ a1a

−1
2 a

(ρν−1)/ρν
2 = o(1) and a1a

−(ρν−2δζ+1)/ρν
2 =

a1a
−1
2 a

(2δζ−1)/ρν
2 = o(1). This implies that ∥Q−1

K2
ζ∥2 ≤ op(a−1

1 ). Note also that

((Ĉzz)−1
K1

Ĉxz − (Czz)−1
K1

Cxz)Q−1
K2
ζ = (Π̂K1 − ΠK1)B∗Q−1

K2
ζ + (Ĉzz)−1

K1
ĈvzQ−1

K2
ζ, (S3.55)
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where the second term on the right hand side is op(1) since ∥(Ĉzz)−1
K1

Ĉvz∥op = Op(a−1/2
1 T−1/2),

∥Q−1
K2
ζ∥ ≤ op(a−1/2

1 ), and a
−1
1 T−1/2 = o(1). Furthermore, since ∥Π̂K1 − ΠK1∥op ≤ O(1)

∑K1
j=1 ∥ĝj −

gsj∥ ≤ Op(T−1/2 K2
1) = Op(T−1/2

a
−2/ρµ
1 ) and a

−1
1 = o(T ρµ/(2ρµ+2)), we find that

∥(Π̂K1 − ΠK1)B∗Q−1
K2
ζ∥ ≤ ∥Π̂K1 − ΠK1∥op∥B∥op∥Q−1

K2
ζ∥ = Op(T−1/2

a
−2/ρµ−1/2
1 )

= Op(T−1/2
a

−(ρµ+1)/ρµ
1 )a(ρµ/2−1)/ρµ

1 = op(1). (S3.56)

From (S3.53)-(S3.56), it is deduced that (S3.51) implies (S3.50) and thus we only need to show
(S3.51) for the desired results. From a similar decomposition to that given in (S2.4), it can be shown
that (S3.51) holds if the following terms are all op(1): ∥

∑K2
j=1(ν−1

j − ν̂−1
j )⟨hj , ζ⟩ĥj∥, ∥

∑K2
j=1(ν−1

j −
ν̂−1
j )⟨ĥj − hsj , ζ⟩ĥj∥, ∥

∑K
j=1 ν

−1
j ⟨hj , ζ⟩(ĥj − hsj)∥, and ∥

∑K
j=1 ν

−1
j ⟨ĥj − hsj , ζ⟩ĥj∥.

As in (S2.35) and (S2.36), we obtain the following:

∥
K2∑
j=1

(ν−1
j − ν̂−1

j )⟨hj , ζ⟩ĥj∥2 =
K2∑
j=1

(ν−1
j − ν̂−1

j )2⟨hj , ζ⟩2 ≤
K2∑
j=1

(ν2
j − ν̂2

j )2

ν2
j (ν̂2

j + νj ν̂j)2 cζj
−2δζ

≤
K2∑
j=1

(ν2
j − ν̂2

j )2

ν4
j ν̂

2
j

cζj
−2δζ ≤ Op(dT max{a−(3ρν−2δζ+1)/ρν

2 ,a
−(1+ρν)/ρν
2 }), (S3.57)

∥
K2∑
j=1

(ν−1
j − ν̂−1

j )⟨ĥj − hsj , ζ⟩ĥj∥2 = Op(dTa−1
2 )

K2∑
j=1

j2ρν ⟨ĥj − hsj , ζ⟩2 ≤ Op(dTa1a
−1
2 )

K2∑
j=1

j3ρν−2δζ+2

≤ Op(dTa1) max{a−(4ρν−2δζ+3)/ρν
2 a

−(1+ρν)/ρν
2 }. (S3.58)

Under the conditions on a1 and a2 given in Theorem 8, we have dT = O(a1), and a
1/2
1 a

−1
2 = o(1).

These imply that the right hand sides of (S3.57) and (S3.58) are op(1). We then use the arguments
that are used to show (S2.37) and find that

∥
K2∑
j=1

ν−1
j ⟨hj , ζ⟩(ĥj − hsj)∥ ≤ Op(a1/2

1 )
K2∑
j=1

j−δζ+ρν−2γµ+1 ≤ Op(a1/2
1 max{a−1/ρν

2 ,a
(δζ−ρν+2γµ−2)/ρν
2 }).

(S3.59)
From (4.3) and the fact that a1/2

1 a
−1
2 = o(1), we can show that the above term is op(1). We then

note that

∥
K2∑
j=1

ν−1
j ⟨ĥj − hsj , ζ⟩ĥj∥2 ≤ Op(a1)

K2∑
j=1

j2ρν−2δζ+2 ≤ Op(a1 max{a−1/ρν
2 ,a

(2δζ−2ρν−3)/ρν
2 }), (S3.60)

where the inequalities can be deduced from (S3.49). Because of (4.3), the right hand side of (S3.60)
is also op(1). Thus, by combining the results given in (S3.57)-(S3.60), we conclude that (S3.51)
holds. Then the results given in Theorem 6.(i) and 6.(ii) immediately follow from (S3.50) and
(S3.51), and hence the details are omitted.

2. Analysis on the regularization bias: We next focus on the regularization bias term,
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∥A(Π̃K2 − ΠK2)ζ∥. Note that ∥A(Π̃K2 − ΠK2)ζ∥ ≤ G1 +G2 +G3 + ∥A(ΠK2 − I)ζ∥, where

G1 = ∥
K2∑
j=1

⟨ĥj − hsj , ζ⟩A(ĥj − hsj)∥, G2 = ∥
K2∑
j=1

⟨hsj , ζ⟩A(ĥj − hsj)∥, G3 = ∥
K2∑
j=1

⟨ĥj − hsj , ζ⟩Ahsj∥.

Then, by using (S3.20), (S3.49) and the fact that dTa−1
1 = o(1), we find that

G1 ≤
K2∑
j=1

|⟨ĥj − hsj , ζ⟩|∥A(ĥj − hsj)∥ ≤ Op(a1)
K2∑
j=1

jρν−δζ−ςν+2 ≤ op(a1/2
1 )

K2∑
j=1

jρν/2−ςν−δζ+1,

G2 ≤
K2∑
j=1

|⟨hsj , ζ⟩|∥A(ĥj − hsj)∥ ≤ Op(a1/2
1 )

K2∑
j=1

jρν/2−ςν−δζ+1,

and

G3 ≤
K2∑
j=1

|⟨ĥj − hsj , ζ⟩|∥Ahsj∥ ≤ Op(a1/2
1 )

K2∑
j=1

jρν/2−ςν−δζ+1.

Hence, G1, G2 and G3 are bounded by the following.

Op(a1/2
1 )

K2∑
j=1

jρν/2−ςν−δζ+1 ≤

Op(a
1/2
1 ) if ρν/2 + 2 < ςν + δζ ,

Op(a1/2
1 ) max{log a−1

2 ,a
−(ρν/2−ςν−δζ+2)/ρν
2 } if ρν/2 + 2 ≥ ςν + δζ .

Lastly, we have

∥A(ΠK2 − I)ζ∥2 ≤
∞∑

j=K2 +1
∥⟨hj , ζ⟩Ahj∥2 ≤ O(

∞∑
j=K2 +1

j−2δζ−2ςν ) ≤ Op(a
(2ςν+2δζ−1)/ρν
2 ),

from which the desired result follows.

S3.3 Supplementary results

S3.3.1 Strong consistency of the F2SLSE

As in the case of the FIVE, we need some additional assumptions: below, as we did for the sequence
of dt in Section S2.3.1, we let {Mj}j≥1 be the sequence of eigenvalues of the covariance of zt⊗zt−Czz.

Assumption S2. (a) supt≥1 ∥xt∥ ≤ mx, supt≥1 ∥zt∥ ≤ mz, and supt≥1 ∥ut∥ ≤ mu a.s., (b)Mj ≤ abj

for some a > 0 and 0 < b < 1, (c) the sequence of vt is a martingale difference with respect to
Gt = σ({zs}s≤t+1, {vs}s≤t).

We may establish the following preliminary results:

Lemma S4. Under Assumptions M.(b), M∗(b) and S2, the following hold almost surely:

∥Ĉzz − Czz∥op = O(T−1/2 log3/2 T ) and ∥Ĉvz∥op = O(T−1/2 log1/2 T ).

Proof. The first result follows from Theorem 2.12 and Corollary 2.4 of Bosq (2000). We then note
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that under Assumptions M.(b) and M∗(b), supt≥1 ∥vt∥ ≤ supt≥1 ∥xt∥+∥B∥op supt≥1 ∥zt∥ < ∞, and
apply Theorem 2.14 of Bosq (2000) to find that ∥Ĉzv∥op = O(T−1/2 log1/2 T ) a.s.

In our proof of the strong consistency of the F2SLSE, what we want to have by employing
Assumption S2.(c) is the asymptotic order of ∥Ĉvz∥op given in Lemma S4; in fact, our proof does
not require any change once the following weaker condition holds:

∥Ĉvz∥op = O(T−1/2 log T ), a.s. (S3.61)

Hence, in the sequel, (S3.61) may replace Assumption S2.(c). We now establish the strong consis-
tency.

Theorem 5 (continued). If Assumption S2 is additionally satisfied, (
∑K1
j=1 µjτ1,j)(

∑K2
j=1 τ2,j) =

o(T 1/2 log−3/2 T ) a.s., (
∑∞
j=K1 +1 µj)(

∑K2
j=1 τ2,j) = o(1) a.s., α−1

1 α2 → 0, and α1T
−1 log T → 0,

then ∥Ã − A∥op → 0 a.s.

Proof. From (S3.1), we know that ∥Ã−AΠ̃K2∥op ≤ a
−1/4
1 a

−1/4
2 ∥T−1∑T

t=1 zt⊗ut∥op. Moreover, {zt⊗
ut}t≥1 is a martingale difference sequence satisfying that supt ∥zt ⊗ ut∥HS < ∞ a.s and supt E∥zt ⊗
ut∥2

HS < ∞. We therefore deduce from Theorem 2.14 of Bosq (2000) that ∥Ã − AΠ̃K2∥op =
O(a−1/4

1 a
−1/4
2 T−1/2 log1/2 T ) a.s., and hence, ∥Ã − AΠ̃K2∥op = o(1) a.s. Note also that ∥AΠ̃K2 −

A∥2
op ≤

∑∞
j=K2 +1 ∥Ahsj∥2 + |R|, where hsj and R are defined as in our proof of Theorem 5. Since

A is Hilbert-Schmidt, we have
∑∞
j=K2 +1 ∥Ahsj∥2 = o(1) a.s. It thus only remains to show that

|R| = o(1) a.s. We know from Lemma S4 that ∥Ĉzz − Czz∥op = O(T−1/2 log3/2 T ) a.s., and hence

O

 K1∑
j=1

µjτ1,j

 K2∑
j=1

τ2,j∥Ĉzz − Czz∥op = o(1), a.s. (S3.62)

As shown in Lemma S4, we have ∥Ĉzv∥op = O(T−1/2 log1/2 T ), a.s., and also find that

∥S∥op

K2∑
j=1

τ2,j ≤ (O(T−1/2 log1/2 T ) +O(a−1/2
1 T−1 log T ))

K2∑
j=1

τ2,j

= o(log−1 T ) + o(a−1/2
1 T−1/2 log−1/2 T ) = o(1), a.s. (S3.63)

by the definition of S. Moreover,

∥T ∥op

K2∑
j=1

τ2,j ≤ O

 ∞∑
j=K1 +1

µj

 K2∑
j=1

τ2,j = o(1), a.s. (S3.64)

From (S3.9), (S3.62), (S3.63), and (S3.64), it immediately follows that |R| = o(1) a.s.

S3.3.2 Refinements of the general asymptotic results for the F2SLSE

We in this section provide a complementary result to Theorem 8 for the case where ρν/2+2 ≥ ςν+δζ .
Specifically, the following can be shown:
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Theorem 8 (Continued). Let everything as in Theorem 8 but with ρν/2 + 2 ≥ ςν + δζ . Then,
Theorem 6 holds and

∥A(Π̃K2 − ΠK2)ζ∥ = Op(α−1/2
1 max{logα2,α

(ρν/2−ςν−δζ+2)/ρν
2 }),

∥A(ΠK2 − I)ζ∥ = Op(α
(1/2−ςν−δζ)/ρν
2 ).

Our proof of the above result is contained in the proof of Theorem 8 given in Section S3.1, and
hence omitted.

S4 Appendix to Section 5 on “Numerical studies”

S4.1 Appendix to Section 5.1

We show that the simulation DGP considered in Section 5.1 satisfies the employed assumptions.
From our construction of the variables ({yt, xt, zt, ut, vt}t≥1) and operators (A and B) in Section 5.1
and from Theorem 2.7 of Bosq (2000), it is not difficult to show that Assumptions M and M∗ are
satisfied. Moreover, this setup simplifies the representation of the eigenvalues and eigenfunctions
associated with the FIVE and F2SLSE. Specifically, we have λ2

j = b2
jµ

2
j , ν2

j = b4
jµ

2
j , fj = ξj = hj =

gj , ⟨zt, gj⟩ ∼ N (0, µ2
j ) and ⟨xt, gj⟩ = ⟨ϑBzt, gj⟩ + ⟨vt, gj⟩ ∼ N (0, (ϑ2b2

j + 1)µ2
j ). Since E[∥xt∥4] < ∞

and E[∥zt∥4] < ∞, we find the following: for some c◦ > 0,

E[∥⟨zt, ξj⟩xt∥2] ≤ E[|⟨zt, ξj⟩|4]1/2E[∥xt∥4]1/2 ≤ c◦λ
2
j , (S4.1)

E[∥⟨xt, ξj⟩zt∥2] ≤ E[|⟨xt, ξj⟩|4]1/2E[∥zt∥4]1/2 ≤ c◦λ
2
j . (S4.2)

Moreover, we have
|⟨Afj , ξℓ⟩| = 2j−na1{j = ℓ} ≤ 2j−na/2ℓ−na/2.

From these results and the fact that {xt, zt}t≥1 is an iid sequence, Assumptions E1, E1∗ and E2
are also satisfied. It is obvious that Assumptions E2∗.(a)-(d) are satisfied from our construction of
the variables and operators, and Assumption E2∗.(e) can be shown to hold from the fact hj = gj .
We next note that

|⟨hj ,Bgℓ⟩| ≤ bj1{j = ℓ} ≤ j−nb/2ℓ−nb/2,

and, in the considered setup, ρν = 4nb + 4 and thus nb/2 ≤ ρν/4 + 1/2. Therefore, Assumption
E2∗.(f) is satisfied. Lastly, it can also be shown that Assumption E2∗.(g) holds from similar
arguments used to show (S4.1) and (S4.2) and that {zt}t≥1 is an iid sequence and Cxzhj = Cxzgj =
λj .
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S4.2 Appendix to Section 5.3

In Section 5.3, we compute the local likelihood estimate of log p◦
t using random samples {si,t}ni=1

drawn from the distribution p◦
t . Consider the following log-likelihood:

l({si,t}ni=1) =
n∑
i=1

log pt(si,t) − n

(∫
pt(v)dv − 1

)
. (S4.3)

Under some local smoothness assumptions (Loader, 1996), we can obtain a localized version of
(S4.3) by approximating log pt(s) using polynomial functions, as follows.

l({si,t}ni=1)(s) =
n∑
i=1

w

(
si,t − s

hs

)
H(si,t − s;βt) − n

∫
w

(
v − s

hs

)
exp(H(v − s;βt))dv, (S4.4)

where w(·) is a suitable weight function, hs is a bandwidth, and H(v;βt) is polynomial in v with
coefficients βt, i.e., H(v;βt) =

∑q
j=0 βj,tv

j for some nonnegative integer q. For a fixed s ∈ [0, 1], let
β̂t be the maximizer of (S4.4), then the local likelihood log-density estimate is given by ̂log pt(s) =
β̂0,t. By repeating this procedure for a fine grid of points and interpolating the results as described
by Loader (2006, Chapter 12), we can obtain ̂log pt. In our simulation experiment in Section 5.3, w(·)
is set to the tricube kernel that is used in many examples given by Loader (2006), q = 1, and hs is
set to the nearest neighbor bandwidth covering 33.3% of observations (Loader, 2006, Section 2.2.1).

S4.3 Appendix to Section 5.4

We here define a measure of worker’s skill similar to Peri and Sparber’s (2009) measure of occupation-
specific relative provision of communication versus manual skills. Specifically, we use the O*Net
ability survey data,1 in which the importance of each of 52 distinct abilities required by each oc-
cupation is quantified. Using the data, we construct the communication skill measure (c◦

j ) and the
manual skill measure (m◦

j ) for each occupation j, where the definitions of communication and man-
ual skills are equivalent to the extended definitions in Table A.1 of Peri and Sparber (2009). We
merge the values of c◦

j and m◦
j to individuals in the 2000 census using the monthly US Current

Population Survey (CPS) data. Then, as done similarly by Peri and Sparber (2009), the measure
of occupation-specific skill intensity (sj) is obtained by converting the value of c◦

j/m
◦
j to its per-

centile score (s◦
jt) for each month in 2000 and averaging the monthly scores for each occupation j,

i.e., sj = 12−1∑12
t=1 s

◦
jt. The number of distinct skill levels, sj , is 223, and, by construction, each

occupation is uniquely identified by the skill score sj ∈ [0, 1].2 In Table S3, we report occupations
with the lowest and highest scores of relative communication skill provision.

In addition to estimation results reported in Section 5.4, we examine the null hypothesis H0 :
1Version 24, provided by the US Department of Labor.
2A similar rescaling procedure is taken by Peri and Sparber (2009). Specifically, they first converted the values of

c◦
j and m◦

j into their percentile scores in 2000 for each j, and then their measure of relative provision of communication
versus manual skills is given by the ratio of the percentile scores for each j. In contrast, we first take the ratio of c◦

j

and m◦
j and then convert the ratio into the percentile score for each j. This is to ensure that our measure of relative

communication skill provision takes values in [0,1].
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A∗ψ = 0 using the significance test given in Section S7. Note that ψ can be any arbitrary element
of H, but here we consider only a few cases, where ψ ∈ {ζj(3)}3

j=1, for the purpose of illustration.
Then, by testing H0, we can examine whether the average of changes in the wages of native workers
in the occupations of which s ∈ [(j − 1)/3, j/3] is affected by an inflow of immigrants. Similarly
to the simulation experiments in Section S7, we set D to ⌈T 1/3⌉ and compute the critical values
based on 10,000 Monte Carlo simulations. The testing results are reported in Table S1. In the
table, we found that an inflow of immigrants significantly affects the wages of native workers who
are in occupations intensive in either manual or communication skills.

Table S1: Significance testing results

ψ ζ1(3) ζ2(3) ζ3(3)

Test statistic 0.00050∗ 0.00038 0.00084∗∗

Notes: We use ∗ and ∗∗ to denote rejection at 10% and 5% significance levels, respectively.

S4.4 Additional tables

Figure S1: Simulation results for Experiment 1: boxplots of the empirical MSEs (T = 250)

(a) (na, nb) = (3, 3/4) (b) (na, nb) = (3, 1.5)

(c) (na, nb) = (5, 3/4) (d) (na, nb) = (5, 1.5)

Notes: Boxplots of the empirical MSEs of the FIVE (red), the F2SLSE (blue) and the RIVE (green) are reported
for each value of the first-stage functional coefficient of determinations r2 ∈ {0.1, 0.2, 0.3, 0.4, 0.5}.
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Table S2: Simulation results for Experiment 3: empirical MSEs (a1, a2 ≥ 0.6)

Sparse Design Exponential Design

n 100 150 100 150

T 200 500 200 500 200 500 200 500

Loader’s

FIVE 0.185 0.152 0.174 0.149 0.314 0.194 0.255 0.173
F2SLSE 0.188 0.151 0.174 0.148 0.313 0.188 0.256 0.170
RIVE 0.194 0.154 0.179 0.150 0.342 0.205 0.276 0.174
FLSE 0.248 0.221 0.206 0.183 0.419 0.347 0.322 0.260

Silverman’s

FIVE 0.273 0.231 0.222 0.194 0.339 0.242 0.271 0.207
F2SLSE 0.275 0.228 0.225 0.193 0.352 0.234 0.277 0.201
RIVE 0.271 0.226 0.224 0.192 0.342 0.237 0.278 0.199
FLSE 0.351 0.318 0.267 0.240 0.422 0.350 0.319 0.257

Notes: Based on 1,000 replications. Each cell reports the empirical mean squared error (MSE) of the four considered

estimators: FIVE, F2SLSE, Benatia et al.’s (2017) RIVE and Park and Qian’s (2012) FLSE.

Table S3: Occupations with the lowest and highest communication skill intensity in 2000 (denoted s)

Four occupations with the lowest s s

Pressing machine operators (clothing) 0.0010
Construction Trades 0.0035
Machine operators 0.0235
Garbage and recyclable material collectors 0.0242

Four occupations with the highest s s

Chief executives and public administrators 0.9926
Operations and systems researchers and analysts 0.9954
Management Analysts 0.9985
Economists, market researchers, and survey researchers 1.0000

S5 Computation

We here only describe how to compute the FIVE Â from observations {yt, xt, zt}Tt=1; in fact, com-
putation of the F2SLSE Ã can be done with only slight modifications and is thus omitted. Specif-
ically, for each T , Â is a finite rank operator acting on the Hilbert space of square-integrable func-
tions defined on [0, 1], so it allows the following representation (Gohberg, Goldberg, and Kaashoek,
2013, Chapter 8):

Âυ(s1) =
∫ 1

0
κ̂(s1, s2)υ(s2)ds2, s1, s2 ∈ [0, 1], (S5.1)
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where υ is any arbitrary random or nonrandom element taking values in H (for example, υ can
be xt or any fixed element in H). Therefore, computation of Â reduces to obtaining an explicit
formula for the integral kernel κ̂(s1, s2) for s1, s2 ∈ [0, 1]. We here present a way to compute this
integral kernel from the eigenelements of Ĉ∗

xzĈxz and ĈxzĈ∗
xz, which can be obtained by the standard

functional principal component method; see e.g., Ramsay and Silverman (2005, Chapter 8) and
Horváth and Kokoszka (2012, Chapter 3).

Let {ξ̂j}j≥1 be the collection of the eigenfunctions of ĈxzĈ∗
xz, and then note that Ĉxz f̂j = λ̂j ξ̂j

and Ĉ∗
xz ξ̂j = λ̂j f̂j , where λ̂j = ⟨Ĉxz f̂j , ξ̂j⟩ (Bosq, 2000, Section 4.3). Then, Â is given by

Â = Ĉ∗
yzĈxz(Ĉ∗

xzĈxz)−1
K = 1

T

T∑
t=1

K∑
j=1

λ̂−1
j ⟨ξ̂j , zt⟩f̂j ⊗ yt. (S5.2)

It is quite obvious from (S5.2) that the integral kernel κ̂(s1, s2) for s1, s2 ∈ [0, 1] is given by
T−1∑T

t=1
∑K
j=1 λ̂

−1
j ⟨ξ̂j , zt⟩f̂j(s1)yt(s2), and this can be equivalently expressed as follows:

κ̂(s1, s2) = T−1F̂K(s1)′diag({λ̂−1
j }K

j=1)ĜKYT (s2), (S5.3)

where YT (s) = (y1(s), . . . , yT (s))′, F̂K(s) = (f̂1(s), . . . , f̂K(s))′ for s ∈ [0, 1], and ĜK is the K ×T
matrix whose (i, t)-th element is given by ⟨ξ̂i, zt⟩. Thus, for each choice of s1 and s2, κ̂(s1, s2)
can be obtained by simple matrix multiplications. In view of (S5.2) and (S5.3), Âυ, for any
arbitrary random or nonrandom element υ taking values in H, is computed as follows: Âυ(s) =
T−1F̂K(υ)′diag({λ̂−1

j }K
k=1)ĜKYT (s), where s ∈ [0, 1] and F̂K(υ)′ = (⟨f̂1, υ⟩, . . . , ⟨f̂K, υ⟩)′.

Computing the FIVE requires choosing α = a
−1 defined in (3.2). The eigenvalue λ̂2

j of Ĉ∗
xzĈxz

depends on the scales of xt and zt, and this needs to be considered in choosing α. In practice, it
thus may be of interest to have a scale-invariant choice of α. This can be done by computing the
contribution of each of the eigenvalues to a magnitude of the operator Ĉxz and then viewing α−1 as
the threshold parameter for such computed contributions. We illustrate an easy-to-implement way
here. Define r̂k = λ̂2

k

/∑∞
j=1 λ̂

2
j . Since ∥Ĉxz∥2

HS =
∑T
j=1 λ̂

2
j , the ratio r̂k computes the contribution of

the k-th eigenvalue to the squared Hilbert-Schmidt norm of Ĉxz. Of course, the above quantity does
not depend on the scales of xt and zt, and hence, a scale-invariant version of (3.2) may be written as

K = #{j : r̂k > 1/αT }, (S5.4)

where αT (> 1) depends only on T and diverges to infinity as T increases. An alternative way is
to directly choose K, instead of α, as the minimal number of the eigenvalues whose sum exceeds a
pre-specified proportion of ∥Ĉxz∥2

HS. (Of course, even in this case, it is more natural to understand
K as a random variable.) To be more specific, let

R̂k =
k∑
j=1

λ̂2
j

/ ∞∑
j=1

λ̂2
j and K = min

k
{k : R̂k > (1 − 1/αT )}, (S5.5)

where αT is similarly defined as in (S5.4). This choice is obviously scale-invariant as well.
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It is also possible to pursue a data-driven selection of αT in (S5.4) and (S5.5), such as a cross-
validation approach, proposed by Benatia et al. (2017) developed in an iid setting. Such a procedure
may be adapted for dependent non-iid data, but this will not be further studied in this paper.

S6 FIVE with a general weighting operator

The theoretical results given for the FIVE in Section 3 can be extended to the case involving a
general weighting operator as in Euclidean space setting. Let W be a self-adjoint positive definite
operator, and define

zt = W1/2zt.

If ker Cxz = {0}, due to the positive definiteness of W, A is uniquely identified from the equation:
C∗
yz̄Cxz̄ = AC∗

xz̄Cxz̄. A natural extension of the FIVE can be defined as follows:

Â(W) = Ĉ∗
yzĈxz

(
Ĉ∗
xzĈxz

)−1

K
= Ĉ∗

yzWĈxz
(
Ĉ∗
xzWĈxz

)−1

K
. (S6.1)

In this case, the theoretical results given in Section 3 can easily be extended by an obvious conversion
of the assumptions given for zt into those for zt. This can further be extended to the case with a
possibly random weighting operator Ŵ satisfying some conditions, which will be discussed in this
section.

It will be useful to define additional notation. We let

z̆t = Ŵ1/2zt, (S6.2)

and let Â(Ŵ) (resp. K) be defined by replacing W (resp. λj) with Ŵ in (S6.1) (the j-th ordered
eigenvalue λ̆j of Ĉ∗

xz̆Ĉxz̆ = Ĉ∗
xzŴĈxz in (3.2)). Let L+ be the collection of self-adjoint positive

definite operators in LH, and write the spectral representations of C∗
xz̄Cxz̄ and Cxz̄C∗

xz̄ as

C∗
xz̄Cxz̄ =

∞∑
j=1

λ̄2
j f̄j ⊗ f̄j and Cxz̄C∗

xz̄ =
∞∑
j=1

λ̄2
j ξ̄j ⊗ ξ̄j , (S6.3)

respectively. We also let Π̄K denote the projection onto the span of the first K eigenfunctions of
Ĉ∗
xz̆Ĉxz̆.

Assumption S3. Ŵ ∈ L+ a.s. and ∥Ŵ − W∥op = Op(T−1/2) for some fixed W ∈ L+.

Note that the F2SLSE discussed in Section 4 does not satisfy Assumption S3 as (Ĉzz)−1
K1

diverges
in operator norm.

Theorem S1. Suppose that Assumption S3 holds.

(i) If the assumptions in Theorem 1 when λj is replaced with λ̄j are also satisfied,

∥Â(Ŵ) − AΠ̄K∥2
op = Op(T−1α) and ∥A(I − Π̄K)∥2

op = op(1).
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(ii) If the assumptions in Theorem 2 when λj is replaced with λ̄j are also satisfied,√
T/θ̄K(ζ)(Â(Ŵ) − AΠ̄K)ζ d→ N (0, Cuu) and |θ̆K(ζ) − θ̄K(ζ)| p→ 0, (S6.4)

where
θ̄K(ζ) := ⟨ζ, (C∗

xz̄Cxz̄)−1
K C∗

xz̄Cz̄z̄Cxz̄(C∗
xz̄Cxz̄)−1

K ζ (S6.5)

and θ̆K(ζ) is defined by replacing z̄t with z̆t in the above.

Proof. We note that

Â(Ŵ) = Ĉ∗
yz̆Ĉxz̆(Ĉ∗

xz̆Ĉxz̆)−1
K = AΠ̄K + Ĉ∗

uz̆Ĉxz̆(Ĉ∗
xz̆Ĉxz̆)−1

K . (S6.6)

From Assumption S3 and our construction of K, the following can be shown: (a) ∥Ĉuz̆∥HS =
Op(T−1/2), (b) ∥Ĉxz̆(Ĉ∗

xz̆Ĉxz̆)
−1
K ∥op = a

−1/2 = α1/2, and (c) ∥Ĉ∗
xz̆Ĉxz̆ − C∗

xz̄Cxz̄∥op = ∥Ĉ∗
xzŴĈxz −

C∗
xzWCxz∥op = Op(T−1/2). Combining these with similar arguments used in our proofs of Theorems

1 and 2, the desired results are obtained.

Theorem S2. Suppose that Assumption S3 holds.

(i) If the assumptions in Theorem 3 when λj, fj and ξj are, respectively, replaced with λ̄j, f̄j
and ξ̄j are also satisfied, then ∥Â(Ŵ) − AΠ̄K∥2

op = Op(T−1α) as in Theorem S1 and

∥A(I − Π̄K)∥2
op = Op(T−1αmax{1,α(3−2ς)/ρ} + α(1−2ς)/ρ). (S6.7)

Thus, ∥Â(Ŵ) − A∥op = op(1) for any ρ > 2 and ς > 1/2.

(ii) If the assumptions in Theorem 4 when λj, fj and ξj are, respectively, replaced with λ̄j, f̄j
and ξ̄j are also satisfied, then Theorem S1.(ii) holds and

∥A(Π̄K − ΠK)ζ∥ =

Op(T
−1/2) if ρ/2 + 2 < ς + δζ ,

Op(T−1/2 max{logα,α(ρ/2−ς−δζ+2)/ρ}) if ρ/2 + 2 ≥ ς + δζ ,

∥A(ΠK − I)ζ∥ = Op(α(1/2−ς−δζ)/ρ).

Proof. Let f̆j be the eigenfunction corresponding to the j-th largest eigenvalue of Ĉ∗
xz̆Ĉxz̆ and let

f̄sj = sgn{⟨f̆j , f̄j⟩}f̄j . Using the fact that ∥Ĉ∗
xz̆Ĉxz̆ − C∗

xz̄Cxz̄∥op = ∥Ĉ∗
xzŴĈxz − C∗

xzWCxz∥op =
Op(T−1/2) and nearly identical arguments used in our proof of (S2.15) and (S2.16), the following
can be shown under the assumptions employed for (i):

∥f̆j − f̄sj ∥2 = Op(j2T−1), (S6.8)

∥A(f̆j − f̄sj )∥2 = Op(T−1)(j2−2ς + jρ+2−2ς). (S6.9)

Then, the desired result given in (i) can easily be obtained from (S6.8), (S6.9) and similar arguments
that we used to establish (S2.17) and (S2.18).
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Moreover, under the assumptions employed for (ii), the following can be shown by nearly iden-
tical arguments that are used to obtain (S2.33):

⟨f̆j − f̄ sj , ζ⟩2 = Op(T−1)j−2δζ+2 +Op(T−1)j−2δζ+2+ρ(1 + op(1)). (S6.10)

The remaining proof is almost identical to that of Theorem 4; by using (S6.8)-(S6.10), it can be
shown that ∥Ĉxz̆(Ĉ∗

xz̆Ĉxz̆)
−1
K ζ−Cxz̄(C∗

xz̄Cxz̄)−1
K ζ∥ = op(1). We can also analyze the term ∥A(Π̄K−I)ζ∥,

as ∥A(Π̂K − I)ζ∥ in our proof of Theorem 4. The details are omitted.

S7 Significance testing in functional endogenous linear model

Practitioners may often be interested in examining if various characteristics of yt depend on xt.
For example, in our empirical application where yt(s) represents the wage of workers of skill level
s ∈ [0, 1], practitioners might be interested in examining if the average wage (

∫ 1
0 yt(s)ds) is affected

by the considered explanatory variable xt. Likewise, because various characteristics of yt can be
written as ⟨yt, ψ⟩ for ψ ∈ H, we in this section develop a significance test for examining if ⟨yt, ψ⟩ is
affected by xt. Specifically, for any ψ ∈ H, observe that

⟨yt, ψ⟩ = ⟨xt,A∗ψ⟩ + ⟨ut, ψ⟩.

We then want to test the following null and alternative hypotheses:

H0 : A∗ψ = 0 v.s. H1 : A∗ψ ̸= 0. (S7.1)

The null hypothesis means that the characteristic ⟨yt, ψ⟩ of yt does not linearly depend on xt. Note
that Ĉyzψ = ĈxzA∗ψ + Ĉuzψ, and hence Ĉyzψ reduces to Ĉuzψ if the null is true; moreover, in this
case,

√
T Ĉuzψ turns out to weakly converge to a H-valued Gaussian random element under relevant

assumptions. Using this property, we develop a significance test, which is described by Theorem S3.

Theorem S3. Suppose that (i) Cuu is positive definite, (ii) either Assumption M or Assumption
M∗ holds, (iii) Ā is the FIVE (if Assumption M holds) or the F2SLSE (if Assumption M∗ holds)
and the other assumptions for ∥Ā − A∥op

p→ 0 are satisfied (see Theorems 1, 3, 5 and 7). Let
ūt = yt − Āxt and let J denote T∥ĉ−1

ψ Ĉyzψ∥2, where ĉ2
ψ = ⟨T−1∑T

t=1 ūt ⊗ ūt(ψ), ψ⟩. Then, the
following hold (below κj ∼iid N (0, 1)).

(i) J d→
∑∞
j=1 µjκ2

j under H0 of (S7.1) while J p→ ∞ under H1 of (S7.1).

(ii) Let q̂1−a0 be the 100(1−a0)% quantile of
∑D
j=1 µ̂jκ2

j for a0 ∈ (0, 1), D → ∞ and D = o(T 1/2).
Then P {J > q̂1−a0} → a0 under H0 of (S7.1) while P {J > q̂1−a0} → 1 under H1 of (S7.1).

Proof. For notational convenience, let cψ = ⟨Cuuψ,ψ⟩1/2. To show (i), first note that
√
T Ĉyzψ =

√
T ĈxzA∗ψ +

√
T Ĉuzψ. (S7.2)
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Under H0, the first term in (S7.2) is equal to zero, and thus
√
T Ĉyzψ = T−1/2∑T

t=1 cψψt, where
ψt = c−1

ψ ⟨ut, ψ⟩zt. Then, note that E[ψt] = 0, E[ψt ⊗ ψt] = Czz and {⟨ψt, ζ⟩}t≥1 is a real-
valued martingale difference sequence for any ζ ∈ H. Thus, by applying nearly identical argu-
ments that are used to show (S2.8) and (S2.9), it can be shown that, for any ζ ∈ H and m >

0, T−1/2∑T
t=1⟨ψt, ζ⟩

d→ N (0, ⟨Czzζ, ζ⟩) and lim supn→∞ lim supT P(
∑∞
j=n+1⟨T−1/2∑T

t=1 ψt, gj⟩2 >

m) = 0 since Czz is Hilbert-Schmidt. Therefore, T−1/2∑T
t=1 ψt

d→ N (0, Czz), and we note that
N (0, Czz)

d=
∑∞
j=1

√
µ
j
κjgj , where κj ∼iid N (0, 1) across j. The rest of the proof follows from the

consistency of ĉψ (Corollaries 1 and 2), continuous mapping theorem, and orthonormality of {gj}j≥1.
Under H1, the first term in (S7.2) is not equal to zero, and, by combining the results given

above, we find that ∥
√
T Ĉyzψ∥2 = T∥CxzA∗ψ∥2+Op(1) holds in this case. Since ker Cxz = {0} under

either of Assumptions M or M∗, we find that ∥CxzA∗ψ∥2 > 0 under H1, and therefore J p→ ∞.
To show (ii), note that |

∑∞
j=1 µjκ2

j −
∑D
j=1 µ̂jκ2

j | ≤
∑D
j=1 |µj− µ̂j ||κ2

j |+
∑∞
j=D+1 µjκ2

j . The first
term in the right hand side is bounded above by supj≥1 |µj − µ̂j |

∑D
j=1 κ2

j , where D−1∑D
j=1 κ2

j =
Op(1) by the Markov’s inequality, and supj≥1 |µj− µ̂j | ≤ ∥Ĉzz−Czz∥op ≤ Op(T−1/2) under Assump-
tion M.(f) and Lemma 4.2 in Bosq (2000). Since Czz is nonnegative, we also have E[|

∑∞
j=D+1 µjκ2

j |] ≤∑∞
j=D+1 µj → 0 as D → ∞, which implies that

∑∞
j=D+1 µjκ2

j is op(1). Since D → ∞ and D/
√
T →

0 as T → ∞, we find that |
∑∞
j=1 µjκ2

j −
∑D
j=1 µ̂jκ2

j | = op(1). From this result, we find that η̂1−a0

converges to η1−a0 (see e.g., Lemma 21.2 of van der Vaart, 1998), where η1−a0 is the 100(1 − a0)%
quantile of the distribution function G of

∑∞
j=1 µjκ2

j . It is then obvious that 1 − P {J > η̂1−a0}
converges to G(η1−a0). By combining this with the previous result Theorem S3.(i), the desired lim-
iting behavior of P{J > q̂1−a0} is established.

Theorem S3.(i) shows that the asymptotic null distribution of the proposed statistic does not
depend on ψ ∈ H, but does depend on all the eigenvalues of Czz; this means that there are
infinitely many nuisance parameters. However, we can approximate the limiting distribution using
the estimated eigenvalues of Czz and thus implement a valid asymptotic test without any significant
difficulty, as detailed in Theorem S3.(ii); once the estimated eigenvalues µ̂j are obtained, then the
approximate quantile q̂1−a0 for any significance level a0 ∈ (0, 1) can easily be computed by Monte
Carlo simulations. Thus, implementation of the proposed test in practice is straightforward, which
will be further illustrated in Section 5.

Remark S1. The test proposed in Theorem S3 can obviously be extended to examine the following
hypotheses:

H0 : A∗ψ = ψ0 v.s. H1 : A∗ψ ̸= ψ0, (S7.3)

for any ψ0 ∈ H. The extension only requires redefining J as T∥ĉ−1
ψ (Ĉyzψ− Ĉxzψ0)∥2, and this does

not make any change in the convergence results given in Theorem S3.

Finite sample performance

We hereby explore the finite sample performance of the test for examining the null and alternative
hypotheses (S7.3), which is proposed in Remark S1 of Section S7. To this end, we consider the DGP
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employed in Section 5.2. The test statistic J is computed with ĉψ obtained from the FIVE (see
Theorem S3 and Corollary 1). For each realization of the DGP, the critical value at 5% significance
level is obtained from 500 Monte Carlo simulations of the distribution given in Theorem S3.(ii) with
D = ⌈T 1/3⌉. The finite sample properties of the test are investigated by computing its rejection
probabilities when A∗ζ = ψ0 + cζψ̃ holds, where ζ is defined in Section 5.2, cζ ∈ {0, 0.01, . . . , 0.5},
and ψ̃ is a perturbation element with unit norm and is randomly generated for each realization of
the DGP. Specifically, ψ̃ = ψ̈/∥ψ̈∥ and ψ̈ =

∑11
j=1 q̈3,jξj , where q̈3,j ∼iid N(0, 0.52(j−1)) across j and

E[q̈1,iq̈3,j ] = 0 for all i and j. This section only considers the case where ση = 0.5; in unreported
simulations, we also investigated the performance of the test (i) when ĉψ is computed from the
F2SLSE and (ii) when ση is given by 0.9, but found no significant difference.

Figure S2: Simulation results for Experiment 2: rejection probability of J when A∗ψ = ψ0 + cζψ̃

(a) Sparse Design (b) Exponential Design (c) Noisy Design

Notes: Based on 1,000 Monte Carlo replications. The rejection probability of J when ĉψ is computed from the FIVE
is reported according to the value of cζ ∈ {0, 0.01, . . . , 0.5}.

Figure S2 shows the rejection probability of the test depending on cζ . The dashed and solid lines
indicate the rejection probabilities when T = 200 and 500, respectively, and the dotted horizontal
lines indicate the nominal size of the test. As expected, the proposed test exhibits a higher power
as cζ gets deviated from zero, and it seems that the power of the test more rapidly increases in the
sparse design compared to those in the other designs. Moreover, in all the considered cases, the
test has excellent size control, as can be seen from the case where cζ = 0.
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