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Abstract

This supplement contains all the remaining proofs, the detailed explanation of the
Double-POET (Choi and Kim, 2023) estimation procedure and its asymptotic theory,
data generating process for simulation study, and additional tables for empirical study.

S Appendix

Let λmin(A) and λmax(A) denote the minimum and maximum eigenvalues of matrix A,

respectively. In addition, we denote by ∥A∥F , ∥A∥2 (or ∥A∥ for short), ∥A∥1, ∥A∥∞, and

∥A∥max the Frobenius norm, operator norm, l1-norm, l∞-norm and elementwise norm, which

are defined, respectively, as ∥A∥F = tr1/2(A′A), ∥A∥2 = λ
1/2
max(A

′A), ∥A∥1 = maxj
∑

i |aij|,

∥A∥∞ = maxi
∑

j |aij|, and ∥A∥max = maxi,j |aij|. When A is a vector, the maximum norm

is denoted as ∥A∥∞ = maxi |ai|, and both ∥A∥ and ∥A∥F are equal to the Euclidean norm.

We denote diag(A1, . . . ,An) with the diagonal block entries as A1, . . . ,An.
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S.1 Rank Choice

To implement S-POET, we need to determine the rank k∗
sq and the number of factors, which

are unknown in practice. We note that each (s, q)th off-diagonal partitioned block Rh,sq in

(2.6) is a low-rank matrix, and each rank is less than or equal to the number of global factors

(i.e., k∗
sq ≤ k). Thus, to determine the rank and number of global factors, we can use the

data-driven methods proposed by Ahn and Horenstein (2013); Bai and Ng (2002); Onatski

(2010). For example, the rank k∗
sq can be determined by finding the largest singular value

gap such that maxi≤k̄sq(ξ̂i − ξ̂i+1), where k̄sq = min{ps, pq}. In this paper, to consistently

estimate k, we employ the modified version of the eigenvalue ratio method, introduced by

Choi and Kim (2023), based on Σ̂h.

S.2 Double-POET procedure

We decompose the covariance matrix of the sth continent as follows:

Σs = Σs
g +Σs

l +Σs
u.

Then, each component as well as Σs can be estimated by the Double-POET procedure (Choi

and Kim, 2023) as follows:

1. Given a sample covariance matrix, Σ̂
s
, using T observations, let {δ̂si , v̂si }

p
i=1 be the

eigenvalues and eigenvectors of Σ̂
s
in decreasing order. We compute

Σ̂
s,D
g = V̂

s
Γ̂

s
V̂

s′
,

where Γ̂
s
= diag(δ̂s1, . . . , δ̂

s
k) and V̂

s
= (v̂s1, . . . , v̂

s
k).

2. Define Σ̂
l,s

E as each pl × pl diagonal block of Σ̂
s

E = Σ̂
s
− Σ̂

s,D
g . For the lth block, let

{κ̂l,s
i , η̂l,si }pli=1 be the eigenvalues and eigenvectors of Σ̂

l,s

E in decreasing order. Then, we
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compute

Σ̂
s,D
l = Φ̂

s
Ψ̂

s
Φ̂

s′
,

where Ψ̂
s
= diag(Ψ̂

1
, . . . , Ψ̂

Ls

) for Ψ̂
l
= diag(κ̂l,s

1 , . . . , κ̂l,s
rl
), and the block diagonal

matrix Φ̂
s
= diag(Φ̂

1
, . . . , Φ̂

Ls

) for Φ̂
l
= (η̂l,s1 , . . . , η̂l,srl ) for l = 1, 2, . . . , Ls, where Ls is

the number of countries in continent s.

3. Let Σ̂
s

u = Σ̂
s
− Σ̂

s,D
g − Σ̂

s,D
l be the principal orthogonal complement. We apply the

adaptive thresholding method on Σ̂
s

u = (σ̂u,ij)p×p following Bickel and Levina (2008)

and Fan, Liao, and Mincheva (2013). Specifically, define Σ̂
s,D
u as the thresholded error

covariance matrix estimator:

Σ̂
s,D
u = (σ̂s,D

u,ij)ps×ps , σ̂s,D
u,ij =

 σ̂u,ij, i = j

sij(σ̂u,ij)I(|σ̂u,ij| ≥ τij), i ̸= j
,

where an entry-dependent threshold τij = τ(σ̂u,iiσ̂u,jj)
1/2 and sij(·) is a generalized

thresholding function (e.g., hard or soft thresholding; see Cai and Liu, 2011; Rothman,

Levina, and Zhu, 2009). The thresholding constant is determined by τ ≍ ωT , where

ωT is defined in Theorem 3.1.

4. The final estimator of Σs is then defined as

Σ̂
s,D

= Σ̂
s,D
g + Σ̂

s,D
l + Σ̂

s,D
u .

By using the proof of Theorem 3.1 of Choi and Kim (2023) and Assumption 3.1, we can

obtain the following results: for each continent s ∈ {1, . . . , S},

∥Σ̂
s,D
g −Σs

g∥max = OP (p
5
2
(1−a1)

√
log p/T + 1/p

5a1
2

− 3
2
−c), (S.1)

∥Σ̂
s,D
l −Σs

l ∥max = OP (ωT ), (S.2)

∥Σ̂
s,D
u −Σs

u∥max = OP (ωT ), (S.3)
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where ωT = p
5
2
(1−a1)+

5
2
c(1−a2)

√
log p/T + 1/p

5
2
a1− 3

2
+c( 5

2
a2− 7

2
) +mp/

√
pc(5a2−3).

S.3 Double-POET Using Lower-Frequency Data

To capture the global factor, local factor, and idiosyncratic components, we can apply the

Double-POET method. However, when considering international stocks, practitioners com-

monly use lower-frequency data to minimize the impact of different observation time points.

Let Σ̂h = T−α
∑Tα

t=1(yt − ȳ)(yt − ȳ)′ be the sample covariance matrix using d-day return

data. Then, d−1Σ̂h is used for the initial pilot estimator for covariance matrix Σ, since Σ̂h is

the amplified estimator by d, which slowly grows (see Remark S.1). Let Γ̂ = diag(δ̂1, . . . , δ̂k)

and V̂ = (v̂1, . . . , v̂k) be the leading eigenvalues and their corresponding eigenvectors of

d−1Σ̂h. Next, let Σ̂
l

E be the lth pl × pl diagonal block of Σ̂E = d−1Σ̂h − V̂Γ̂V̂
′
. Let

Ψ̂
l
= diag(κ̂l

1, . . . , κ̂
l
rl
) and Φ̂

l
= (η̂l1, . . . , η̂

l
rl
) be the leading eigenvalues and their cor-

responding eigenvectors of Σ̂
l

E. Let Ψ̂ = diag(Ψ̂
1
, . . . , Ψ̂

L
), Φ̂ = diag(Φ̂

1
, . . . , Φ̂

L
), and

Σ̂u = d−1Σ̂h − V̂Γ̂V̂
′
− Φ̂Ψ̂Φ̂

′
. Then, the Double-POET estimator is defined as follows:

Σ̂
D
= V̂Γ̂V̂

′
+ Φ̂Ψ̂Φ̂

′
+ Σ̂

D
u ,

where Σ̂
D
u is the thresholded error covariance matrix estimator based on Σ̂u = (σ̂u,ij)p×p

(Bickel and Levina, 2008; Fan, Liao, and Mincheva, 2013):

Σ̂
D
u = (σ̂D

u,ij)p×p, σ̂D
u,ij =

 σ̂u,ij, i = j

sij(σ̂u,ij)I(|σ̂u,ij| ≥ τij), i ̸= j
,

where an entry-dependent threshold τij = τ(σ̂u,iiσ̂u,jj)
1/2 and sij(·) is a generalized threshold-

ing function such as hard thresholding (sij(x) = x), soft thresholding (sij(x) = sgn(x)(|x| −

τij), where sgn(·) is the sign function) and the adaptive lasso (see Rothman, Levina, and

Zhu, 2009). The thresholding constant is determined by τ ≍ ωTα , where ωTα is defined in

Theorem S.1.
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Assumption S.1. Let d = T 1−α for α ∈ (0, 1). The sample covariance matrix using d-day

return data, Σ̂h = T−α
∑Tα

t=1(yt − ȳ)(yt − ȳ)′, satisfies

∥d−1Σ̂h −Σh∥max = OP (
√
log p/Tα).

Remark S.1. Assumption S.1 is similar to Assumption 3.1(iii) in Choi and Kim (2023).

However, to match the scale of Σh, the sample covariance matrix using d-day return data,

Σ̂h, needs to be divided by d. To illustrate this point, consider the case when p = 1 and

a collection of T i.i.d. random variables, {y1, . . . , yT}, where yt is a log-return defined as

yt = log xt−log xt−1 and xt is the asset price at time t. Assume that yt has a mean of zero and

a variance of σ2. We can obtain lower-frequency data by summing daily log-returns for each

d window size, and this is equivalent to sub-sampling based on the price data. The variance

of the resulting d-day return data is d× σ2. Therefore, we can compare the estimator σ̂h/d

with the true variance σ2, where σ̂h = T−α
∑Tα

t=1(yt− ȳ)2 using d-day log-returns. Using this

fact and Assumption 3.1(iii), we can impose the above element-wise convergence condition.

However, Structured-POET does not require this assumption because it can remove the scale

issue by using the correlation matrix and recovering with daily-based variance estimator D̂

in Section 2. In the simulation study, we used d−1Σ̂h for the initial sample covariance matrix.

Similar to the proofs of Choi and Kim (2023), we can show that Double-POET yields

the following convergence rates.

Theorem S.1. Suppose that mp = o(pc(5a2−3)/2) and Assumptions 3.1 and S.1 hold. Let

ωTα = p
5
2
(1−a1)+

5
2
c(1−a2)(

√
log p/Tα + 1/T (1−α)β) + 1/p

5
2
a1− 3

2
+c( 5

2
a2− 7

2
) + mp/

√
pc(5a2−3). If

mpω
1−q
Tα = o(1), we have

∥Σ̂
D
−Σ∥max = OP (ωTα) , (S.4)

∥(Σ̂
D
)−1 −Σ−1∥2 = OP

(
mpω

1−q
Tα + p

c
2
(1−a2)ωTα + p3(1−a1)

(√ log p

Tα
+

1

T (1−α)β

)
+

1

p3a1−2−c

)
.

(S.5)
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In addition, if a1 >
3
4
and a2 >

3
4
, we have

∥Σ̂
D
−Σ∥Σ =OP

(
mpω

1−q
Tα + p

11
2
−5a1+5c(1−a2)

( log p
Tα

+
1

T 2(1−α)β

)
+

1

p5a1−
7
2
−c(7−5a2)

+
m2

p

p5ca2−3c− 1
2

)
. (S.6)

Remark S.2. For simplicity, consider mp = O(1), a1 = 1, and a2 = 1, and ignore the log

order terms. Define the optimal α∗ = 2β
1+2β

(see Remark 3.2). With α = α∗, we have

∥Σ̂
D
−Σ∥Σ = OP

((
1

T
β

1+2β

+
1

p1−c
+

1

pc

)1−q

+

√
p

T
2β

1+2β

+
1

p
3
2
−2c

+
1

p2c−
1
2

)
,

∥Σ̂
S
−Σ∥Σ = OP

((
1√
T

+
1

p1−c
+

1

pc

)1−q

+
1

T
β

1+2β

+

√
p

T
2β

1+2β

+
1

p
3
2
−2c

+
1

p2c−
1
2

)
,

where Σ̂
D
is the Double-POET estimator defined in Section S.2 of the online supplement.

Specifically, when q ̸= 0, Structured-POET achieves a faster convergence rate under the

relative Frobenius norm. This is because utilizing all observations enhances the estimation

accuracy of each block diagonal matrix. However, when q = 0, the convergence rates of both

estimators are the same. This is because the estimation error of the correlations between

continents dominates the benefit mentioned above. Importantly, we note that this does not

mean that their estimation errors are exactly the same. In fact, based on our simulation

study, we can conjecture that Structured-POET has smaller convergence rates than Double-

POET for q = 0. That is, the relative ratio of the convergence rate of Structured-POET

with respect to that of Double-POET may be less than 1. Unfortunately, due to the complex

upper bound calculations used to handle high-dimensional matrices, we cannot theoretically

show this statement for q = 0. We leave this for a future study. Similarly, under the spectral

norm for the inverse matrix, the convergence rate of Structure-POET can be faster than

that of Double-POET when q ̸= 0.
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S.4 Proof of Theorem 3.1

We first provide useful lemmas below. Let {δi, vi}pi=1 be the eigenvalues and their corre-

sponding eigenvectors of Σ in decreasing order. Let {δ̄i, v̄i}ki=1 and {δ̃i, ṽi}ki=1 be the leading

eigenvalues and eigenvectors of BB′ and Σ̃g, respectively, where Σ̃g = (Σ̃
D
g + D̂

1
2 Θ̂D̂

1
2 ).

Define ΣE = ΛΛ′ +Σu and let Σl
E = ΛlΛl′ +Σl

u be the lth diagonal block of ΣE. For each

country l, let {κl
i, η

l
i}

pl
i=1 be the eigenvalues and eigenvectors of Σl

E in decreasing order, and

{κ̄l
i, η̄

l
i}

rl
i=1 for ΛlΛl′.

By Weyl’s theorem, we have the following lemma under the pervasive conditions.

Lemma S.1. Under Assumption 3.1(i), we have

|δi − δ̄i| ≤ ∥ΣE∥ for i ≤ k, |δi| ≤ ∥ΣE∥ for i > k,

and, for i ≤ k, δ̄i/p
a1 is strictly bigger than zero for all p. In addition, for each national

group l, we have

|κl
i − κ̄l

i| ≤ ∥Σl
u∥ for i ≤ rl, |κl

i| ≤ ∥Σl
u∥ for i > rl,

and, for i ≤ rl, κ̄
l
i/p

a2
l is strictly bigger than zero for all pl.

The following lemma presents the individual convergence rate of leading eigenvectors

using Lemma S.1 and the l∞ norm perturbation bound theorem of Fan, Wang, and Zhong

(2018).

Lemma S.2. Under Assumption 3.1(i), we have the following results.

(i) We have

max
i≤k

∥v̄i − vi∥∞ ≤ C
∥ΣE∥∞
p3(a1−

1
2
)
.
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(ii) For each national group l, we have

max
i≤rl

∥η̄li − ηli∥∞ ≤ C
∥Σl

u∥∞
p
3(a2− 1

2
)

l

.

Proof. (i) Let B = (b̃1, . . . , b̃k). Then, for i ≤ k, δ̄i = ∥b̃i∥2 ≍ pa1 from Lemma S.1 and

v̄i = b̃i/∥b̃i∥. Hence, ∥v̄i∥∞ ≤ ∥B∥max/∥b̃i∥ ≤ C/
√
pa1 . In addition, for Ṽ = (v̄1, . . . , v̄k), the

coherence µ(Ṽ) = pmaxi
∑k

j=1 Ṽ
2
ij/k ≤ Cp1−a1 , where Ṽij is the (i, j) entry of Ṽ. Thus, by

Theorem 1 of Fan, Wang, and Zhong (2018), we have

max
i≤k

∥v̄i − vi∥∞ ≤ Cp2(1−a1)
∥ΣE∥∞
γ̄
√
p

,

where the eigengap γ̄ = min{δ̄i − δ̄i+1 : 1 ≤ i ≤ k} and δk+1 = 0. By the similar argument,

we can show the result (ii).

Lemma S.3. Let R0 = (R0,sq)S×S, where R0,sq is the (s, q)th off-diagonal partitioned block

matrix for s, q ∈ {1, . . . , S}. Under Assumption 3.1, for s ̸= q, we have

∥Θ̂sq −R0,sq∥max = OP

(
p

5
2
(1−a1)

(√
log p/Tα + 1/T (1−α)β

))
.

Proof. For s ̸= q, let the singular value decomposition be R0,sq = UΞW′ =
∑k∗sq

i=1 ξiuiw
′
i,

where k∗
sq is the rank of R0,sq, the singular values are ξ1 ≥ ξ2 ≥ · · · ≥ ξk∗sq > 0, and the

matrices U = (u1, . . . , uk∗sq), W = (w1, . . . , wk∗sq) consist of the singular vectors. By Lipschitz

condition, ∥Rh −R0∥max = O(1/T (1−α)β), and Assumption 3.1 (iii), we have

∥R̂h −R0∥max = OP

(√
log p

Tα
+

1

T (1−α)β

)
. (S.7)

Note that R0,sq is k
∗
sq-rank matrix for s ̸= q ∈ {1, . . . , S}. By Weyl’s inequality, we have

|ξ̂i − ξi| ≤ ∥R̂h,sq −R0,sq∥F = OP

(
p
(√ log p

Tα
+

1

T (1−α)β

))
. (S.8)
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By Theorem 1 of Fan, Wang, and Zhong (2018), we have

∥ûi − ui∥∞ ≤ Cp2(1−a1)
∥R̂h,sq −R0,sq∥∞

pa1
√
p

≤ Cp2(1−a1)
∥R̂h,sq −R0,sq∥max

pa1−1
√
p

= OP

(
p

5
2
−3a1

(√ log p

Tα
+

1

T (1−α)β

))
. (S.9)

Similarly, we can obtain the same rate for ∥ŵi − wi∥∞. Note that ∥UΞ
1
2∥max = OP (1). By

(S.8) and (S.9), we have

∥ÛΞ̂
1
2 −UΞ

1
2∥max ≤ ∥Û(Ξ̂

1
2 −Ξ

1
2 )∥max + ∥(Û−U)Ξ

1
2∥max

= OP

(
p

5
2
(1−a1)(

√
log p/Tα + 1/T (1−α)β)

)
= o (1) .

Then, we have ∥Û∥max = OP (1/
√
pa1). Similarly, we can obtain ∥Ŵ∥max = OP (1/

√
pa1).

Therefore, we have

∥Θ̂sq −R0,sq∥max ≤ ∥Û(Ξ̂−Ξ)Ŵ
′
∥max + ∥(Û−U)Ξ(Ŵ−W)′∥max + 2∥(Û−U)ΞW′∥max

= OP (p
−a1∥Ξ̂−Ξ∥max +

√
pa1∥Û−U∥max) = OP

(
p

5
2
(1−a1)(

√
log p/Tα + 1/T (1−α)β)

)
.

Proof of Theorem 3.1.

Consider (3.2). Similar to the proofs of (S.24), we can show ∥(Σ̂
S
E)

−1−Σ−1
E ∥ = OP (mpω

1−q
T +

p
c
2
(1−a2)ωT ). Let Ĥ = Γ̃

1
2

g Ṽ
′
g(Σ̂

S
E)

−1ṼgΓ̃
1
2

g and H̃ = Γ̃
1
2 Ṽ

′
Σ−1

E ṼΓ̃
1
2 . Using the Sherman-

Morrison-Woodbury formula, we have

∥(Σ̂
S
)−1 −Σ−1∥ ≤ ∥(Σ̂

S
E)

−1 −Σ−1
E ∥+∆,

where ∆ = ∥(Σ̂
S
E)

−1ṼgΓ̃
1
2

g (Ik + Ĥ)−1Γ̃
1
2

g Ṽ
′
g(Σ̂

S
E)

−1 − Σ−1
E ṼΓ̃

1
2 (Ik + H̃)−1Γ̃

1
2 Ṽ

′
Σ−1

E ∥. Then,
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the right hand side can be bounded by following terms:

L1 = ∥((Σ̂
S
E)

−1 −Σ−1
E )ṼΓ̃

1
2 (Ik + H̃)−1Γ̃

1
2 Ṽ

′
Σ−1

E ∥,

L2 = ∥Σ−1
E (ṼgΓ̃

1
2

g − ṼΓ̃
1
2 )(Ik + H̃)−1Γ̃

1
2 Ṽ

′
Σ−1

E ∥,

L3 = ∥Σ−1
E ṼΓ̃

1
2 ((Ik + Ĥ)−1 − (Ik + H̃)−1)Γ̃

1
2 Ṽ

′
Σ−1

E ∥.

By Weyl’s inequality, we have λmin(ΣE) > c since λmin(Σu) > c and λmin(ΛΛ′) = 0.

Hence, ∥Σ−1
E ∥ = OP (1). Note that ∥ṼΓ̃

1
2∥ = OP (p

a1
2 ). By Lemma 7.1, we have ∥ṼgΓ̃

1
2

g −

ṼΓ̃
1
2∥max = OP (p

5(1−a1)
(√

log p/Tα + 1/T (1−α)β
)
+ 1/p5a1−4−c). Then, we have

∥Ĥ− H̃∥ ≤ ∥(Γ̃
1
2

g Ṽ
′
g − Γ̃

1
2 Ṽ

′
)(Σ̂

S
E)

−1(ṼgΓ̃
1
2

g − ṼΓ̃
1
2 )∥

+ ∥(Γ̃
1
2

g Ṽ
′
g − Γ̃

1
2 Ṽ

′
)(Σ̂

S
E)

−1ṼΓ̃
1
2∥+ ∥Γ̃

1
2 Ṽ

′
((Σ̂

S
E)

−1 −Σ−1
E )ṼΓ̃

1
2∥

= OP

(
pa1mpω

1−q
T + p

11
2
− 9

2
a1
(√ log p

Tα
+

1

T (1−α)β

)
+

1

p
9
2
(a1−1)−c

)
.

Since λmin(Ik + H̃) ≥ λmin(H̃) ≥ λmin(Σ
−1
E )λ2

min(ṼΓ̃
1
2 ) ≥ Cpa1 , we have ∥(Ik + H̃)−1∥ =

OP (1/p
a1). Then, L1 = OP (mpω

1−q
T ). In addition, L2 = OP (p

−a1
2 ∥ṼgΓ̃

1
2

g − ṼΓ̃
1
2∥) =

OP (p
11
2
(1−a1)(

√
log p/Tα + 1/T (1−α)β) + 1/p

11
2
a1− 9

2
−c) and L3 = OP (p

a1∥(Ik + Ĥ)−1 − (Ik +

H̃)−1∥) = OP (p
−a1∥Ĥ−H̃∥) = OP (mpω

1−q
T +p

11
2
(1−a1)(

√
log p/Tα+1/T (1−α)β)+1/p

11
2
a1− 9

2
−c).

Thus, we have

∆ = OP (mpω
1−q
T + p

11
2
(1−a1)(

√
log p/Tα + 1/T (1−α)β) + 1/p

11
2
a1− 9

2
−c). (S.10)

Therefore, we have

∥(Σ̂
S
)−1−Σ−1∥ = OP

(
mpω

1−q
T + p

c
2
(1−a2)ωT + p

11
2
(1−a1)

(√ log p

Tα
+

1

T (1−α)β

)
+

1

p
11
2
a1− 9

2
−c

)
.

(S.11)

Consider (3.3). We derive the rate of convergence for ∥Σ̂
S
−Σ∥Σ. The SVD decomposition

10



of Σ is

Σ = (Vp×k Φp×r Ωp×(p−k−r))


Γk×k

Ψr×r

Θ(p−k−r)×(p−k−r)



V′

Φ′

Ω′

 .

Note that Ω is used to denote the precision matrix in Section 2. Moreover, since all the

eigenvalues of Σ are strictly bigger than 0, for any matrixA, we have ∥A∥2Σ = OP (p
−1)∥A∥2F .

Then, we have

∥Σ̂
S
−Σ∥Σ ≤ p−1/2

(
∥Σ−1/2(ṼgΓ̃gṼ

′
g −BB′)Σ−1/2∥F

+ ∥Σ−1/2(Σ̃
D
l −ΛΛ′)Σ−1/2∥F + ∥Σ−1/2(Σ̃

D
u −Σu)Σ

−1/2∥F
)

=: ∆G +∆L +∆S.

By using the fact that S is fixed and proofs of (3.5) in Choi and Kim (2023), we can obtain

∆L = OP

(
p

5
2
(1−a1)+c(1−a2)

√
log p

T
+

1

p
5
2
a1− 3

2
−2c+ca2

+
mp

pca2

+ p
11
2
−5a1+5c(1−a2)

log p

T
+

1

p5a1−
7
2
−c(7−5a2)

+
m2

p

p5ca2−3c− 1
2

)
(S.12)

and

∆S = OP (p
−1/2∥Σ̃

D
u −Σu∥F ) = OP (∥Σ̃

D
u −Σu∥2) = OP (mpω

1−q
T ). (S.13)

We have

∆G = p−1/2

∥∥∥∥∥∥∥∥∥∥


Γ− 1

2V′

Ψ− 1
2Φ′

Θ− 1
2Ω′

 (ṼgΓ̃gṼ
′
g −BB′)

(
VΓ− 1

2 ΦΨ− 1
2 ΩΘ− 1

2

)
∥∥∥∥∥∥∥∥∥∥
F

11



≤ p−1/2
(
∥Γ−1/2V′(ṼgΓ̃gṼ

′
g −BB′)VΓ−1/2∥F + ∥Ψ−1/2Φ′(ṼgΓ̃gṼ

′
g −BB′)ΦΨ−1/2∥F

+ ∥Θ−1/2Ω′(ṼgΓ̃gṼ
′
g −BB′)ΩΘ−1/2∥F + 2∥Γ−1/2V′(ṼgΓ̃gṼ

′
g −BB′)ΦΨ−1/2∥F

+ 2∥Γ−1/2V′(ṼgΓ̃gṼ
′
g −BB′)ΩΘ−1/2∥F + 2∥Ψ−1/2Φ′(ṼgΓ̃gṼ

′
g −BB′)ΩΘ−1/2∥F

)
=: ∆G1 +∆G2 +∆G3 + 2∆G4 + 2∆G5 + 2∆G6.

In order to find the convergence rate of relative Frobenius norm, we consider the above terms

separately. Note that Γ = diag(δ1, . . . , δk) and V = (v1, . . . , vk). For ∆G1, we have

∆G1 ≤ p−1/2
(
∥Γ−1/2V′(ṼgΓ̃gṼ

′
g −VΓV′)VΓ−1/2∥F + ∥Γ−1/2V′(VΓV′ −BB′)VΓ−1/2∥F

)
=: ∆

(a)
G1 +∆

(b)
G1.

We bound the two terms separately. We have

∆
(a)
G1 ≤ p−1/2

(
∥Γ−1/2(V′Ṽg − I)Γ̃g(Ṽ

′
gV− I)Γ−1/2∥F + 2∥Γ−1/2(V′Ṽg − I)Γ̃gΓ

−1/2∥F

+ ∥(Γ−1/2(Γ̃g − Γ)Γ−1/2∥F
)
=: I + II + III.

By Lemmas S.2 and 7.1, we obtain ∥V′Ṽg − I∥F = ∥V′(Ṽg − V)∥F ≤ ∥Ṽg − V∥F =

OP (p
11
2
(1−a1)(

√
log p/Tα + 1/T (1−α)β) + 1/p

11
2
a1− 9

2
−c). Then, II = OP (p

5− 11
2
a1(
√

log p/Tα +

1/T (1−α)β) + 1/p
11
2
a1−4−c) and I is of smaller order. In addition, we have III ≤ ∥Γ−1/2(Γ̃g −

Γ)Γ−1/2∥ = OP (p
7
2
(1−a1)(

√
log p/Tα + 1/T (1−α)β) + 1/p

7
2
a1− 5

2
−c + 1/pa1−ca2) by Lemma 7.1.

Thus, ∆
(a)
G1 = OP (p

7
2
(1−a1)(

√
log p/Tα + 1/T (1−α)β) + 1/p

7
2
a1− 5

2
−c + 1/pa1−ca2). Similarly, we

have

∆
(b)
G1 ≤ p−1/2

(
∥Γ−1/2(V′Ṽ− I)Γ̃(Ṽ

′
V− I)Γ−1/2∥F + 2∥Γ−1/2(V′Ṽ− I)Γ̃Γ−1/2∥F

+ ∥(Γ−1/2(Γ̃− Γ)Γ−1/2∥F
)
=: I ′ + II ′ + III ′.

By sin θ theorem, ∥V′Ṽ − I∥ = ∥V′(Ṽ −V)∥ ≤ ∥Ṽ −V∥ = O(∥ΣE∥/pa1). Then, we have

12



II ′ = O(1/pa1−ca2) and I ′ is of smaller order. By Lemma S.1, we have III ′ = O(1/pa1−ca2).

Thus, ∆
(b)
G1 = O(1/pa1−ca2). Then, we obtain

∆G1 = OP

(
p

7
2
(1−a1)

(√ log p

Tα
+

1

T (1−α)β

)
+

1

p
7
2
a1− 5

2
−c

+
1

pa1−ca2

)
. (S.14)

For ∆G3, we have

∆G3 ≤ p−1/2∥Θ−1/2Ω′ṼgΓ̃gṼ
′
gΩΘ−1/2∥F + p−1/2∥Θ−1/2Ω′ṼΓ̃Ṽ

′
ΩΘ−1/2∥F =: ∆

(a)
G3 +∆

(b)
G3.

By Lemmas S.2 and 7.1, we have

∥Ω′Ṽg∥F =∥Ω′(Ṽg −V)∥F = O(
√
p∥Ṽg −V∥max)

= OP (p
11
2
(1−a1)(

√
log p/Tα + 1/T (1−α)β) + 1/p

11
2
a1− 9

2
−c).

Since ∥Γ̃g∥ = OP (p
a1), we have

∆
(a)
G3 ≤ p−1/2∥Θ−1∥∥Ω′Ṽg∥2F∥Γ̃g∥ = OP (p

21
2
−10a1(log p/Tα + 1/T 2(1−α)β) + 1/p10a1−

17
2
−2c).

Similarly, ∆
(b)
G3 = OP (1/p

5a1− 7
2
−2c) because ∥Ω′Ṽ∥F = O(

√
p∥Ṽ−V∥max) = OP (1/p

3a1−2−c)

by Lemma S.2. Then, we obtain

∆G3 = OP

(
p

21
2
−10a1

( log p
Tα

+
1

T 2(1−α)β

)
+

1

p10a1−
17
2
−2c

)
.

Similarly, we can show that the terms ∆G2, ∆G4, ∆G5 and ∆G6 are dominated by ∆G1 and

∆G3. Therefore, we have

∆G = OP

(
p

7
2
(1−a1)

(√ log p

Tα
+

1

T (1−α)β

)
+

1

p
7
2
a1− 5

2
−c

+
1

pa1−ca2

+ p
21
2
−10a1

( log p
Tα

+
1

T 2(1−α)β

)
+

1

p10a1−
17
2
−2c

)
. (S.15)
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Combining the terms ∆G, ∆L and ∆S together, we complete the proof of (3.3). □

S.5 Proof of Theorem S.1

We provide useful technical lemmas below.

Lemma S.4. Under Assumptions 3.1 and S.1, for i ≤ k, we have

|δ̂i/δi − 1| = OP

(
p1−a1(

√
log p/Tα + 1/T (1−α)β)

)
,

∥v̂i − vi∥∞ = OP

 1

p3(a1−
1
2
)−c

+ p
5
2
−3a1

(√ log p

Tα
+

1

T (1−α)β

) .

Proof. By Lipschitz condition and Assumption S.1, we have

∥d−1Σ̂h −Σ∥max = OP (
√
log p/Tα + 1/T (1−α)β). (S.16)

Then, we can obtain the first statement by Weyl’s theorem. We have

d−1Σ̂h = BB′ +ΛΛ′ +Σu + (d−1Σ̂h −Σ) = BB′ +ΣE + (d−1Σ̂h −Σ).

We can treat BB′ as a low rank matrix and the remaining terms as a perturbation matrix.

Note that ∥ΣE∥∞ = O(pc). By Theorem 1 of Fan, Wang, and Zhong (2018), Lemma S.2,

Assumption 3.1 and (S.16), we have

∥v̂i − vi∥∞ ≤ Cp2(1−a1)
∥ΣE∥∞
pa1

√
p

+ Cp2(1−a1)
∥d−1Σ̂h −Σ∥max

pa1−1
√
p

= OP

 1

p3(a1−
1
2
)−c

+ p
5
2
−3a1

(√ log p

Tα
+

1

T (1−α)β

) .
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Lemma S.5. Under Assumptions 3.1 and S.1, for i ≤ rl, we have

|κ̂l
i/κ

l
i − 1| = OP

(
p

5
2
(1−a1)+c(1−a2)(

√
log p/Tα + 1/T (1−α)β) + 1/p

5a1
2

− 3
2
−2c+ca2

)
,

∥η̂li − ηli∥∞ = OP

p
5
2
(1−a1)+c( 5

2
−3a2)

(√ log p

Tα
+

1

T (1−α)β

)
+

1

p
5a1
2

− 3
2
+c(3a2− 7

2
)
+

mp

p3c(a2−
1
2
)

 .

Proof. We have

∥ΣE∥ ≤ ∥ΛΛ′∥+ ∥Σu∥ ≤ ∥ΛΛ′∥+O(mp) = O(pca2).

Let BB′ = ṼΓ̃Ṽ
′
, where Γ̃ = diag(δ̄1, . . . , δ̄k) and their corresponding leading k eigenvectors

Ṽ = (v̄1, . . . , v̄k). Also, we let Γ = diag(δ1, . . . , δk) and the corresponding eigenvectors

V = (v1, . . . , vk) of covariance matrix Σ. Note that ∥B∥max = ∥ṼΓ̃
1/2

∥max = O(1). By

Lemmas S.1-S.2, we have

∥VΓ
1
2 − ṼΓ̃

1
2∥max ≤ ∥BΓ̃

− 1
2 (Γ

1
2 − Γ̃

1
2 )∥max + ∥(V− Ṽ)Γ

1
2∥max

≤ C
∥ΣE∥
pa1

+ C
∥ΣE∥∞√
p5a1−3

= o (1) .

Hence, we have ∥VΓ
1
2∥max = O(1) and ∥V∥max = O(1/

√
pa1). By this fact and the results

from Lemmas S.1-S.4, we have

∥ṼΓ̃Ṽ
′
−VΓV′∥max ≤ ∥Ṽ(Γ̃− Γ)Ṽ

′
∥max + ∥(Ṽ−V)Γ(Ṽ−V)′∥max + 2∥VΓ(Ṽ−V)′∥max

= O(p−a1∥Γ̃− Γ∥max +
√
pa1∥Ṽ−V∥max) = O(1/p

5a1
2

− 3
2
−c),

∥V̂Γ̂V̂
′
−VΓV′∥max ≤ ∥V̂(Γ̂− Γ)V̂

′
∥max + ∥(V̂−V)Γ(V̂−V)′∥max + 2∥VΓ(V̂−V)′∥max

= OP (p
−a1∥Γ̂− Γ∥max +

√
pa1∥V̂−V∥max)

= OP (p
5
2
(1−a1)(

√
log p/Tα + 1/T (1−α)β) + 1/p

5a1
2

− 3
2
−c).
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Thus, we have

∥V̂Γ̂V̂
′
−BB′∥max = OP (p

5
2
(1−a1)(

√
log p/Tα + 1/T (1−α)β) + 1/p

5a1
2

− 3
2
−c). (S.17)

Then, we have

∥Σ̂E −ΣE∥max ≤ ∥Σ̂h −Σ∥max + ∥V̂Γ̂V̂
′
−BB′∥max

= OP (p
5
2
(1−a1)(

√
log p/Tα + 1/T (1−α)β) + 1/p

5a1
2

− 3
2
−c). (S.18)

Therefore, the first statement is followed by (S.18) and the Weyl’s theorem.

We decompose the sample covariance matrix Σ̂
l

E for each group l as follows:

Σ̂
l

E = ΛlΛl′ +Σl
u + (Σ̂

l

E −Σl
E).

Then, by Theorem 1 of Fan, Wang, and Zhong (2018), Lemma S.2 and (S.18), we have

∥η̂li − ηli∥∞ ≤ Cp
2(1−a2)
l

∥Σl
u + (Σ̂

l

E −Σl
E)∥∞

pa2l
√
pl

≤ Cp
2(1−a2)
l

∥Σl
u∥∞

pa2l
√
pl

+ Cp
2(1−a2)
l

∥Σ̂
l

E −Σl
E∥max

pa2−1
l

√
pl

= OP

p
5
2
(1−a1)+c( 5

2
−3a2)

(√ log p

Tα
+

1

T (1−α)β

)
+

1

p
5a1
2

− 3
2
+c(3a2− 7

2
)
+

mp

p3c(a2−
1
2
)

 .

Proof of Theorem S.1. We first consider (S.4). We have

∥Φ̂Ψ̂Φ̂
′
−ΛΛ′∥max = max

l
∥Φ̂

l
Ψ̂

l
Φ̂

j′
−ΛlΛl′∥max.

For each group l, let ΛlΛl′ = Φ̃
l
Ψ̃

l
Φ̃

l′
, where Ψ̃

l
= diag(κ̄l

1, . . . , κ̄
l
rl
) and the corresponding

eigenvectors Φ̃
l
= (η̄1, . . . , η̄rl). In addition, let Ψl = diag(κl

1, . . . , κ
l
rl
) and Φl = (η1, . . . , ηrl)
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to be the leading eigenvalues and the corresponding eigenvectors of Σl
E, respectively. Then,

we have

∥ΦlΨl
1
2 − Φ̃

l
Ψ̃

l
1
2∥max ≤ ∥ΛlΨ̃

l−
1
2

(Ψl
1
2 − Ψ̃

l
1
2

)∥max + ∥(Φl − Φ̃
l
)Ψl

1
2∥max

≤ ∥Σl
u∥

pa2l
+

∥Σl
u∥∞√

p5a2−3
l

= o(1). (S.19)

Since ∥Λl∥max = ∥Φ̃
l
Ψ̃

l
1
2∥max = O(1), ∥ΦlΨl

1
2∥max = O(1) and ∥Φl∥max = O(1/

√
pa2l ).

Using this fact and results from Lemmas S.1, S.2 and S.5, we can show

∥Φ̃
l
Ψ̃

l
Φ̃

l′
−ΦlΨlΦl′∥max ≤ O(p−a2

l ∥Ψ̃
l
−Ψl∥max +

√
pa2l ∥Φ̃

l
−Φl∥max) = O(mp/

√
pc(5a2−3)),

∥Φ̂
l
Ψ̂

l
Φ̂

l′
−ΦlΨlΦl′∥max ≤ OP (p

−a2
l ∥Ψ̂

l
−Ψl∥max +

√
pa2l ∥Φ̂

l
−Φl∥max)

= OP

(
p

5
2
(1−a1)+

5
2
c(1−a2)

(√ log p

Tα
+

1

T (1−α)β

)
+

1

p
5
2
a1− 3

2
+c( 5

2
a2− 7

2
)
+

mp√
pc(5a2−3)

)
.

By using these rates, we obtain

∥Φ̂Ψ̂Φ̂
′
−ΛΛ′∥max

= OP

(
p

5
2
(1−a1)+

5
2
c(1−a2)

(√ log p

Tα
+

1

T (1−α)β

)
+

1

p
5
2
a1− 3

2
+c( 5

2
a2− 7

2
)
+

mp√
pc(5a2−3)

)
.

(S.20)

By (S.16), (S.17) and (S.20), we then have

∥Σ̂u −Σu∥max ≤ ∥d−1Σ̂h −Σ∥max + ∥V̂Γ̂V̂
′
−BB′∥max + ∥Φ̂Ψ̂Φ̂

′
−ΛΛ′∥max

= OP

(
p

5
2
(1−a1)+

5
2
c(1−a2)

(√ log p

Tα
+

1

T (1−α)β

)
+

1

p
5
2
a1− 3

2
+c( 5

2
a2− 7

2
)
+

mp√
pc(5a2−3)

)
.

(S.21)
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By definition, ∥Σ̂
D
u − Σ̂u∥max = maxij |sij(σ̂ij)− σ̂ij| ≤ maxij τij = OP (τ). Then, we have

∥Σ̂
D
u −Σu∥max = OP (τ + ωTα) = OP (ωTα), (S.22)

when τ is chosen as the same order of ωTα = p
5
2
(1−a1)+

5
2
c(1−a2)(

√
log p/Tα + 1/T (1−α)β) +

1/p
5
2
a1− 3

2
+c( 5

2
a2− 7

2
)+mp/

√
pc(5a2−3). Therefore, by the results of (S.17), (S.20) and (S.22), we

have

∥Σ̂
D
−Σ∥max ≤ ∥V̂Γ̂V̂

′
−BB′∥max + ∥Φ̂Ψ̂Φ̂

′
−ΛΛ′∥max + ∥Σ̂

D
u −Σu∥max = OP (ωTα).

Consider (S.5). Similar to the proofs of Theorem 2.1 in Fan, Liao, and Mincheva (2011),

we can show ∥Σ̂
D
u − Σu∥2 = OP (mpω

1−q
Tα ). In addition, since λmin(Σu) > c1 and mpω

1−q
Tα =

o(1), the minimum eigenvalue of Σ̂
D
u is strictly bigger than 0 with probability approaching

1. Then, we have

∥(Σ̂
D
u )

−1 −Σ−1
u ∥2 ≤ λmin(Σu)

−1∥Σ̂
D
u −Σu∥2λmin(Σ̂

D
u )

−1 = OP (mpω
1−q
Tα ). (S.23)

Define Σ̂
D
E = Φ̂Ψ̂Φ̂

′
+ Σ̂

D
u . We first show that ∥(Σ̂

D
E)

−1 − Σ−1
E ∥ = OP (p

c
2
(1−a2)ωTα +

mpω
1−q
Tα ). Let Ĵ = Ψ̂

1
2 Φ̂

′
(Σ̂

D
u )

−1Φ̂Ψ̂
1
2 and J̃ = Ψ̃

1
2 Φ̃

′
Σ−1

u Φ̃Ψ̃
1
2 . Using the Sherman-Morrison-

Woodbury formula, we have

∥(Σ̂
D
E)

−1 −Σ−1
E ∥ ≤ ∥(Σ̂

D
u )

−1 −Σ−1
u ∥+∆1′ ,

where ∆1′ = ∥(Σ̂
D
u )

−1Φ̂Ψ̂
1
2 (Ir + Ĵ)−1Ψ̂

1
2 Φ̂

′
(Σ̂

D
u )

−1 −Σ−1
u Φ̃Ψ̃

1
2 (Ir + J̃)−1Ψ̃

1
2 Φ̃

′
Σ−1

u ∥. Then,

the right hand side can be bounded by the following terms:

L1′ = ∥((Σ̂
D
u )

−1 −Σ−1
u )Φ̃Ψ̃

1
2 (Ir + J̃)−1Ψ̃

1
2 Φ̃

′
Σ−1

u ∥,

L2′ = ∥Σ−1
u (Φ̂Ψ̂

1
2 − Φ̃Ψ̃

1
2 )(Ir + J̃)−1Ψ̃

1
2 Φ̃

′
Σ−1

u ∥,
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L3′ = ∥Σ−1
u Φ̃Ψ̃

1
2 ((Ir + Ĵ)−1 − (Ir + J̃)−1)Ψ̃

1
2 Φ̃

′
Σ−1

u ∥.

By Lemma S.5, ∥ΦlΨl
1
2 − Φ̂

l
Ψ̂

l
1
2∥max ≤ ∥ΛlΨ̂

l−
1
2

(Ψl
1
2 − Ψ̂

l
1
2

)∥max + ∥(Φl − Φ̂
l
)Ψl

1
2∥max =

OP (ωTα), and by (S.19) and (S.23), we then have

∥Φ̃Ψ̃
1
2∥ ≤ max

l
∥Φ̃

l
Ψ̃

l
1
2∥ = OP (

√
pca2),

∥Φ̂Ψ̂
1
2 − Φ̃Ψ̃

1
2∥ ≤ max

l

√
pc∥Φ̂

l
Ψ̂

l
1
2 − Φ̃

l
Ψ̃

l
1
2∥max = OP

(√
pcωTα

)
,

and

∥Ĵ− J̃∥ ≤ ∥(Ψ̂
1
2 Φ̂

′
− Ψ̃

1
2 Φ̃

′
)(Σ̂

D
u )

−1(Φ̂Ψ̂
1
2 − Φ̃Ψ̃

1
2 )∥

+ ∥(Ψ̂
1
2 Φ̂

′
− Ψ̃

1
2 Φ̃

′
)(Σ̂

D
u )

−1Φ̃Ψ̃
1
2∥+ ∥Ψ̃

1
2 Φ̃

′
((Σ̂

D
u )

−1 −Σ−1
u )Φ̃Ψ̃

1
2∥

= OP (p
c
2
(1+a2)ωTα + pca2mpω

1−q
Tα ).

Since λmin(Ir + J̃) ≥ λmin(J̃) ≥ λmin(Σ
−1
u )λ2

min(Φ̃Ψ̃
1
2 ) ≥ Cpca2 , we have ∥(Ir + J̃)−1∥ =

OP (1/p
ca2). Then, L1′ = OP (mpω

1−q
Tα ) by (S.23). In addition, L2′ = OP (p

−ca2/2∥Φ̂Ψ̂
1
2 −

Φ̃Ψ̃
1
2∥) = OP (p

c
2
(1−a2)ωTα) and L3′ = OP (p

ca2∥(Ir+Ĵ)−1−(Ir+J̃)−1∥) = OP (p
−ca2∥Ĵ−J̃∥) =

OP (p
c
2
(1−a2)ωTα +mpω

1−q
Tα ). Thus, we have

∆1′ = OP (p
c
2
(1−a2)ωTα +mpω

1−q
Tα ), (S.24)

which yields ∥(Σ̂
D
E)

−1 −Σ−1
E ∥ = OP (p

c
2
(1−a2)ωTα +mpω

1−q
Tα ).

Let Ĥ = Γ̂
1
2 V̂

′
(Σ̂

D
E)

−1V̂Γ̂
1
2 and H̃ = Γ̃

1
2 Ṽ

′
Σ−1

E ṼΓ̃
1
2 . Using the Sherman-Morrison-

Woodbury formula again, we have

∥(Σ̂
D
)−1 −Σ−1∥ ≤ ∥(Σ̂

D
E)

−1 −Σ−1
E ∥+∆2′ ,

where ∆2′ = ∥(Σ̂
D
E)

−1V̂Γ̂
1
2 (Ik + Ĥ)−1Γ̂

1
2 V̂

′
(Σ̂

D
E)

−1 − Σ−1
E ṼΓ̃

1
2 (Ik + H̃)−1Γ̃

1
2 Ṽ

′
Σ−1

E ∥. By
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Weyl’s inequality, we have λmin(ΣE) > c since λmin(Σu) > c and λmin(ΛΛ′) = 0. Hence,

∥Σ−1
E ∥ = OP (1). By Lemmas S.1-S.4, we have ∥V̂Γ̂

1
2 −ṼΓ̃

1
2∥max = OP (p

5
2
(1−a1)(

√
log p/Tα+

1/T (1−α)β) + 1/p
5
2
a1− 3

2
−c). Similar to the proof of (S.10), we can show ∆2′ = OP (mpω

1−q
Tα +

p3(1−a1)(
√
log p/Tα + 1/T (1−α)β) + 1/p3a1−2−c). Therefore, we have ∥(Σ̂

D
)−1 − Σ−1∥ =

OP (mpω
1−q
Tα + p

c
2
(1−a2)ωTα + p3(1−a1)(

√
log p/Tα + 1/T (1−α)β) + 1/p3a1−2−c).

Consider (S.6). We derive the rate of convergence for ∥Σ̂
D
−Σ∥Σ. The SVD decompo-

sition of Σ is

Σ = (Vp×k Φp×r Ωp×(p−k−r))


Γk×k

Ψr×r

Θ(p−k−r)×(p−k−r)



V′

Φ′

Ω′

 .

Note that Ω is used to denote the precision matrix in Section 2. Moreover, since all the

eigenvalues of Σ are strictly bigger than 0, for any matrixA, we have ∥A∥2Σ = OP (p
−1)∥A∥2F .

Then, we have

∥Σ̂
D
−Σ∥Σ ≤ p−1/2

(
∥Σ−1/2(V̂Γ̂V̂

′
−BB′)Σ−1/2∥F

+ ∥Σ−1/2(Φ̂Ψ̂Φ̂
′
−ΛΛ′)Σ−1/2∥F + ∥Σ−1/2(Σ̂

D
u −Σu)Σ

−1/2∥F
)

=: ∆G′ +∆L′ +∆S′

and

∆S′ = OP (p
−1/2∥Σ̂

D
u −Σu∥F ) = OP (∥Σ̂

D
u −Σu∥2) = OP (mpω

1−q
Tα ).

We have

∆G′ = p−1/2

∥∥∥∥∥∥∥∥∥∥


Γ− 1

2V′

Ψ− 1
2Φ′

Θ− 1
2Ω′

 (V̂Γ̂V̂
′
−BB′)

(
VΓ− 1

2 ΦΨ− 1
2 ΩΘ− 1

2

)
∥∥∥∥∥∥∥∥∥∥
F

≤ p−1/2
(
∥Γ−1/2V′(V̂Γ̂V̂

′
−BB′)VΓ−1/2∥F + ∥Ψ−1/2Φ′(V̂Γ̂V̂

′
−BB′)ΦΨ−1/2∥F
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+ ∥Θ−1/2Ω′(V̂Γ̂V̂
′
−BB′)ΩΘ−1/2∥F + 2∥Γ−1/2V′(V̂Γ̂V̂

′
−BB′)ΦΨ−1/2∥F

+ 2∥Γ−1/2V′(V̂Γ̂V̂
′
−BB′)ΩΘ−1/2∥F + 2∥Ψ−1/2Φ′(V̂Γ̂V̂

′
−BB′)ΩΘ−1/2∥F

)
=: ∆G1′ +∆G2′ +∆G3′ + 2∆G4′ + 2∆G5′ + 2∆G6′ .

In order to find the convergence rate of relative Frobenius norm, we consider the above terms

separately. For ∆G1′ , we have

∆G1′ ≤ p−1/2
(
∥Γ−1/2V′(V̂Γ̂V̂

′
−VΓV′)VΓ−1/2∥F + ∥Γ−1/2V′(VΓV′ −BB′)VΓ−1/2∥F

)
=: ∆

(a)
G1′ +∆

(b)
G1′ .

We bound the two terms separately. We have

∆
(a)
G1′ ≤ p−1/2

(
∥Γ−1/2(V′V̂− I)Γ̂(V̂

′
V− I)Γ−1/2∥F + 2∥Γ−1/2(V′V̂− I)Γ̂Γ−1/2∥F

+ ∥(Γ−1/2(Γ̂− Γ)Γ−1/2∥F
)
=: I + II + III.

By Lemma S.4, ∥V′V̂ − I∥F = ∥V′(V̂ − V)∥F ≤ ∥V̂ − V∥F = OP (p
3(1−a1)(

√
log p/Tα +

1/T (1−α)β) + 1/p3a1−2−c). Then, II is of order OP (p
3(1−a1)− 1

2 (
√

log p/Tα + 1/T (1−α)β) +

1/p3(a1−
1
2
)−c) and I is of smaller order. In addition, we have III ≤ ∥Γ−1/2(Γ̂− Γ)Γ−1/2∥ =

OP (p
1−a1(

√
log p/Tα + 1/T (1−α)β)) by Lemma S.4. Thus, ∆

(a)
G1′ = OP (p

1−a1(
√

log p/Tα +

1/T (1−α)β) + 1/p3(a1−
1
2
)−c). Similarly, we have

∆
(b)
G1′ ≤ p−1/2

(
∥Γ−1/2(V′Ṽ− I)Γ̃(Ṽ

′
V− I)Γ−1/2∥F + 2∥Γ−1/2(V′Ṽ− I)Γ̃Γ−1/2∥F

+ ∥(Γ−1/2(Γ̃− Γ)Γ−1/2∥F
)
=: I ′ + II ′ + III ′.

By sin θ theorem, ∥V′Ṽ − I∥ = ∥V′(Ṽ −V)∥ ≤ ∥Ṽ −V∥ = O(∥ΣE∥/pa1). Then, we have

II ′ = O(1/pa1−ca2) and I ′ is of smaller order. By Lemma S.1, we have III ′ = O(1/pa1−ca2).
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Thus, ∆
(b)
G1′ = O(1/pa1−ca2). Then, we obtain

∆G1′ = OP

(
p1−a1

(√ log p

Tα
+

1

T (1−α)β

)
+

1

p3(a1−
1
2
)−c

+
1

pa1−ca2

)
. (S.25)

For ∆G3′ , we have

∆G3′ ≤ p−1/2∥Θ−1/2Ω′V̂Γ̂V̂
′
ΩΘ−1/2∥F + p−1/2∥Θ−1/2Ω′ṼΓ̃Ṽ

′
ΩΘ−1/2∥F =: ∆

(a)
G3′ +∆

(b)
G3′ .

By Lemma S.4, we have

∥Ω′V̂∥F = ∥Ω′(V̂−V)∥F = O(
√
p∥V̂−V∥max) = OP (p

3(1−a1)(
√
log p/Tα+1/T (1−α)β)+1/p3a1−2−c).

Since ∥Γ̂∥ = OP (p
a1), we have

∆
(a)
G3′ ≤ p−1/2∥Θ−1∥∥Ω′V̂∥2F∥Γ̂∥ = OP (p

11/2−5a1(log p/Tα + 1/T 2(1−α)β) + 1/p5a1−7/2−2c).

Similarly, ∆
(b)
G3′ = OP (1/p

5a1−7/2−2c) because ∥Ω′Ṽ∥F = O(
√
p∥Ṽ−V∥max) = OP (1/p

3a1−2−c)

by Lemma S.2. Then, we obtain

∆G3′ = OP

(
p

11
2
−5a1

( log p
Tα

+
1

T 2(1−α)β

)
+

1

p5a1−
7
2
−2c

)
.

Similarly, we can show that the terms ∆G2′ , ∆G4′ , ∆G5′ and ∆G6′ are dominated by ∆G1′

and ∆G3′ . Therefore, we have

∆G′ = OP

(
p1−a1

(√ log p

Tα
+

1

T (1−α)β

)
+

1

pa1−ca2
+ p

11
2
−5a1

( log p
Tα

+
1

T 2(1−α)β

)
+

1

p5a1−
7
2
−2c

)
.

(S.26)
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Similarly, we consider

∆L′ = p−1/2

∥∥∥∥∥∥∥∥∥∥


Γ− 1

2V′

Ψ− 1
2Φ′

Θ− 1
2Ω′

 (Φ̂Ψ̂Φ̂
′
−ΛΛ′)

(
VΓ− 1

2 ΦΨ− 1
2 ΩΘ− 1

2

)
∥∥∥∥∥∥∥∥∥∥
F

≤ p−1/2
(
∥Γ−1/2V′(Φ̂Ψ̂Φ̂

′
−ΛΛ′)VΓ−1/2∥F + ∥Ψ−1/2Φ′(Φ̂Ψ̂Φ̂

′
−ΛΛ′)ΦΨ−1/2∥F

+ ∥Θ−1/2Ω′(Φ̂Ψ̂Φ̂
′
−ΛΛ′)ΩΘ−1/2∥F + 2∥Γ−1/2V′(Φ̂Ψ̂Φ̂

′
−ΛΛ′)ΦΨ−1/2∥F

+ 2∥Γ−1/2V′(Φ̂Ψ̂Φ̂
′
−ΛΛ′)ΩΘ−1/2∥F + 2∥Ψ−1/2Φ′(Φ̂Ψ̂Φ̂

′
−ΛΛ′)ΩΘ−1/2∥F

)
=: ∆L1′ +∆L2′ +∆L3′ + 2∆L4′ + 2∆L5′ + 2∆L6′ .

For ∆L2′ , similar to the proof of (S.26), we have

∆L2′ ≤ p−1/2
(
∥Ψ−1/2Φ′(Φ̂Ψ̂Φ̂

′
−ΦΨΦ′)ΦΨ−1/2∥F + ∥Ψ−1/2Φ′(ΦΨΦ′ −ΛΛ′)ΦΨ−1/2∥F

)
=: ∆

(a)
L2′ +∆

(b)
L2′ .

We have

∆
(a)
L2′ ≤ p−1/2

(
∥Ψ−1/2(Φ′Φ̂− I)Ψ̂(Φ̂

′
Φ− I)Ψ−1/2∥F + 2∥Ψ−1/2(Φ′Φ̂− I)Ψ̂Ψ−1/2∥F

+ ∥(Ψ−1/2(Ψ̂−Ψ)Ψ−1/2∥F
)
=: I + II + III.

By Lemma S.5, we have ∥Φ̂
l
−Φl∥F ≤ √

plrl∥Φ̂
l
−Φl∥max = OP

(
p

5
2
(1−a1)+3c(1−a2)(

√
log p/Tα+

1/T (1−α)β)+1/p
5a1
2

− 3
2
+c(3a2−4)+mp/p

c(3a2−2)
)
. Because Φ̂ and Φ are block diagonal matrices,

we have

∥Φ̂−Φ∥2F =
L∑
l=1

∥Φ̂
l
−Φl∥2F

= OP

(
p1−c

(
p5(1−a1)+6c(1−a2)(

log p

Tα
+

1

T 2(1−α)β
) +

1

p5a1−3+2c(3a2−4)
+

m2
p

p2c(3a2−2)

))
.
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Then, II is of order OP (p
5
2
(1−a1)+c( 5

2
−3a2)(

√
log p/Tα + 1/T (1−α)β) + 1/p

5
2
a1− 3

2
+c(3a2− 7

2
) +

mp/p
3c(a2− 1

2
)) and I is of smaller order. Also, III = OP (p

5
2
(1−a1)+c(1−a2)(

√
log p/Tα +

1/T (1−α)β)+1/p
5
2
a1− 3

2
−2c+ca2) by Lemma S.5. Thus, ∆

(a)
L2′ = OP (p

5
2
(1−a1)+c(1−a2)(

√
log p/Tα+

1/T (1−α)β) + 1/p
5
2
a1− 3

2
−2c+ca2 +mp/p

3c(a2− 1
2
)). Similarly, we have

∆
(b)
L2′ ≤ p−1/2

(
∥Ψ−1/2(Φ′Φ̃− I)Ψ̃(Φ̃

′
Φ− I)Ψ−1/2∥F + 2∥Ψ−1/2(Φ′Φ̃− I)Ψ̃Ψ−1/2∥F

+ ∥(Ψ−1/2(Ψ̃−Ψ)Ψ−1/2∥F
)
=: I ′ + II ′ + III ′.

By sin θ theorem, ∥Φ′Φ̃− I∥ ≤ ∥Φ̃−Φ∥ ≤ maxj≤L ∥Φ̃
l
−Φl∥ ≤ O(mp/p

ca2). Then, we have

II ′ = O(mp/p
ca2) and I ′ is of smaller order. By Lemma S.1, we have III ′ = O(mp/p

ca2).

Thus, ∆
(b)
L2′ = O(mp/p

ca2). Then, we obtain

∆L2′ = OP

(
p

5
2
(1−a1)+c(1−a2)

(√ log p

Tα
+

1

T (1−α)β

)
+

1

p
5
2
a1− 3

2
−2c+ca2

+
mp

pca2

)
. (S.27)

For ∆L3′ , we have

∆L3′ ≤ p−1/2∥Θ−1/2Ω′Φ̂Ψ̂Φ̂
′
ΩΘ−1/2∥F + p−1/2∥Θ−1/2Ω′Φ̃Ψ̃Φ̃

′
ΩΘ−1/2∥F =: ∆

(a)
L3′ +∆

(b)
L3′ .

Since ∥Ψ̂∥ = OP (p
ca2), we have

∆
(a)
L3′ ≤ p−1/2∥Θ−1∥∥Ω′(Φ̂−Φ)∥2F∥Ψ̂∥

= OP

(
p

11
2
−5a1+5c(1−a2)

( log p
Tα

+
1

T 2(1−α)β

)
+

1

p5a1−
7
2
−c(7−5a2)

+
m2

p

p5ca2−3c− 1
2

)
.

Similarly, by Lemma S.2, ∆
(b)
L3′ = OP (m

2
p/p

5ca2−3c−1/2) because ∥Φ̃
l
− Φl∥F ≤ √

plrl∥Φ̃
l
−

Φl∥max = O(mp/p
c(3a2−2)) and ∥Ω′Φ̃∥2F ≤ ∥Φ̃−Φ∥2F =

∑L
l=1 ∥Φ̃

l
−Φl∥2F = O(m2

p/p
3c(2a2−1)−1).

Similarly, we can show ∆L1′ , ∆L4′ , ∆L5′ and ∆L6′ are dominated by ∆L2′ and ∆L3′ . Therefore,
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we have

∆L′ = OP

(
p

5
2
(1−a1)+c(1−a2)

(√ log p

Tα
+

1

T (1−α)β

)
+

1

p
5
2
a1− 3

2
−2c+ca2

+
mp

pca2

+ p
11
2
−5a1+5c(1−a2)

( log p
Tα

+
1

T 2(1−α)β

)
+

1

p5a1−
7
2
−c(7−5a2)

+
m2

p

p5ca2−3c− 1
2

)
. (S.28)

Combining the terms ∆G′ , ∆L′ and ∆S′ together, we complete the proof of (S.6). □

S.6 Data Generating Process for Simulation Study

We considered the true covariance as Σ = BB′ + ΛΛ′ + Σu, where each row of B was

drawn from N (µB, Ik), where each element of µB is i.i.d. Uniform(−0.5, 0.5); for Λ =

diag(Λ1, . . . ,Λl), each row of Λl for each l was drawn from N (µΛl , Irl), where each element

of µΛl is i.i.d. Uniform(−0.3, 0.3). We generated Σu as follows. Let Du = diag(d1, . . . , dp),

where each {di} was generated independently from Uniform(0.5, 1.5). Let π = (π1, . . . , πp)
′

be a sparse vector, where each πi was drawn from N (0, 1) with probability 0.5√
p log p

, and πi = 0

otherwise. Then, we set Σu = Du + ππ′ − diag{π2
1, . . . , π

2
p}. In the simulation, we generated

Σu until it was positive definite.

Let D be the diagonal matrix consisting of the diagonal elements of Σ. We then obtained

the true correlation matrix R = D− 1
2ΣD− 1

2 = (ρ0,ij)p×p. Next, we set Rh = (ρh,ij)p×p, where

ρh,ij = sgn(ρ0,ij)(|ρ0,ij| + 0.5hβ) if i and j belong to different continent groups, for h = 0.5
d

and β = 0.75, and ρh,ij = ρ0,ij if i and j are in the same continent group. Let {γi, vi}ki=1 be

the leading eigenvalues and eigenvectors of Σ̃g = D
1
2RhD

1
2 −ΛΛ′ −Σu. Then, we obtained

Bh = VΓ
1
2 , where Γ = diag(γ1, . . . , γk) and V = (v1, . . . , vk). We note that Bh represents

the non-synchronized structure. Thus, we generated non-synchronized observations by

yt = BhGt +ΛFt + ut,

where Gt = ΥGt−1 + υt, Ft = ῩFt−1 + ῡt, and ut = Σ1/2
u ũt, where ũt = Υ̃ũt−1 + ϵt, with
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k×k, r× r, p×p diagonal matrices Υ, Ῡ, and Υ̃, respectively. Each diagonal element of Υ,

Ῡ, and Υ̃ was generated from Uniform(0,0.7), and υt, ῡt, and ϵt were drawn from N (0, Ik),

N (0, Ir), and N (0, Ip), respectively.

S.7 Additional Tables for Empirical Study

Table S.1: Distributions of the number of firms

America Asia Europe

United States (US) 221 China (CN) 100 United Kingdom (GB) 100
Canada (CA) 100 Japan (JP) 100 France (FR) 100
Brazil (BR) 100 Hong Kong (HK) 100 Germany (DE) 100
Mexico (MX) 48 India (IN) 100 Switzerland (CH) 100
Chile (CL) 31 Korea (KR) 100 Sweden (SE) 100

Total 1500

Table S.2: Out-of-sample Sharpe ratios and returns (multiplied by 104) for the full period
from 2018 to 2022

SamCovW POETW D-POETW SamCov2D POET2D D-POET2D

Sharpe ratio 0.0477 0.0521 0.0580 0.0637 0.0579 0.0658
Return 6.255 6.129 6.771 7.795 6.716 7.410

SamCovD POETD D-POETD S-POETW S-POET2D

Sharpe ratio 0.0712 0.0656 0.0663 0.0841 0.0696
Return 7.978 7.315 7.373 8.965 7.417
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