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A Supplemental Appendix A: Proofs

A.1 Auxiliary lemmas:

Lemma 8 The MAR condition in (1) implies and is implied by the following condition:

P (C = r|TR) = P (C = r|Tr) for r = 1, . . . , R− 1. (24)

Proof of Lemma 8: First we show that if (1) holds then (24) also holds. Take any

r = 1, . . . , R− 1 and note that:

P (C = r|TR) = P (C = r|TR, C ≥ r)
r−1∏
k=1

[1− P (C = k|TR, C ≥ k)]

= P (C = r|Tr, C ≥ r)
r−1∏
k=1

[1− P (C = k|Tk, C ≥ k)] [by (1)]

= P (C = r|Tr, C ≥ r)
r−1∏
k=1

[1− P (C = k|Tr, C ≥ k)] [by (1)]

= P (C = r|Tr).

Now we show that if (24) holds then (1) also holds. Take any r = 1, . . . , R − 1 and note

that:

P (C = r|TR, C ≥ r) =
P (C = r|TR)
P (C ≥ r|TR)

=
P (C = r|TR)

1− P (C ≤ r − 1|TR)
=

P (C = r|TR)
1−

∑r−1
j=1 P (C = j|TR)

=
P (C = r|Tr)

1−
∑r−1

j=1 P (C = j|Tj)
=

P (C = r|Tr)
1−

∑r−1
j=1 P (C = j|Tr)

=
P (C = r|Tr)
P (C ≥ r|Tr)

= P (C = r|Tr, C ≥ r)

where the fourth and fifth equalities follow by (24).

Lemma 9 The MAR condition in (1) implies that:

P (C ≥ r|Tj) = P (C ≥ r|Tr−1) for r = 1, . . . , R− 1 and j = r, . . . , R.
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Proof of Lemma 9: Lemma 8 shows that (1) implies (24). Now, take r = 1, . . . , R− 1 and

j = r, . . . , R and note that:

P (C ≥ r|Tj) = 1−
r−1∑
k=1

P (C = k|Tj) = 1−
r−1∑
k=1

P (C = k|Tk) = 1−
r−1∑
k=1

P (C = k|Tr−1) = P (C ≥ r|Tr−1)

where the second and third equalities follow by (24).

Remarks:

1. Lemma 9 implies that if R = 2 then P (C = 2|T2) = P (C = 2|T1). This is the familiar

form in which the MAR assumption is generally found in the econometrics literature where

the focus has typically been on the case of R = 2.

2. We introduced the notation in the above two lemmas for brevity of expression in

the proofs in this appendix. The original notation with the conditional hazards is very

transparent in terms of accounting for the observability of the conditioning variables (and

hence for estimation), and precisely for that reason it leads to longer expressions.

Lemma 10 Under the conditions of Proposition 2 and using the notation of Section 3.2:

E
[
φ[a,b](O, β

0
[a,b])S(O)

′] = E

[
m

{
s(Z) +

Ṗ (a ≤ C ≤ b|Tb)
P (a ≤ C ≤ b|Tb)

}′∣∣∣∣∣ a ≤ C ≤ b

]
.

Proof of Lemma 10: Note from (3), (4) and (5) that:

φ[a,b](O; β
0
[a,b]) =

R∑
r=b+1

I(C ≥ r)

P (C ≥ r|Tr−1)

P (a ≤ C ≤ b|Tb)
P (a ≤ C ≤ b)

(E[m|Tr]− E[m|Tr−1])

+
b∑

r=a+1

I(C ≥ r)

P (C ≥ r|Tr−1)

P (a ≤ C ≤ r − 1|Tr−1)

P (a ≤ C ≤ b)
(E[m|Tr]− E[m|Tr−1])

+
b∑

r=a

I(C = r)

P (a ≤ C ≤ b)
E[m|Tr]. (25)

This alternative formulation of φ[a,b](O; β
0
[a,b]) without the conditional hazards stated explic-

itly is not intuitively transparent for actual computational purpose, but will be adopted here
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since it provides shorter expressions in the proof. Based on (25) we can writeE[φ[a,b](O; β
0
[a,b])S(O)

′] =∑3
i=1

∑2
j=1Bij where:

B11 :=
R∑

r=b+1

E

[
I(C ≥ r)

P (C ≥ r|Tr−1)

P (a ≤ C ≤ b|Tb)
P (a ≤ C ≤ b)

(E[m|Tr]− E[m|Tr−1])D
′
]
,

B12 :=
R∑

r=b+1

E

[
I(C ≥ r)

P (C ≥ r|Tr−1)

P (a ≤ C ≤ b|Tb)
P (a ≤ C ≤ b)

(E[m|Tr]− E[m|Tr−1])
R∑

k=1

I(C = k)
Ṗ (C = k|Tk)′

P (C = k|Tk)

]
,

B21 :=
b∑

r=a+1

E

[
I(C ≥ r)

P (C ≥ r|Tr−1)

P (a ≤ C ≤ r − 1|Tr−1)

P (a ≤ C ≤ b)
(E[m|Tr]− E[m|Tr−1])D

′
]
,

B22 :=
b∑

r=a+1

E

[
I(C ≥ r)

P (C ≥ r|Tr−1)

P (a ≤ C ≤ r − 1|Tr−1)

P (a ≤ C ≤ b)
(E[m|Tr]− E[m|Tr−1])

×
R∑

k=1

I(C = k)
Ṗ (C = k|Tk)′

P (C = k|Tk)

]
,

B31 :=
b∑

r=a

E

[
I(C = r)

P (a ≤ C ≤ b)
E[m|Tr]D′

]
,

B32 :=
b∑

r=a

E

[
I(C = r)

P (a ≤ C ≤ b)
E[m|Tr]

R∑
k=1

I(C = k)
Ṗ (C = k|Tk)′

P (C = k|Tk)

]
,

D := s(Z1) +
R∑

k=2

I(C ≥ k)s(Zk|Tk−1).

We wrote this with the understanding that if b = R then B11 = B12 = 0, and if a = b then

B21 = B22 = 0. For notational brevity define T0 as any constant, so that s(Z1) ≡ s(Z1|T0).

First, note that:

B11 =
R∑

r=b+1

r∑
k=1

E

[
I(C ≥ r)

P (C ≥ r|Tr−1)

P (a ≤ C ≤ b|Tb)
P (a ≤ C ≤ b)

(E[m|Tr]− E[m|Tr−1]) s(Zk|Tk−1)
′
]

+
R∑

r=b+1

R∑
k=r+1

E

[
I(C ≥ k)

P (C ≥ r|Tr−1)

P (a ≤ C ≤ b|Tb)
P (a ≤ C ≤ b)

(E[m|Tr]− E[m|Tr−1]) s(Zk|Tk−1)
′
]

=
R∑

r=b+1

r∑
k=1

E

[
P (C ≥ r|Tr−1)

P (C ≥ r|Tr−1)

P (a ≤ C ≤ b|Tb)
P (a ≤ C ≤ b)

(E[m|Tr]− E[m|Tr−1]) s(Zk|Tk−1)
′
]

+
R∑

r=b+1

R∑
k=r+1

E

[
P (C ≥ k|Tk−1)

P (C ≥ r|Tr−1)

P (a ≤ C ≤ b|Tb)
P (a ≤ C ≤ b)

(E[m|Tr]− E[m|Tr−1]) s(Zk|Tk−1)
′
]
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where the third and fourth lines follow by Lemma 9. Hence, we subsequently obtain that:

B11 =
R∑

r=b+1

E

[
P (a ≤ C ≤ b|Tb)
P (a ≤ C ≤ b)

E[m|Tr]s(Zr|Tr−1)
′
]
+ 0

= E

[
I(a ≤ C ≤ b)

P (a ≤ C ≤ b)
ms(ZR, . . . , Zb+1|Tb)′

]
= E [ms(ZR, . . . , Zb+1|Tb)′|a ≤ C ≤ b] . (26)

The first equality follows since for all k = 1, . . . , r−1: E [(E[m|Tr]− E[m|Tr−1])s(Zk|Tk−1)
′] =

E [E[(E[m|Tr]− E[m|Tr−1])s(Zk|Tk−1)
′|Tr−1]] = 0 while for k ≥ r+1: E [E[m|Tr]s(Zk|Tk−1)

′] =

E [E[m|Tr]E[s(Zk|Tk−1)
′|Tk−1]] = 0. The second equality follows by (1) and Lemma 8 and

the definition of score. The last equality is obvious.

Second, following the steps that led to the first line on the RHS of (26), we obtain that:

B21 =
b∑

r=a+1

E

[
P (a ≤ C ≤ r − 1|Tr−1)

P (a ≤ C ≤ b)
E[m|Tr−1]s(Zr|Tr−1)

′
]
.

Therefore,

B21 =
b∑

r=a+1

r−1∑
k=a

E

[
P (C = k|Tk)
P (a ≤ C ≤ b)

ms(Zr|Tr−1)
′
]

=
b∑

r=a+1

r−1∑
k=a

E [ms(Zr|Tr−1)
′|C = k]

P (C = k)

P (a ≤ C ≤ b)

=
b−1∑
k=a

E

[
m

b∑
r=k+1

s(Zr|Tr−1)
′

∣∣∣∣∣C = k

]
P (C = k)

P (a ≤ C ≤ b)

=
b−1∑
k=a

E [ms(Zb, . . . , Zk+1|Tk)′|C = k]
P (C = k)

P (a ≤ C ≤ b)
. (27)

The first equality follows by (1) and Lemma 8. The second equality follows by the same steps

that gave the second line on the RHS of (26). The third equality follows by interchanging

the order of summations (allowed here). The last equality follows by the definition of score.

Third, we consider B31 and note that using the definition of score in the second equality
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below and the same argument as before in the third (last) equality below give:

B31 =
b∑

r=a

r∑
k=1

E

[
I(C = r)

P (a ≤ C ≤ b)
E[m|Tr]s(Zk|Tk−1)

′
]

=
b∑

r=a

E

[
I(C = r)

P (a ≤ C ≤ b)
E[m|Tr]s(Tr)′

]

=
b∑

r=a

E [ms(Tr)
′|C = r]

P (C = r)

P (a ≤ C ≤ b)
. (28)

Adding (27) and (28) gives:

B21 +B31 = E [ms(Tb)
′|C = b]

P (C = b)

P (a ≤ C ≤ b)
+

b−1∑
k=a

E [ms(Tb)
′|C = k]

P (C = k)

P (a ≤ C ≤ b)

= E [ms(Tb)
′|a ≤ C ≤ b] . (29)

Now, we consider the terms B12, B22 and B32 respectively. Accordingly, first note that:

B12 =
R∑

r=b+1

R∑
k=r

E

[
I(C = k)

P (C ≥ r|Tr−1)

P (a ≤ C ≤ b|Tb)
P (a ≤ C ≤ b)

(E[m|Tr]− E[m|Tr−1])
Ṗ (C = k|Tk)′

P (C = k|Tk)

]

=
R∑

r=b+1

E

[
1

P (C ≥ r|Tr−1)

P (a ≤ C ≤ b|Tb)
P (a ≤ C ≤ b)

(E[m|Tr]− E[m|Tr−1])
R∑

k=r

Ṗ (C = k|Tk)′
]

=
R∑

r=b+1

E

[
P (a ≤ C ≤ b|Tb)
P (a ≤ C ≤ b)

(E[m|Tr]− E[m|Tr−1])
Ṗ (C ≥ r|Tr−1)

′

P (C ≥ r|Tr−1)

]
= 0. (30)

The second equality follows by (1) and Lemma 8. The third equality follows by Lemma 8

and Lemma 9. The fourth (last) equality follows by taking expectation conditional on Tr−1

for the r-th term inside the summation. Exactly following the same steps as in the above

(recall the analogy with B11 and B12 above) we obtain:

B22 = 0. (31)
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Lastly, as before, note that:

B32 =
b∑

r=a

E

[
I(C = r)

P (C = r|Tr)
E[m|Tr]Ṗ (C = r|Tr)′

P (a ≤ C ≤ b)

]
= E

[
m

b∑
r=a

Ṗ (C = r|Tr)′

P (a ≤ C ≤ b)

]

= E

[
P (a ≤ C ≤ b|Tb)
P (a ≤ C ≤ b|Tb)

m
Ṗ (a ≤ C ≤ b|Tb)′

P (a ≤ C ≤ b)

]
= E

[
I(a ≤ C ≤ b)

P (a ≤ C ≤ b|Tb)
m
Ṗ (a ≤ C ≤ b|Tb)′

P (a ≤ C ≤ b)

]

= E

[
m
Ṗ (a ≤ C ≤ b|Tb)′

P (a ≤ C ≤ b|Tb)

∣∣∣∣∣ a ≤ C ≤ b

]
(32)

Therefore, (26) and (29)-(32) give the result.

A.2 Proof of the results stated in the main text

Proof of Lemma 1: For simplicity we suppress the dependence of quantities on O,Z, Tr, β,

etc. unless confusing. Taking a = 1, b = R in (3), note by using (4) and (5) that φ[1,R](.) is:

R∑
j=1

P (C = j)

{
R∑

r=j+1

I(C ≥ r)P (C = j|Tj)
P (C = j)P (C ≥ r|Tr−1)

(E[m|Tr]− E[m|Tr−1]) +
I(C = j)

P (C = j)
E[m|Tj]

}

=
R∑

r=2

r−1∑
j=1

I(C ≥ r)
P (C = j|Tj)
P (C ≥ r|Tr−1)

(E[m|Tr]− E[m|Tr−1]) +
R∑

j=1

I(C = j)E[m|Tj]

=
R∑

r=2

I(C ≥ r)
P (C ≤ r − 1|Tr−1)

P (C ≥ r|Tr−1)
(E[m|Tr]− E[m|Tr−1]) +

R∑
r=1

I(C = r)E[m|Tr]

=
R∑

r=2

I(C ≥ r)
1− P (C ≥ r|Tr−1)

P (C ≥ r|Tr−1)
(E[m|Tr]− E[m|Tr−1]) +

R∑
r=1

I(C = r)E[m|Tr]

=
R∑

r=2

I(C ≥ r)

P (C ≥ r|Tr−1)
(E[m|Tr]− E[m|Tr−1])−

R∑
r=2

I(C ≥ r)(E[m|Tr]− E[m|Tr−1]) +
R∑

r=1

I(C = r)E[m|Tr]

=
R∑

r=2

I(C ≥ r)

P (C ≥ r|Tr−1)
(E[m|Tr]− E[m|Tr−1]) + E[m|T1]

where the last line follows because we can write
∑R

r=2 I(C ≥ r)(E[m|Tr]− E[m|Tr−1]) as:

I(C = R)E[m|TR] +
R−1∑
r=2

E[m|Tr][I(C ≥ r)− I(C ≥ r + 1)] + I(C ≥ 2)E[m|T1].
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The law of iterated expectations gives E[φ[1,R](O; β)] = 0+E[E[m(Z; β)|T1]]. Therefore,

E[φ[1,R]] = E
[
φ[1,R]

{
φ[1,R] − E[E[m(Z; β)|T1]]

}′]
= E

[
R∑

r=2

I(C ≥ r)

P (C ≥ r|Tr−1)
(E[m|Tr]− E[m|Tr−1])

R∑
s=2

I(C ≥ s)

P (C ≥ s|Ts−1)
(E[m|Ts]− E[m|Ts−1])

′

]
+E[E[m|T1](E[m|T1]− E[E[m|T1]])′]

=
R∑

r=2

E

[
1

P (C ≥ r|Tr−1)
E [(E[m|Tr]− E[m|Tr−1])(E[m|Tr]− E[m|Tr−1])

′|Tr−1]

]
+E[E[m|T1](E[m|T1]− E[m])′]

=
R∑

r=2

E

[
V (E[m|Tr]|Tr−1)

P (C ≥ r|Tr−1)

]
+ V (E[m|T1])

giving the desired result, where the last equality follows simply by definition while the third

equality follows since for r > s by using (1) and the law of iterated expectations:

E

[
I(C ≥ r)

P (C ≥ r|Tr−1)
(E[m|Tr]− E[m|Tr−1])

I(C ≥ s)

P (C ≥ s|Ts−1)
(E[m|Ts]− E[m|Ts−1])

′
]

= E

[
1− I(C ≤ r − 1)

(1− P (C ≤ r − 1|Tr−1))P (C ≥ s|Ts−1)
(E[m|Tr]− E[m|Tr−1])(E[m|Ts]− E[m|Ts−1])

′
]

= 0

and for r > 1, again by using (1) and the law of iterated expectations,

E

[
I(C ≥ r)

P (C ≥ r|Tr−1)
(E[m|Tr]− E[m|Tr−1])(E[m|T1]− E[E[m|T1]])′

]
= 0.

Remark: Unless confusing, we will write m(Z; β0
[a,b]) simply as m for brevity in the sequel.

Proof of Proposition 2: We obtained the tangent set T in Section 3.2. In the just identified

case the tangent set is given by (7) in the case of any generic [a, b] with a, b ∈ {1, . . . , R}

and a ≤ b, while in the over identified case the tangent set is given by (7) and the additional

restriction (10) if a = 1, b = R, and by (7) and the additional restriction (11) if a = b.

The rest of the proof will proceed as follows. We will show that φ[a,b](O, β
0
[a,b]) satisfies
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the pathwise derivative condition for any generic [a, b] with a, b ∈ {1, . . . , R} and a ≤ b in

the over identified case (dm ≥ dβ). Thus, this will obviously be satisfied in the just identified

case (dm = dβ). Then we will show that the concerned influence function obtained from

φ[a,b](O, β
0
[a,b]) belongs in T in the over identified case if a = 1, b = R or if a = b, and belongs

in T in the just identified case for any generic [a, b] with a, b ∈ {1, . . . , R} and a ≤ b.

Taking any A that is a full row rank dβ × dm matrix such that AM[a,b] is nonsingular, we

know from Section 3.2 that:

∂β0
[a,b](η0)

∂η′
= −

(
AM[a,b]

)−1
AE

[
m(Z; β0

[a,b])

{
s(Z) +

Ṗ (a ≤ C ≤ b|Tb)
P (a ≤ C ≤ b|Tb)

}′∣∣∣∣∣ a ≤ C ≤ b

]
.

Therefore, the pathwise derivative condition

∂β0
[a,b](η0)

∂η′
=
(
AM[a,b]

)−1
AE

[
φ(O, β0

[a,b])S(O)
′] ,

where S(O) is defined in Section 3.2, will hold if:

E
[
φ[a,b](O, β

0
[a,b])S(O)

′] = E

[
m

{
s(Z) +

Ṗ (a ≤ C ≤ b|Tb)
P (a ≤ C ≤ b|Tb)

}′∣∣∣∣∣ a ≤ C ≤ b

]
,

and this is true by Lemma 10. The calculations for this demonstration are tedious and hence

they are presented separately under Lemma 10 stated immediately before the present proof.

The pathwise derivative condition holds in the general over identified case (dm ≥ dβ).

Hence, it also holds in the just identified case (dm = dβ). To avoid any confusion (at

the cost of brevity), we will first complete the proof for case (ii), i.e., the just identi-

fied case. We will show that the influence function −M−1
[a,b]φ[a,b](O, β

0
[a,b]) obtained from

φ[a,b](O, β
0
[a,b]) belongs in T . This follows simply by matching the first set of terms in

−M−1
[a,b]φ[a,b](O; β

0
[a,b]) (i.e., those that correspond to line one in (25)) to the terms correspond-

ing to νb+1(Z1, . . . , Zb+1), . . . , νR(Z1, . . . , ZR) in T ; the second set of terms (i.e., those that

correspond to line two in (25)) to the terms corresponding to νa(Z1, . . . , Za), . . . , νb(Z1, . . . , Zb)
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in T ; and the third set of terms (i.e., those that correspond to line three in (25)) to the terms

corresponding to ωa(Z1, . . . , Za), . . . , ωb(Z1, . . . , Zb) in T ; while matching zeros with the re-

maining terms in T . Hence, −M−1
[a,b]φ[a,b](O; β

0
[a,b]) is the efficient influence function. The

expectation of the outer-product of −M−1
[a,b]φ[a,b](O; β

0
[a,b]) gives the inverse efficiency bound

M−1
[a,b]E

[
φ[a,b](O; β

0
[a,b])φ

′
[a,b](O; β

0
[a,b])

]
M−1′

[a,b] =M−1
[a,b]V[a,b]M

−1′

[a,b].

Now let us get back to the over identified case (dm ≥ dβ). As noted in Section 3.2, this is

where our proof markedly differs from similar proofs in the over identified case because those

proofs only do a matching exercise similar to the above without considering the additional

restrictions on the tangent set that are imposed by over identification. Arriving at the

optimal A, i.e., M ′
[a,b]V

−1
[a,b], after this exercise is the same as in Chen et al. (2008) and hence

to avoid repetition it is omitted for brevity.

First, consider the case of a = b. The above matching also holds with the influence

function −(M ′
[a,a]V

−1
[a,a]M[a,a])

−1M ′
[a,a]V

−1
[a,a]φ[a,a](O, β

0
[a,a]). Hence, we focus on verifying the

additional restriction (11) due to over identification. If a = b then (11) is:

0 = B[a,a]E

[
m(Z; β0

[a,a])

{
R∑

r=1

νr(Z1, . . . , Zr) + ωa(Z1, . . . , Za)

}′∣∣∣∣∣C = a

]
.

Therefore, guided exactly by the above matching exercise, −(M ′
[a,a]V

−1
[a,a]M[a,a])

−1M ′
[a,a]V

−1
[a,a]φ[a,a](O, β

0
[a,a])

will satisfy (11) and hence belong in T if we can show that:

0 = B[a,a]E

[
m

{
R∑

r=1

P (C = a|Ta) (E[m|Tr]− E[m|Tr−1])

P (C ≥ r|Tr−1)P (C = a)

+
E[m|Ta]
P (C = a)

}′

V −1
[a,a]M[a,a](M

′
[a,a]V

−1
[a,a]M[a,a])

−1

∣∣∣∣C = a

]
.

Now, recalling that B[a,b] :=
(
Idβ −M[a,b]

(
AM[a,b]

)−1
A
)
, it follows that the above equation

will hold if:

E

[
m

{
R∑

r=1

P (C = a|Ta) (E[m|Tr]− E[m|Tr−1])

P (C ≥ r|Tr−1)P (C = a)
+

E[m|Ta]
P (C = a)

}′∣∣∣∣∣C = a

]
= V[a,a],

10



which is true since by definition V[a,a] = E

[{
φ[a,a](O; β

0
[a,a])

}{
φ[a,a](O; β

0
[a,a])

}′
]
, i.e.,

V[a,a] = E

[{
R∑

r=a+1

I(C ≥ r)P (C = a|Ta)
P (C ≥ r|Tr−1)P (C = a)

(E[m|Tr]− E[m|Tr−1]) +
I(C = a)

P (C = a)
E[m|Ta]

}
{}′
]

= E

[
R∑

r=a+1

P 2(C = a|Ta)
P (C ≥ r|Tr−1)P 2(C = a)

m (E[m|Tr]− E[m|Tr−1])
′ +

I(C = a)

P 2(C = a)
mE[m|Ta]′

]

= E

[
R∑

r=a+1

I(C = a)P (C = a|Ta)
P (C ≥ r|Tr−1)P 2(C = a)

m (E[m|Tr]− E[m|Tr−1])
′ +

I(C = a)

P 2(C = a)
mE[m|Ta]′

]

= E

[
m

{
R∑

r=1

P (C = a|Ta) (E[m|Tr]− E[m|Tr−1])

P (C ≥ r|Tr−1)P (C = a)
+

E[m|Ta]
P (C = a)

}′∣∣∣∣∣C = a

]
.

Now, consider the case of a = 1, b = R. The matching exercise from the just identified

case will not be appropriate here because we have not imposed enough restrictions on the

ωr(Z1, . . . , Zr)’s; see footnote 10. Instead, here we will be guided by the simplified expression

of φ[1,R](O; β
0
[1,R]) in Lemma 1, i.e.,

φ[1,R](O; β
0
[1,R]) =

R∑
r=2

I(C ≥ r)

P (C ≥ r|Tr−1)
(E[m|Tr]− E[m|Tr−1]) + E[m|T1],

and match the term −
(
M ′

[1,R]V
−1
[1,R]M[1,R]

)−1

M ′
[1,R]V

−1
[1,R]

(E[m|Tr]−E[m|Tr−1])
P (C≥r|Tr−1)

of the influence

function −
(
M ′

[1,R]V
−1
[1,R]M[1,R]

)−1

M ′
[1,R]V

−1
[1,R]φ[1,R](O; β

0
[1,R]) with the term νr(Z1, . . . , Zr) of

T for r = 2, . . . , R− 1 and the term −
(
M ′

[1,R]V
−1
[1,R]M[1,R]

)−1

M ′
[1,R]V

−1
[1,R]E[m|T1] of the influ-

ence function −
(
M ′

[1,R]V
−1
[1,R]M[1,R]

)−1

M ′
[1,R]V

−1
[1,R]φ[1,R](O; β

0
[1,R]) with the term ν1(Z1) of T .

Guided exactly by this matching exercise, −(M ′
[1,R]V

−1
[1,R]M[1,R])

−1M ′
[1,R]V

−1
[1,R]φ[1,R](O, β

0
[1,R])

will satisfy (10) and hence belong in T if we can show that:

0 = B[1,R]E

[
m

{
R∑

r=1

(E[m|Tr]− E[m|Tr−1])

P (C ≥ r|Tr−1)
+ E[m|T1]

}′

V −1
[1,R]M[1,R](M

′
[1,R]V

−1
[1,R]M[1,R])

−1

]
.

Now, recalling that B[1,R] :=
(
Idβ −M[1,R]

(
AM[1,R]

)−1
A
)
, it follows that the above equation

11



will hold if:

E

[
m

{
R∑

r=1

(E[m|Tr]− E[m|Tr−1])

P (C ≥ r|Tr−1)
+ E[m|Ta]

}′]
= V[1,R],

which it is easy to see is true by following the same steps (but more easily) as done for the

case a = b. Therefore, we have now established that for both cases a = b and a = 1, b = R,

the influence function −Ω−1
[a,b]M

′
[a,b]V

−1
[a,b]φ[a,b](O; β

0
[a,b]) belong in the tangent set T . Therefore,

−Ω−1
[a,b]M

′
[a,b]V

−1
[a,b]φ[a,b](O; β

0
[a,b]) is the efficient influence function and hence the expectation

of its outer-product gives the inverse efficiency bound Ω−1
[a,b].

Proof of Proposition 3: The pathwise derivative condition for this result was verified in

Chaudhuri (2020) for the just identified case and applies equally well to the over identified

case (similar to what we saw in the proof of Proposition 2). Therefore, we only focus on

characterizing the additional restrictions on the tangent set imposed by over identification,

and showing that the claimed influence function satisfies those restrictions and thus is the

efficient influence function. We hope that it will be clear along the process that the method

in Section 3.2 to obtain the additional restrictions, is general enough to obtain the additional

restriction on a tangent set that are imposed by over identification in other models too.

Proceeding exactly as in Section 3.2 but, importantly, reflecting the fact that P (C =

r|Z1, . . . , Zr) is known, write the log of the distribution of O in terms of (C,Z ′)′ for a regular

parametric sub-model indexed by η as (η was θ and Zr was Z(r) in Chaudhuri (2020)):

log fη(O) = log fη(Z1)+
R∑

r=2

I(C ≥ r) log fη(Zr|Z1, . . . , Zr−1)+
R∑

r=1

I(C = r) logP (C = r|Z1, . . . , Zr)

and the score function with respect to η as:

Sη(O) = sη(Z1) +
R∑

r=2

I(C ≥ r)sη(Zr|Z1, . . . , Zr−1)

where sη(Z1) := ∂
∂η

log fη(Z1), and sη(Zr|Z1, . . . , Zr−1) := ∂
∂η

log fη(Zr|Z1, . . . , Zr−1) for

12



r = 2, . . . , R. The tangent set is the mean square closure of all dβ dimensional linear

combinations of Sη(O) for all such smooth parametric sub-models, and it can be generically

defined as:

T := ν1(Z1) +
R∑

r=2

I(C ≥ r)νr(Z1, . . . , Zr), (33)

where ν1(Z1) ∈ L2
0(F (Z1)) and νr(Z1, . . . , Zr) ∈ L2

0(F (Zr|Z1, . . . , Zr−1)) for r = 2, . . . , R.

We will proceed as before, but maintain that P (C = r|Z1, . . . , Zr) is known, to obtain

the additional restrictions on T due to over identification. The moment restrictions in (12)

give the following identity in η for a given λ:

0 ≡ Eη[m(Z; β0
λ)|C ∈ λ] ≡ Eη

[
P (C ∈ λ|Z)
P (a ≤ C ≤ b)

m(Z; β0
λ)

]
.

Differentiate it with respect to η under the integral at η = η0, and use (1) and (12) to get:

0 =Mλ
∂β0

λ(η0)

∂η′
+ E

[
m(Z; β0

λ)s(Z)
′∣∣C ∈ λ

]
(34)

where s(Z) := s(Z1) +
∑R

r=2 s(Zr|Tr−1) (with abuse, we briefly revert to the Tr notation for

brevity). Now, we note that (12) also gives the following identity in η for given λ:

0 ≡ AEη[m(Z; β0
λ)|C ∈ λ] ≡ AEη

[
P (C ∈ λ|Z)
P (C ∈ λ)

m(Z; β0
λ)

]

for any A that is a full row rank dβ × dm matrix such that AMλ is nonsingular. Then, as

before, solving for
∂β0

λ(η0)

∂η′
, we obtain that:

∂β0
λ(η0)

∂η′
= − (AMλ)

−1AE
[
m(Z; β0

λ)s(Z)
′∣∣C ∈ λ

]
,

which when substituted for in (34) gives (noting that s(Z) := s(Z1) +
∑R

r=2 s(Zr|Tr−1)):

0 =
(
Idβ −Mλ (AMλ)

−1A
)
E

[
m(Z; β0

λ)

{
s(Z1) +

R∑
r=2

s(Zr|Tr−1)

}′∣∣∣∣∣C ∈ λ

]
.

13



While this is trivially true under just identification, in the case of over identification it implies

that the tangent set T in (33) must satisfy the additional restrictions that

0 =
(
Idβ −Mλ (AMλ)

−1A
)
E

[
m(Z; β0

λ)

{
ν(Z1) +

R∑
r=2

ν(Z1, . . . , Zr)

}′∣∣∣∣∣C ∈ λ

]
. (35)

Matching terms of −Ω̄−1
λ M ′

λV̄
−1
λ φ̄λ(O; β

0
[a,b]) with that of T where the term involving φ̄1,λ

is matched to ν1(Z1) and the terms involving 1
P (C≥r|Tr−1)

(φ̄r,λ − φ̄r−1,λ) are matched to

νr(Z1, . . . , Zr) for r = 2, . . . , R, we can say that −Ω̄−1
λ M ′

λV̄
−1
λ φ̄λ(O; β

0
[a,b]) ∈ T if additionally

0 =
(
Idβ −Mλ (AMλ)

−1A
)
E

[
m(Z; β0

λ)

{
φ̄1,λ +

R∑
r=2

(φ̄r,λ − φ̄r−1,λ)

P (C ≥ r|Tr−1)

}′

V̄ −1
λ MλΩ̄

−1
λ

∣∣∣∣∣C ∈ λ

]

which is true since we can easily see that, by repeatedly using (1) and the law of iterated

expectations, we can write V̄λ := E
[
φ̄λ(O; β

0
[a,b])φ̄λ(O; β

0
[a,b])

′
]
as:

V̄λ =
R∑

r=2

E

[
(φ̄r,λ − φ̄r−1,λ) (φ̄r,λ − φ̄r−1,λ)

′

P (C ≥ r|Tr−1)

]
+ E

[
φ̄1,λφ̄

′
1,λ

]
=

R∑
r=2

E

[
φ̄r,λ (φ̄r,λ − φ̄r−1,λ)

′

P (C ≥ r|Tr−1)

]
+ E

[
φ̄1,λφ̄

′
1,λ

]
=

R∑
r=2

E

[
E

[
P (C ∈ λ|Tr)
P (C ∈ λ)

m

∣∣∣∣Tr] (φ̄r,λ − φ̄r−1,λ)
′

P (C ≥ r|Tr−1)

]
+ E

[
E

[
P (C ∈ λ|T1)
P (C ∈ λ)

m

∣∣∣∣T1] φ̄′
1,λ

]

=
R∑

r=2

E

[
P (C ∈ λ|Tr)
P (C ∈ λ)

m
(φ̄r,λ − φ̄r−1,λ)

′

P (C ≥ r|Tr−1)

]
+ E

[
P (C ∈ λ|T1)
P (C ∈ λ)

mφ̄′
1,λ

]

=
R∑

r=2

E

[
I(C ∈ λ)

P (C ∈ λ)
m
(φ̄r,λ − φ̄r−1,λ)

′

P (C ≥ r|Tr−1)

]
+ E

[
I(C ∈ λ)

P (C ∈ λ)
mφ̄′

1,λ

]

= E

[
m(Z; β0

λ)

{
φ̄1,λ +

R∑
r=2

(φ̄r,λ − φ̄r−1,λ)

P (C ≥ r|Tr−1)

}′∣∣∣∣∣C ∈ λ

]
.

Proof of Proposition 4: The pathwise derivative condition for this result was verified in

Chaudhuri (2020) for the just identified case and applies equally well to the over identified

case (similar to that in the proof of Proposition 2). Therefore, we only focus on characterizing
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the additional restrictions on the tangent set imposed by over identification, and showing that

the claimed influence function satisfies those restrictions and thus is the efficient influence

function. Proceeding as in Section 3.2 but imposing (13), write the log of the distribution

of O in terms of (C,Z ′)′ for a regular parametric sub-model indexed by η as:

log fη(O) = log fη(Z1)+
R∑

r=2

I(C ≥ r) log fη(Zr|Z1, . . . , Zr−1)+
R∑

r=1

I(C = r) logP (C = r|Z1)

and the score function with respect to η as:

Sη(O) = sη(Z1) +
R∑

r=2

I(C ≥ r)sη(Zr|Z1, . . . , Zr−1) +
R∑

r=1

I(C = r)
Ṗη(C = r|Z1)

Pη(C = r|Z1)

where sη(Z1) := ∂
∂η

log fη(Z1), sη(Zr|Z1, . . . , Zr−1) := ∂
∂η

log fη(Zr|Z1, . . . , Zr−1) for r =

2, . . . , R, and Ṗη(C = r|Z1) := ∂
∂η
Pη(C = r|Z1) for r = 1, . . . , R. We will actually use an

apparently cumbersome but ultimately more convenient representation of the score function

by using the two equivalent factorizations of the joint distribution of I(C ∈ λ) and Z1:

sη(Z1) + I(C ∈ λ)
Ṗη(C ∈ λ|Z1)

Pη(C ∈ λ|Z1)
+ I(C /∈ λ)

Ṗη(C /∈ λ|Z1)

Pη(C /∈ λ|Z1)

= I(C ∈ λ)

[
Ṗη(C ∈ λ)

Pη(C ∈ λ)
+ sη(Z1|C ∈ λ)

]
+ I(C /∈ λ)

[
Ṗη(C /∈ λ)

Pη(C /∈ λ)
+ sη(Z1|C /∈ λ)

]
(36)

where sη(Z1|C ∈ λ) := ∂
∂η

log fη(Z1|C ∈ λ), sη(Z1|C /∈ λ) := ∂
∂η

log fη(Z1|C /∈ λ), Ṗη(C ∈

λ|Z1) :=
∂
∂η
Pη(C ∈ λ|Z1) =: −Ṗη(C /∈ λ|Z1) and Ṗη(C ∈ λ) := ∂

∂η
Pη(C ∈ λ) =: −Ṗη(C /∈ λ).

Then substituting for sη(Z1) in Sη(O) we obtain the cumbersome but useful expression:

Sη(O) = I(C ∈ λ)

[
Ṗη(C ∈ λ)

Pη(C ∈ λ)
+ sη(Z1|C ∈ λ)− Ṗη(C ∈ λ|Z1)

Pη(C ∈ λ|Z1)

]

+I(C /∈ λ)

[
Ṗη(C ∈ λ)

Pη(C ∈ λ)− 1
+ sη(Z1|C /∈ λ)− Ṗη(C ∈ λ|Z1)

Pη(C ∈ λ|Z1)− 1

]

+
R∑

r=2

I(C ≥ r)sη(Zr|Z1, . . . , Zr−1) +
R∑

r=1

I(C = r)
Ṗη(C = r|Z1)

Pη(C = r|Z1)
.
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Hence the representation of the tangent set that we will consider is:

T := I(C ∈ λ)

[
a

b
+ µ1(Z1, C ∈ λ)− a(Z1)

b(Z1)

]
+ I(C /∈ λ)

[
a

b− 1
+ µ2(Z1, C /∈ λ)− a(Z1)

b(Z1)− 1

]
+

R∑
r=2

I(C ≥ r)νr(Z1, . . . , Zr) +
R∑

r=1

I(C = r)ωr(Z1), (37)

where a and b ∈ (0, 1) are constants; a(z1) and b(Z1) are such that a(Z1)/b(Z1) and

a(Z1)/(b(Z1) − 1) are square integrable functions of Z1; µ1(Z1, C ∈ λ) ∈ L2
0(F (Z1|C ∈ λ))

and µ2(Z1, C /∈ λ) ∈ L2
0(F (Z1|C /∈ λ)); and the terms described so far satisfy the restric-

tion that the first line on the RHS of (37) is L2
0(F (Z1)) (since it represents s(Z1)); whereas

νr(Z1, . . . , Zr) ∈ L2
0(F (Zr|Z1, . . . , Zr−1)) for r = 2, . . . , R, and ωr(Z1) is any square inte-

grable function of Z1 for r = 1, . . . , R. To obtain the additional restrictions due to over

identification of β0
λ, we write

(
Idβ −Mλ (AMλ)

−1A
)
as Bλ for brevity, and then imposing

CMAR in (13) we arrive at the counterpart of (9) for a given λ as:

0 = BλE

[
m(Z; β0

λ)

{
s(Z1) +

R∑
r=2

s(Zr|Tr−1) +
Ṗ (C ∈ λ|Z1)

P (C ∈ λ|Z1)

}′∣∣∣∣∣C ∈ λ

]

which gives the additional restrictions on T in (37) as:

0 = Bλ

{
E

[
m(Z; β0

λ)
R∑

r=2

νr(Z1, . . . , Zr)
′

∣∣∣∣∣C ∈ λ

]
+ E

[
m(Z; β0

λ)
I(C ∈ λ)

P (C ∈ λ)

{
s(Z1) +

Ṗ (C ∈ λ|Z1)

P (C ∈ λ|Z1)

}′]}
.

Substitute for I(C ∈ λ)
{
s(Z1) + Ṗ (C ∈ λ|Z1)/P (C ∈ λ|Z1)

}
from (36) to get:

0 = BλE

[
m

R∑
r=2

νr(Z1, . . . , Zr)
′

∣∣∣∣∣C ∈ λ

]
+BλE

[
m
I(C ∈ λ)

P (C ∈ λ)

{
s(Z1|C ∈ λ) +

Ṗ (C ∈ λ)

P (C ∈ λ)

}′]

= BλE

[
m

R∑
r=2

νr(Z1, . . . , Zr)
′

∣∣∣∣∣C ∈ λ

]
+BλE

[
m
I(C ∈ λ)

P (C ∈ λ)
s(Z1|C ∈ λ)′

]
(38)

using the moment restrictions in (12). (We are writing m(Z; β0
λ) as m for brevity.) Hence,
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over identification of β0
λ imposes the additional restrictions (38) on T in (37).

Now, match the terms of −
[
ΩCMAR

λ

]−1
M ′

λ

[
V CMAR
λ

]−1
φCMAR
λ (O; β0

[a,b]) with the terms

of T as follows. The terms involving P (C∈λ|T1)
P (C≥r|Tr−1)P (C∈λ) (E[m|Tr]− E[m|Tr−1]) are matched

to νr(Z1, . . . , Zr) for r = 2, . . . , R. The term involving I(C∈λ)
P (C∈λ)E[m|T1] is matched to I(C ∈

λ)s(Z(1)|C ∈ λ). The other terms in T are matched to zeros. Therefore, the influence

function
[
ΩCMAR

λ

]−1
M ′

λ

[
V CMAR
λ

]−1
φCMAR
λ (O; β0

[a,b]) will belong in T and hence will be the

efficient influence function if additionally:

0 = Bλ

{
E

[
m

R∑
r=2

P (C ∈ λ|T1)
P (C ≥ r|Tr−1)P (C ∈ λ)

(E[m|Tr]− E[m|Tr−1])
′

∣∣∣∣∣C ∈ λ

]

+ E

[
m

I(C ∈ λ)

P 2(C ∈ λ)
E[m|T1]′

]} [
V CMAR
λ

]−1
Mλ

[
ΩCMAR

λ

]−1

i.e., if:

V CMAR
λ = E

[
m

R∑
r=2

P 2(C ∈ λ|T1)
P (C ≥ r|Tr−1)P 2(C ∈ λ)

(E[m|Tr]− E[m|Tr−1])
′

]
+ E

[
m

I(C ∈ λ)

P 2(C ∈ λ)
E[m|T1]′

]
,

which it can be seen is true by writing out the expression for V CMAR
λ := V ar(φCMAR

λ (O; β0
λ))

and then using CMAR in (13) and the law of iterated expectations as in the last proof.

Proof of Lemma 5: Note that:

ωIPW
[a,b] :=

I(C = R)∏R−1
r=1 (1− P (C = r|Tr, C ≥ r))

∑b
j=a P (C = j|Tj, C ≥ j)

∏j−1
k=1(1− P (C = k|Tk, C ≥ k))

P (a ≤ C ≤ b)

=
b∑

j=a

I(C = R)∏R−1
r=1 (1− P (C = r|Tr, C ≥ r))

P (C = j|Tj, C ≥ j)
∏j−1

k=1(1− P (C = k|Tk, C ≥ k))

P (a ≤ C ≤ b)

=
b∑

j=a

I(C = R)

P (C = R|TR)
P (C = j|Tj)
P (a ≤ C ≤ b)

[
=

b∑
j=a

P (C = j)

P (a ≤ C ≤ b)

I(C = R)

P (C = R|TR)
P (C = j|Tj)
P (C = j)

]

=
b∑

j=a

I(C = R)

P (C = R|TR)
P (a ≤ C ≤ b|Tb)
P (a ≤ C ≤ b)

=
b∑

j=a

I(C = R)

P (C = R|TR)
P (a ≤ C ≤ b|TR)
P (a ≤ C ≤ b)

where the last two equalities follow by (1). Therefore, since Z ≡ TR, it follows by using the
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law of iterated expectations in the second and third equalities below, that:

E
[
ωIPW
[a,b] m(Z; β)

]
= E

[
I(C = R)

P (C = R|TR)
P (a ≤ C ≤ b|TR)
P (a ≤ C ≤ b)

m(TR; β)

]
= E

[
P (a ≤ C ≤ b|TR)
P (a ≤ C ≤ b)

m(TR; β)

]
= E

[
I(a ≤ C ≤ b)

P (a ≤ C ≤ b)
m(TR; β)

]
= E[m(Z; β)|a ≤ C ≤ b].

Proof of Proposition 6: (i) will follow if Condition 1 of Ackerberg et al. (2014) holds.

Our assumptions A1 and A3 directly imply Condition 1(i) and 1(ii) hold. Furthermore,

Condition 1(iii) also holds by virtue of our assumption A2 because for any r = a, . . . , R− 1:

∂

∂pr(Tr)
E [I(C ≥ r) {I(C = r)− pr(Tr)} |Tr] = −P (C ≥ r|Tr) ̸= 0 a.s. Tr.

Before proceeding further, we note using the expression in (5) and Lemma 5 that:

I(C = R)ωIPW
[a,b] m(Z; β) =

b∑
j=a

P (C = j)

P (a ≤ C ≤ b)
I(C = R)ωIPW

[j,j] m(Z; β); (39)

and hence for the sake of a cleaner proof it is useful to work on:

I(C = R)ωIPW
[j,j] m(Z; β) where ωIPW

[j,j] =
P (C = j|Tj, C ≥ j)

P (C = j)
∏R−1

k=j [1− P (C = k|Tk, C ≥ k)]

and then combine the results based on the weights P (C = j)/P (a ≤ C ≤ b).

For any j = a, . . . , b replace P (C = r|Tr, C ≥ r) by hj,r(Tr) := 1/(1 − pr(Tr)) for

r = j + 1, . . . , R − 1 and P (C = j|Tj, C ≥ j) by hj,j(Tj) := pj(Tj)/(1 − pj(Tj)) in ω
IPW
[j,j] to

define (the reason behind the double subscript j, r in h will be clear soon):

ϕ[j,j](C, TR; β, hj,j(Tj), . . . , hj,R−1(TR−1)) := I(C = R)

∏R−1
k=j hj,k(Tj)

P (C = j)
m(TR; β). (40)
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Let h0j,r(Tr) := 1/(1 − P (C = r|Tr, C ≥ r)) for r = j + 1, . . . , R − 1 and h0j,j(Tj) = P (C =

j|Tj, C ≥ j)/(1−P (C = j|Tj, C ≥ j)). Then, trivially
∂E[ϕ[j,j](C,TR;β,h0

j,j(Tj),...,h
0
j,R−1(TR−1))]

∂hj,r
[.] is

a linear functional for r = j, . . . , R−1. We maintain the assumption that it is also a bounded

functional as defined in Ackerberg et al. (2014). (The boundedness is maintained as a high

level assumption since under our assumption A2 it can hold in various ways depending on the

interplay between the E[m|Tr]’s and the conditional hazards; e.g., taking j = 1, R = 2, we

can see that
∂E[ϕ[1,1](C,T2;β,h1,1)]

∂h1,1
= E[P (C = 2|T1)m(Z; β0

[1,R])/P (C = 1)].) Thus, Condition

1(iv) of Ackerberg et al. (2014) also holds under our maintained assumptions. However, our

interest is not always on a unitary sub-population [j, j] but more generally on [a, b], and for

that we know from (39) that we should be looking at:

b∑
j=a

P (C = j)

P (a ≤ C ≤ b)
ϕ[j,j](C, TR; β, hj,j(Tj), . . . , hj,R−1(TR−1)).

Before proceeding further we remark here about the double subscript in h. We redefined

the nuisance parameters as h to make the functionals linear in h. However, the h’s that

enter the above linear combination are not unique — ha,k(Tk) = . . . = hk−1,k(Tk) for any

k = a+ 1, . . . , b and ha,k(Tk) = . . . = hk−1,k(Tk) for any k = b+ 1, . . . , R − 1, while hj,k(Tk)

appearing in ϕ[j,j](.) and hk,k(Tk) appearing in ϕ[k,k](.) for k = j+1, . . . , b and j = a . . . , b−1

both depend on pk(Tk) only but in different ways. Pretending that the h’s are distinct does

not cause any problem, not even with the invertibility in Condition 1(iii) of Ackerberg et al.

(2014) since that will lead to a diagonal matrix (and it will be important to keep this last

statement in mind for the proof of part (ii)). Therefore if Condition 1 of Ackerberg et al.

(2014) holds for ϕ[j,j](.) for j = a, . . . , b, which we have already shown, then it also holds for

the above linear combination those ϕ[j,j](.) ’s. This completes the proof of part (i).

(ii) It is straightforward to see that:

E

[
∂

∂β′

b∑
j=a

P (C = j)

P (a ≤ C ≤ b)
ϕ[j,j](C, TR; β

0
[a,b], hj,j(Tj), . . . , hj,R−1(TR−1))

]
=M[a,b].
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Hence, we know from Theorem 1 of Ackerberg et al. (2014) that the efficiency bound for

β0
[a,b] based on the information contained in only the moment restrictions in part (i) is:

Ω̃[a,b] :=M ′
[a,b]

[
V ar

(
b∑

j=a

P (C = j)

P (a ≤ C ≤ b)
ϕ̃[j,j](C, TR; β

0
[a,b], h

0
j,j(Tj), . . . , h

0
j,R−1(TR−1))

)]−1

M[a,b]

(41)

where, writing (hj,j(Tj), . . . , hj,R−1(TR−1)) as hj,j:R−1(TR−1) and its true value as h0j,j:R−1(TR−1):

ϕ̃[j,j](C, TR; β, hj,j:R−1(TR−1)) := ϕ[j,j](C, TR; β, hj,j:R−1(TR−1))−
R−1∑
k=j

D0
j,k(Tk; β)

S0
j,k(Tk)

sj,k(C, Tk, hj,k(Tk))

(42)

and where D0
j,k(Tk; β), S

0
j,k(Tk) and sj,k(C, Tk, hj,k(Tk)) are as follows. For j = a, . . . , b:

sj,k(C, Tk, hj,k(Tk)) := I(C ≥ k)

[
I(C = k)− hj,k(Tk)− 1

hj,k(Tk)

]
for k = j + 1, . . . , R− 1

:= I(C ≥ k)

[
I(C = k)− hj,k(Tk)

1 + hj,k(Tk)

]
for k = j

whereas for j = a, . . . , b and k = j, . . . , R− 1:

S0
j,k(Tk) :=

∂E[sj,k(C, Tk, h
0
j,k(Tk))]

∂hj,k
= −P (C ≥ |k|Tk) (1− P (C = k|Tk, C ≥ k))2 .

D0
j,k(Tk; β)vj,k(Tk) is the pathwise derivative of E[ϕ[j,j](C, TR; β, hj,j:R−1(TR−1))|Tk] with re-

spect to hj,k(Tk) in the direction vj,k(Tk) ∈ Hj,k(Tk)−{h0j,k(Tk)} (where Hj,k(Tk) is the func-

tion space for hj,k(Tk)) evaluated at h0j,j:R−1(TR−1), i.e., for j = a, . . . , b and k = j, . . . , R−1:

D0
j,k(Tk; β)vj,k(Tk) =

∂E[ϕ[j,j](C, TR; β, h
0
j,j:R−1(TR−1))|Tk]

∂hj,k
[vj,k].

First, note that:

D0
j,k(Tk; β) = E

[{ ∏
r=j,...,R−1;r ̸=k

hj,r(Tr)

}
I(C = R)

m(Z; β)

P (C = j)

∣∣∣∣∣Tk
]
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i.e., for k = j + 1, . . . , R− 1:

D0
j,k(Tk; β) = E

[{
R−1∏
r=j

hj,r(Tr)

}
I(C = R)

m(Z; β)

P (C = j)hj,k(Tk)

∣∣∣∣∣Tk
]

= E

[
I(C = R)P (C = j|Tj, C ≥ j)∏R−1
r=j (1− P (C = r|Tr, C ≥ r))

m(Z; β)

P (C = j)hj,k(Tk)

∣∣∣∣∣Tk
]

= E

[
I(C = R)P (C = j|Tj, C ≥ j)

∏j−1
r=1(1− P (C = r|Tr, C ≥ r))∏R−1

r=1 (1− P (C = r|Tr, C ≥ r))

m(Z; β)

P (C = j)hj,k(Tk)

∣∣∣∣∣Tk
]

= E

[
I(C = R)P (C = j|Tj)

P (C = R|TR−1)

m(Z; β)

P (C = j)hj,k(Tk)

∣∣∣∣Tk]
= E

[
m(Z; β)P (C = j|Tj)
P (C = j)hj,k(Tk)

∣∣∣∣Tk]
=

E[m(Z; β)|Tk]P (C = j|Tj)(1− P (C = k|Tk, C ≥ k))

P (C = j)

where the second last equality follows by (1) and the law of iterated expectations, whereas:

D0
j,j(Tj; β) = E

[{
R−1∏

r=j+1

hj,r(Tr)

}
I(C = R)

m(Z; β)

P (C = j)

∣∣∣∣∣Tj
]

= E

[
I(C = R)∏R−1

r=j+1(1− P (C = r|Tr, C ≥ r))

m(Z; β)

P (C = j)

∣∣∣∣∣Tj
]

= E

[
I(C = R)

∏j
r=1(1− P (C = r|Tr, C ≥ r))∏R−1

r=1 (1− P (C = r|Tr, C ≥ r))

m(Z; β)

P (C = j)

∣∣∣∣∣Tj
]

= E

[
I(C = R)P (C ≥ j + 1|Tj)

P (C = R|TR−1)

m(Z; β)

P (C = j)

∣∣∣∣Tj]
= E

[
P (C ≥ j + 1|Tj)

m(Z; β)

P (C = j)

∣∣∣∣Tj]
=

E[m(Z; β)|Tj]P (C ≥ j + 1|Tj)
P (C = j)

where, as before, the second last equality follows by (1) and the law of iterated expectations.

Plugging them in (42) at β0
[a,b], h

0
j,j:R−1(TR−1) gives:

ϕ̃[j,j](C, TR; β
0
[a,b], h

0
j,j:R−1(TR−1)) = ϕ[j,j](C, TR; β

0
[a,b], h

0
j,j:R−1(TR−1))−

R−1∑
k=j

D0
j,k(Tk; β)

S0
j,k(Tk)

sj,k(C, Tk, h
0
j,k(Tk))
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where, writing m(Z; β0
[a,b]) as m for brevity, the RHS of the above equation is:

I(C = R)ωIPW
[j,j] m−

R−1∑
k=j+1

D0
j,k(Tk; β)

S0
j,k(Tk)

sj,k(C, Tk, h
0
j,k(Tk))−

D0
j,j(Tk; β)

S0
j,j(Tk)

sj,j(C, Tk, h
0
j,j(Tj))

= φ[j,j](O; β
0
[a,b]) (43)

by (6) because we know from the above calculations that for k = j + 1, . . . , R− 1:

−
D0

j,k(Tk; β)

S0
j,k(Tk)

sj,k(C, Tk, h
0
j,k(Tk))

=
E[m|Tk]P (C=j|Tj)

P (C=j)
(1− P (C = k|Tk, C ≥ k))

P (C ≥ k|Tk)(1− P (C = k|Tk, C ≥ k))2
[I(C = k)− I(C ≥ k)P (C = k|Tk, C ≥ k)]

=
E[m|Tk]P (C=j|Tj)

P (C=j)

P (C ≥ k|Tk)(1− P (C = k|Tk, C ≥ k))
[I(C ≥ k)− I(C ≥ k + 1)− I(C ≥ k)P (C = k|Tk, C ≥ k)]

=

[
I(C ≥ k)

P (C ≥ k|Tk)
− I(C ≥ k + 1)

P (C ≥ k|Tk)(1− P (C = k|Tk, C ≥ k))

]
P (C = j|Tj)
P (C = j)

E[m|Tj]

=

[
I(C ≥ k)

P (C ≥ k|Tk)
− I(C ≥ k + 1)

P (C ≥ k + 1|Tk)

]
P (C = j|Tj)
P (C = j)

E[m|Tj]

=

[
I(C ≥ k)

P (C ≥ k|Tk−1)
− I(C ≥ k + 1)

P (C ≥ k + 1|Tk)

]
P (C = j|Tj)
P (C = j)

E[m|Tj] [by Lemma 8]

whereas for k = j:

−
D0

j,j(Tj; β)

S0
j,j(Tj)

sj,j(C, Tj, h
0
j,j(Tj))

=
E[m|Tj]P (C≥j+1|Tj)

P (C=j)

P (C ≥ j|Tj)(1− P (C = j|Tj, C ≥ j))2
[I(C = j)− I(C ≥ j)P (C = j|Tj, C ≥ j)]

=
E[m|Tj]P (C≥j+1|Tj)

P (C=j)

P (C ≥ j|Tj)(1− P (C = j|Tj, C ≥ j))2
[I(C = j)− {I(C = j) + I(C ≥ j + 1)}P (C = j|Tj, C ≥ j)]

=

[
I(C = j)P (C ≥ j + 1|Tj)

P (C ≥ j|Tj)(1− P (C = j|Tj, C ≥ j))
− I(C ≥ j + 1)P (C ≥ j + 1|Tj)P (C = j|Tj, C ≥ j)

P (C ≥ j|Tj)(1− P (C = j|Tj, C ≥ j))2

]
E[m|Tj]
P (C = j)

=

I(C = j)P (C ≥ j + 1|Tj)
P (C ≥ j + 1|Tj)

−
I(C ≥ j + 1)P (C ≥ j + 1|Tj)P (C=j|Tj)

P (C≥j|Tj)

P (C ≥ j + 1|Tj)P (C≥j|Tj)−P (C=j|Tj)

P (C≥j|Tj)

 E[m|Tj]
P (C = j)

=

[
I(C = j)− I(C ≥ j + 1)

P (C = j|Tj)
P (C ≥ j + 1|Tj)

]
E[m|Tj]
P (C = j)

.
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Therefore, using (43) and (6) for the first equality and then (3) for the second, imply that:

b∑
j=a

P (C = j)

P (a ≤ C ≤ b)
ϕ̃[j,j](C, TR; β

0
[a,b], h

0
j,j:R−1(TR−1)) =

b∑
j=a

P (C = j)

P (a ≤ C ≤ b)
φ[j,j](O; β

0
[a,b]) = φ[a,b](O; β

0
[a,b]).

Hence, by (41) we obtain that Ω̃[a,b] = Ω[a,b] as defined in Proposition 2.

Proof of Lemma 7: (i) The equivalence of the limited and full information approach here

follows exactly as in part (i) of Proposition 6, with the only change that the conditional

hazards are all now conditioned on T1 only. Consequently, the influence function in part (i)

will take a different form here, and for the rest of the proof of part (i) we derive that form.

To avoid introducing new notation we follow the notation from the last proposition as much

as we can. We know from Theorem 1 of Ackerberg et al. (2014) that the efficiency bound

for β0
[a,b] based on the information contained only in the moment restrictions in part (i) is:

M ′
[a,b]

[
V ar

(
b∑

j=a

P (C = j)

P (a ≤ C ≤ b)
ϕ̃[j,j](C, TR; β

0
[a,b], h

0
j,j(T1), . . . , h

0
j,R−1(T1))

)]−1

M[a,b]

where, writing (hj,j(T1), . . . , hj,R−1(T1)) as hj,j:R−1(T1) and its true value as h0j,j:R−1(T1):

ϕ̃[j,j](C, TR; β, hj,j:R−1(T1)) := ϕ[j,j](C, TR; β, hj,j:R−1(T1))−
R−1∑
k=j

D0
j,k(T1; β)

S0
j,k(T1)

sj,k(C, T1, hj,k(T1))

ϕ[j,j](C, TR; β, hj,j:R−1(T1)) := I(C = R)

∏R−1
k=j hj,k(T1)

P (C = j)
m(TR; β)

sj,k(C, T1, hj,k(T1)) := I(C ≥ k)

[
I(C = k)− hj,k(T1)− 1

hj,k(T1)

]
for k = j + 1, . . . , R− 1

:= I(C ≥ k)

[
I(C = k)− hj,k(T1)

1 + hj,k(T1)

]
for k = j

S0
j,k(T1) :=

∂E[sj,k(C, T1, h
0
j,k(T1))]

∂hj,1
= −P (C ≥ |k|T1) (1− P (C = k|T1, C ≥ k))2

for j = a, . . . , b and k = j, . . . , R − 1. D0
j,k(T1; β)vj,k(T1) is the pathwise derivative of

E[ϕ[j,j](C, TR; β, hj,j:R−1(T1))|T1] with respect to hj,k(T1) in the direction vj,k(T1) ∈ Hj,k(T1)−
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{h0j,k(T1)} (where Hj,k(T1) is the function space for hj,k(T1)) evaluated at h0j,j:R−1(T1), i.e.,

D0
j,k(T1; β)vj,k(T1) =

∂E[ϕ[j,j](C, TR; β, h
0
j,j:R−1(T1))|T1]

∂hj,k
[vj,k] for j = a, . . . , b and k = j, . . . , R− 1.

Therefore, just like before (but now with conditioning set T1 for all terms):

D0
j,k(T1; β) =

E[m(Z; β)|T1]P (C = j|T1)(1− P (C = k|T1, C ≥ k))

P (C = j)
for k = j + 1, . . . , R− 1,

D0
j,j(T1; β) =

E[m(Z; β)|T1]P (C ≥ j + 1|T1)
P (C = j)

,

and hence for k = j + 1, . . . , R− 1:

−
D0

j,k(T1; β)

S0
j,k(T1)

sj,k(C, T1, h
0
j,k(T1)) =

[
I(C ≥ k)

P (C ≥ k|T1)
− I(C ≥ k + 1)

P (C ≥ k + 1|T1)

]
P (C = j|T1)
P (C = j)

E[m|T1]

whereas for k = j:

−
D0

j,j(T1; β)

S0
j,j(T1)

sj,j(C, T1, h
0
j,j(T1)) =

[
I(C = j)− I(C ≥ j + 1)

P (C = j|T1)
P (C ≥ j + 1|T1)

]
E[m|T1]
P (C = j)

,

and therefore:

−
R−1∑
k=j

D0
j,k(T1; β)

S0
j,k(T1)

sj,k(C, T1, h
0
j,k(T1)) =

{
I(C = j)

P (C = j)
− I(C = R)

P (C = R|T1)
P (C = j|T1)
P (C = j)

}
E[m|T1],

which gives:

ϕ̃[j,j](C, TR; β
0
[a,b], h

0
j,j:R−1(T1))

=
I(C = R)

P (C = R|T1)
P (C = j|T1)
P (C = j)

m+

{
I(C = j)

P (C = j)
− I(C = R)

P (C = R|T1)
P (C = j|T1)
P (C = j)

}
E[m|T1].

Therefore,
n∑

j=a

P (C = j)

P (a ≤ C ≤ b)
ϕ̃[j,j](C, TR; β

0
[a,b], h

0
j,j:R−1(T1)) = φ†

[a,b].
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Adding and subtracting the same terms to φ†
[a,b] in order to match φCMAR(O; β0

[a,b]) from

Proposition 4, we obtain:

φ†
[a,b] =

R∑
r=2

I(C ≥ R)

P (C ≥ R|T1)
P (a ≤ C ≤ b|T1)
P (a ≤ C ≤ b)

(E[m|Tr]− E[m|Tr−1])

+

[
I(a ≤ C ≤ b)

P (a ≤ C ≤ b)
−
(

I(C ≥ R)

P (C ≥ R|T1)
− I(C ≥ R)

P (C ≥ R|T1)

)
P (a ≤ C ≤ b|T1)
P (a ≤ C ≤ b)

]
E[m|T1]

=
R∑

r=2

I(C ≥ R)

P (C ≥ R|T1)
P (a ≤ C ≤ b|T1)
P (a ≤ C ≤ b)

(E[m|Tr]− E[m|Tr−1]) +
I(a ≤ C ≤ b)

P (a ≤ C ≤ b)
E[m|T1].

(ii) Taking variance, we obtain:

V †
[a,b] =

R∑
r=2

E

[
P 2(a ≤ C ≤ b|T1)

P (C ≥ R|T1)P 2(a ≤ C ≤ b)
V ar (E[m|Tr]|Tr−1)

]
+ E

[
I(a ≤ C ≤ b)

P 2(a ≤ C ≤ b)
E[m|T1]E ′[m|T1]

]

whereas we know from Proposition 4 that:

V CMAR
[a,b] =

R∑
r=2

E

[
P 2(a ≤ C ≤ b|T1)

P (C ≥ r|T1)P 2(a ≤ C ≤ b)
V ar (E[m|Tr]|Tr−1)

]
+ E

[
I(a ≤ C ≤ b)

P 2(a ≤ C ≤ b)
E[m|T1]E ′[m|T1]

]
.

Therefore, we obtain that V †
[a,b] − V CMAR

[a,b] is:

R∑
r=2

E

[
P 2(a ≤ C ≤ b|T1)
P 2(a ≤ C ≤ b)

[
1

P (C ≥ R|T1)
− 1

P (C ≥ r|T1)

]
V ar (E[m|Tr]|Tr−1)

]

=
R∑

r=2

E

[
P (a ≤ C ≤ b|T1)
P (a ≤ C ≤ b)

[
1

P (C ≥ R|T1)
− 1

P (C ≥ r|T1)

]
V ar (E[m|Tr]|Tr−1)

∣∣∣∣ a ≤ C ≤ b

]
,

which is positive semi-definite by construction.

Remark: The results also hold if the moment restrictions in Lemma 7(i) are replaced by:

E

[
I(C = R)

pR(T1)

p[a,b](T1)

P (a ≤ C ≤ b)
m(Z; β)

]
= 0 and E


 I(C = R)− pR(T1)

I(a ≤ C ≤ b)− p[a,b](T1)


∣∣∣∣∣∣∣T1
 = 0

almost surely T1. This representation is also usable in practice since T1 is always observed.
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B Supplemental Appendix B: Monte Carlo experiment

We will now study the small-sample properties of our proposed estimator EFF and inference

based on it for estimands that are similar to those considered in our empirical illustration.

B.1 Simulation design

We will consider a setup reflecting the individual’s decision to stay or leave dynamically

over periods from programs (e.g., smoking cessation, weight loss), school, job, marriage,

experiments, surveys, market, etc. We model this decision to leave after any period as a

simple comparison between the individual’s expectation of the outcome and their actual

outcome after that period. Accordingly, we will consider an R-period program where Yr is

the outcome from staying until the end of the r-th period for r = 1, . . . , R in the program.

We will assume that this outcome is generated as follows. For t = 1, . . . , T , let:

Yt = |Yt−1|+ Yt−2 +Xt + et, where Xt = Xt−1 + vt.

et and vt are the model errors.20 Take X0, Y−1, Y0 independently N(1, 1) as the initial state.

Our analysis below is not conditional on the initial state, but this could be done. We will take

R = T = 3, and let Xr be the other observed variables for the r-th period for r = 1, . . . , R.

Let the individual’s expectation for the outcome in the r-th period be Y ∗
r . Suppose that

the individual decides to leave the program at the end of the r-th period, conditional on

staying until then, if and only if the actual outcome exceeds the expectation, i.e., Y ∗
r < Yr.

In other words, let the decision to leave at the end of period r be represented by:

I(C = r) = I(Y ∗
r < Yr)

r−1∏
j=1

I(Y ∗
j ≥ Yj) for r = 1, . . . , R− 1

whereas the decision to never leave be represented by I(C = R) = 1−
∑R−1

r=1 I(C = r).

The researcher observes C but not Y ∗
r . This means that Z1 = (Y−1, Y0, Y1, X−1, X0, X1)

′,

20Estimation of regression coefficients in the case of attrition under some form of MAR in dynamic panel
data models with fixed effects has been studied in, e.g., Abrevaya (2019).
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Z2 = (Y2, X2)
′ and Z3 = (Y3, X3)

′ in our notation. So, the observables are T1 = Z1, T2 =

(Z ′
1, Z

′
2)

′ and T3 = (Z ′
1, Z

′
2, Z

′
3)

′ for those with C = 1, C = 2 and C = 3 respectively.

Our distributional assumptions on the data generating process (DGP) are as follows. et

and vt are i.i.d. N(0, 1) for all t. ur := Y ∗
r − Yr is i.i.d. N(0, 7) for all r. We stipulate a

rather large variance for ur to abstract away from limited overlap. MAR in (1) is imposed

by maintaining that et, vt, ur, X0, Y−1, Y0 are mutually independent for all t, r. This results

in roughly 62% of the individuals with C = 1, 23% with C = 2, and 15% with C = 3.

There are six different targets [a, b] = [1, 3], [1, 1], [2, 2], [3, 3], [1, 2] and [2, 3] that our

theoretical results can accommodate for, and we have simulation results for all of them. For

brevity, however, we will focus here on [a, b] = [1, 3], [1, 1] and [2, 2, ]. ([3, 3] is the complete

case and is trivial whereas the results for [1, 2] and [2, 3] are similar to those reported here.)

To define β0
[a,b], we take the moment function in (2) as m(Z; β) = Y3−β and consider the

three targets [a, b] = [1, 3], [1, 1] and [2, 2] giving three parameters of interest. These target

parameters are purposely defined similarly to the estimands in our empirical illustration.

We compute the “true value” of these target parameters numerically by generating data

from the above DGP with sample size 10 million, estimating the mean of Y3 for each sub-

population, and then averaging each mean over 10,000 Monte Carlo trials. Consequently,

the three target “true values” are: β0
[1,3] = 9.6162, β0

[1,1] = 10.5232 and β0
[2,2] = 8.9914. As

evident from Table 5, the error in this approximation is of a rather small order to seriously

affect our subsequent analysis that is based on far smaller (than 10 million) sample size.

Target Descriptive Statistics
[a, b] for β Mean Std Median IQR Min Max

[1, 3] 9.6162 0.0022 9.6162 0.0029 9.6086 9.6249
[1, 1] 10.5232 0.0027 10.5232 0.0037 10.5111 10.5329
[2, 2] 8.9914 0.0044 8.9914 0.0060 8.9745 9.0084
[3, 3] 6.8724 0.0050 6.8724 0.0067 6.8516 6.8924

Table 5: β0
[a,b] is approximated (column 2) for different target populations (column 1) based

on averaging over 10,000 Monte Carlo trials the target-sample means obtained by using the
same DGP and with sample size n = 10 million. Columns 3-7 list the standard deviation
(Std), interquartile range (IQR), minimum (Min) and maximum (Max) of the estimator.
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B.2 Simulation results

We compute our proposed estimator EFF following the description in Section 4. To estimate

the nuisance parameters we use as working models the probit models for the conditional

hazards and linear models for the conditional expectations. For each working model, we

specify the index function as linear in the associated conditioning variables T1, T2, etc. and

do not include interactions. The true conditional hazards p0(.)’s but not the true conditional

expectations q0(.)’s are contained in their respective nuisance working models.

We report in Table 6 the simulation results based on these working models and 10,000

Monte Carlo trials, and for sample size n ranging from quite small to large.21 We report:

(i) Bias, the empirical mean bias; (ii) MC Std, the Monte Carlo standard deviation; (iii) AS

Std, the average of the estimated standard error based on the asymptotic variance formula;

and (iv) Size, the empirical size of the asymptotic 5% two-sided t test of H0 : β[a,b] = β0
[a,b].

Our proposed EFF performs very well in all these aspects (and others) and for all the

target β0
[a,b] (including those unreported here) even when the sample size n is relatively small.

To put the performance of EFF in context, we also report the same properties of the IPW

estimator from (14). IPW performs worse, often much worse, than EFF in every aspect.

First, consider empirical bias. The working parametric models contain the true con-

ditional hazards, i.e., CH holds, and, therefore, IPW and EFF are both asymptotically

unbiased. This shows for IPW in the simulation results if we focus on the relatively large

samples. On the other hand, the empirical bias of EFF is quite small even in small samples.

Second, consider the variability of the IPW and EFF estimators. MC Std is of course

infeasible in practice but is a better measure of the true variability. EFF seems to have much

smaller MC Std than IPW. The same observation holds true for AS Std, which is the average

of the estimated standard error, a feasible measure, from all the Monte Carlo trials.22

21n = 200 with P (C = 3) ≈ .15 is small relative to the number of nuisance parameters; n = 5000 is not.
22We should however note that the observation that MC Std and AS Std are both smaller for EFF than

IPW in our simulations is not theoretically promised. This is because: (i) although CH holds, the working
models do not contain the true conditional expectations q0(.)’s and hence EFF is not semiparametrically
efficient, and (ii) we do not use the Cao et al. (2009)-modification of EFF that, in these cases of scalar
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n Target Bias MC Std AS Std Size
[a, b] EFF IPW EFF IPW EFF IPW EFF IPW
[1,3] -.043 -.229 .658 1.322 .587 1.006 8.6 15.4

200 [1,1] -.053 -.330 .782 1.580 .728 1.212 7.1 16.9
[2,2] -.044 -.132 1.042 1.452 1.003 1.301 6.2 9.0

[1,3] -.030 -.147 .571 1.177 .523 .911 7.4 13.9
250 [1,1] -.042 -.223 .680 1.429 .645 1.105 6.7 15.8

[2,2] -.021 -.072 .927 1.313 .897 1.169 6.2 7.8

[1,3] -.024 -.122 .520 1.044 .477 .822 7.8 12.6
300 [1,1] -.032 -.189 .617 1.277 .586 1.004 6.4 14.4

[2,2] -.025 -.054 .845 1.172 .816 1.054 6.3 7.4

[1,3] -.021 -.102 .479 .944 .443 .764 7.2 11.7
350 [1,1] -.033 -.160 .566 1.169 .544 .939 6.0 14.2

[2,2] -.007 -.040 .782 1.056 .757 .974 6.0 6.7

[1,3] -.014 -.079 .445 .882 .414 .714 6.8 10.8
400 [1,1] -.019 -.125 .530 1.090 .508 .881 5.9 12.6

[2,2] -.012 -.033 .730 1.001 .709 .907 5.9 6.5

[1,3] -.020 -.062 .391 .782 .371 .643 6.8 10.1
500 [1,1] -.024 -.093 .472 .988 .454 .800 5.9 11.6

[2,2] -.013 -.025 .643 .854 .633 .806 5.3 6.2

[1,3] -.004 -.033 .313 .615 .305 .530 5.4 8.6
750 [1,1] -.008 -.055 .375 .785 .372 .667 4.9 9.9

[2,2] -.004 -.014 .522 .681 .518 .650 5.1 5.4

[1,3] -.002 -.005 .121 .222 .119 .213 5.5 6.3
5000 [1,1] -.002 -.008 .145 .290 .145 .276 5.2 6.6

[2,2] -.004 -.005 .202 .248 .201 .245 5.1 5.1

Table 6: Results for EFF and IPW are reported based on 10,000 Monte Carlo trials and
various sample sizes n. Bias stands for the empirical bias. MC Std and AS Std stands for the
standard deviation based on Monte Carlo and the asymptotic variance formula respectively.
Size stands for the empirical size of the asymptotic 5% two-sided t-test of H0 : β[a,b] = β0

[a,b].
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We also note from Table 6 that the feasible measure AS Std resembles very well the

infeasible but truer measure MC Std in the case of EFF. Interestingly, on the other hand,

AS Std of IPW is much smaller than its MC Std. For practical purposes this means that

the user’s estimate of the standard error for IPW likely gives a misleadingly higher sense

of precision especially in smaller samples. Theoretically, this indicates that the asymptotic

approximation better resembles the small sample behavior of EFF than of IPW.

Finally, and extending the discussion of underestimated standard error and quality of

asymptotic approximation, we consider Size. Size denotes the empirical size defined as

the estimated probability of rejecting the truth by an asymptotic 5% two-sided t test for

H0 : β[a,b] = β0
[a,b]. We observe that Size is much closer to the nominal 5% level for EFF

than it is for IPW. (IPW over-rejects the truth much more in small samples.23) This is

doubly attractive for EFF in these simulations since, as anticipated from our observations

on bias and variability, this shows that EFF’s gain in precision over IPW comes with another

advantage that EFF rejects the truth much less often than IPW, especially in small samples.

Now we move to the case where the nuisance parameters are nonparametrically estimated.

The asymptotic variance of IPW estimators should decrease in such cases and, under suitable

assumptions, can even reach the efficiency bound; see our Proposition 6(ii) in Section 3.3.

Also see, e.g., Hirano et al. (2003), Wooldridge (2007), Chen et al. (2008), Graham (2011),

Ackerberg et al. (2014), etc. in similar contexts and Newey (1994), Ackerberg et al. (2012),

etc. more generally. We will pursue here this line of argument by obtaining the AS Std of

the following three variants of the IPW estimator by enriching the original working model:

� IPW2: based on a working model that augments the original working model (for IPW

in Table 6) with the squared terms but no interactions;

parameters of interest, would guarantee that the asymptotic variance of EFF is not larger than that of IPW
if CH holds. Nevertheless, it is certainly a welcome observation that EFF delivers estimates that are much
more precise than the IPW estimates. We have also noticed this in our other works with more than one level
of missingness (R > 2). This discussion will need to be modified if the working models “promise” increased
flexibility with sample size n; see Ackerberg et al. (2012); and we will do that later with the help of Table 7.

23Given Hahn and Liao (2021)’s result of the conservativeness of bootstrap standard error, this observation
seems to justify that the anecdotally-common empirical practice of using bootstrap standard errors for IPW.
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� IPW2in: based on a working model that augments the original working model (for IPW

in Table 6) with the squared terms and all the first order interactions;

� IPW23: based on a working model that augments the original working model (for IPW

in Table 6) with the squared and cubic terms but no interactions.

When the progressively richer working models used by these estimators are viewed as

a function of sample size n, one would hope that these estimators’ asymptotic variances

computed as before would eventually converge to the efficiency bound; see, e.g., Newey

(1994) and Ackerberg et al. (2012). We report in Table 7 the AS Std and MC Std of

IPW2, IPW2in and IPW23 along with IPW and EFF for progressively large sample size. To

abstract from: (i) the increased bias (unreported) in smaller samples that is not our focus

but nevertheless important and well-studied (see, e.g., Chernozhukov et al. (2022), Rothe

and Firpo (2019)) and (ii) more generally from any number of smaller sample issues (see,

e.g., Sur and Candes (2019)), we even consider the extremely large sample size of 100, 000.

We also computed another variant IPW23in that is based on a working model that

augments the original working model (for IPW in Table 6) with the squared and cubic terms

and all first and second order interactions. However, we do not discuss IPW23in except

in footnote 25 and omit it from Table 7 because it performs terribly except that when

n = 100, 000, its MC Std is slightly smaller than that of IPW23 (but still bigger, sometimes

much bigger, than EFF) that in that instance is the best among the rest of the IPW variants.

We wish to discuss now several observations from Table 7.

First, continuing on the discussion of Table 6, the difference between MC Std and AS

Std for each estimator ultimately vanishes with very large sample size (n = 10, 000 or more).

Second, both MC Std and AS Std of IPW2, IPW2in and IPW23 are smaller than that

of IPW for sample size n = 5000 and more. This ranking of variability is reassuring since

the working models used by IPW2, IPW2in and IPW23 nest the model used by IPW.

Third, although the working models used by both IPW2in and IP23 nest the model used

by IPW2, the variability of the former two, as measured by both MC Std and AS Std, seems
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to exceed that of IPW2 even for sample size as large as n = 10, 000.

The above observations suggest that even in a simple framework such as ours, the sample

size of n = 10, 000 may not be large enough for the intuitions of the large sample theory of

IPW to hold convincingly. Other basis functions could lead to a more encouraging picture.

Nevertheless, our discussion based on the power series basis is practically relevant since power

series resembles the common parametric specification of main variables and interactions used

in empirical work and, therefore, it renders the transition from parametric to nonparametric

specifications (by adding higher order terms) seamless and empirically palatable.

Fourth, the working models used by IPW2in and IPW23 do not nest each other and

hence the ranking of the variability of IPW2in and IPW23 is theoretically unclear. The

simulation results lead us to prefer IPW23. For this reason we use this working model in

our empirical application (see footnote 14) where the sample size and the dimension of the

covariates are comparable to those in the setup here. Some sort of formal regularization or

variable selection could be useful, but that is beyond the scope of our current paper.

Finally, we observe from Table 7 that the variabilities, as measured by MC Std and AS

Std, of IPW2, IPW2in and IPW23 are still worse, and sometimes much worse, than that of

EFF even though EFF is based only on the original working model (as in Table 6).

Let us elaborate on this last observation because this also brings us back to one of our

motivations behind extending the MAR analysis to sub-populations with multi-level miss-

ingness. To abstract away from any small sample issues that could have worked unfavorably

for IPW2, IPW2in and IPW23 because of the large number of nuisance parameters involved

in them, let us focus on an extreme case of very large sample size n = 100, 000.24

Now the variabilities of IPW2, IPW2in and IPW23 come quite close to that of EFF for

the target β0
[2,2]. This is a case of only one level of missingness because R = 3 while a = b = 2;

see footnote 9. One level of missingness is what has been considered in the cited references

that showed nice properties of IPW based on nonparametric estimation of the conditional

24IPW2, IPW2in and IPW23 involve 19, 28 and 55 parameters respectively in their working models for
P (C = 2|C ≥ 2, T2) to be estimated based on approximately 38,000 observations (C ≥ 2) when n = 100, 000.
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hazard (propensity score). Therefore, this closeness of variability and the realization of the

promised benefit of nonparametrics is not surprising for the target β0
[2,2] when R = 3.

However, the variability of IPW2, IPW2in and IPW23 are still substantially larger than

that of EFF for the target β0
[1,1] that is a case of two levels of missingness since R = 3 while

a = b = 1. We observe the same for β0
[1,3] since β

0
[1,3] is a weighted average involving β0

[1,1].
25

We conclude by restating the three take away points. First, the promises of nonpara-

metrics may not always hold even in very large samples. Second, it is indeed remarkable

that the simple EFF estimator fared so well against the other estimators that were based

on much richer working models. Third, apart from performing much better than IPW, EFF

also performs well in all aspects in absolute terms even in samples of relatively small size.
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