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This supplementary material contains an example of an SAR Tobit model, all the proofs for
the main text except the LLN and the CLT, and more examples of spatial functional dependence.
Throughout the proofs, we use C, Cy, C', ... to represent some positive constants, which might be

different from line to line.

S.1. Some Useful Lemmas
Lemma S.1. Let (Q,F,P) be a probability space and C is a sub-o-field of F. For any random

p 3 p
< <2> Ec |IX7.
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Proof. By the triangle inequality and conditional Lyapunov’s inequality,

1 1 1 3
|- Eex| <X+ 5 XN < X+ 51X = 5 1K

LpC
Taking both sides of the inequality to the pth power completes the proof. |

Lemma S.2. Let (2, F,P) be a probability space and C is a sub-o-field of F. Suppose random

vectors X and Y are independent conditional on C and EcY = 0 a.s. Then for any convex function

f7
Ecf (X)) <Ecf(X+Y) as.

Proof. Tt follows from the facts that X and Y are independent conditional on C and E¢Y = 0 that

E,(x)veY = 0 a.s. Because Eq(x)ycX = X, by conditional Jensen’s inequality,

FX) = (Eoxyve [X +Y]) SEsxpvef (X +Y) as.

Thus,

Ecf(X) <EcE,xyvef (X +Y)=Ecf (X +Y) as.
[ |

Lemma S.3. Consider the system (2.1). Let I and Iz be any two disjoint subsets of D,,. Then
foranyie D, andp > 1,
5, (i, I1,n) < 36, <i,[1 Ulg,n) .

Proof. Tt suffices to consider the non-trivial case that I # () and I # (). Denote G = o (€, : j € Dp\I2)V
g (e;m WS Il)' Let X = YW B Y;an,h? Y = Y;}ng - Yi,n,h U — Eg [Y;,n,fz - Yz’,n,h U12:|7 and

f(x) = |[z|”. Conditional on G, X is a function of €, , and Y is a function of €}, .. So, X and Y’



are independent conditional on G. Lemma S.2 implies
Eg |Yin — Yinnu P < EBg ||Yin = Yints + Yimito = Yins U — B [Yimto — Yimnun) |’ (S1)
Taking X =Y, —Yinn +Yinn —Yinn Ul in Lemma S.1 gives

Eg ||Yin = Yinn, + Yinto = YinrnUs — Bg [Yint = Yinn, U s 1P
3 p
< <2> Eg HYm —Yinn +Yint —Yinn UL Hp (S.2)
3 p
<(3) 27 (8o I¥in  Yinasun P + B I¥inss = Yo ).

where the last inequality follows from the conditional Loéve’s ¢, inequality. Combining (S.1) and

(S.2) and taking the expectation yields
p_ 3 p p P P
]EHYi,n_Yi,nJlH < 5 [EHY;JL_Y;m,h UIQH "’]EHYi,n,b _Yiﬂl,hH ] =3 ]EHY;:TL_Y;}thbH )

where the last equality is due to the fact that Y;,, — Y, 1,5, and Yipn 1, — Yin  have the same

distribution. Thus,

5p (i,[l,n) S 35p <i,[1 UIQ,TL) .
|

Remark S.1. This lemma implies that the LP-FDM 6, (¢, I, n) admits a similar property like mono-

tonicity: 0, (¢,1,n) < 36, (i, J,n) for any I C J, which is useful in practice.

Lemma S.4. Let p > 1 and k > 1. Consider the system (2.1). For a finite or infinite subset

J = {jl?j?a .. } C Dn: we have 51) (iv']v n) S Z‘kﬂl 5}7 (Zajkvn)



Proof. Denote Ji, = {j1,jo,.-.,jk} for k > 1 and Jy = (). By the Minkowski inequality, we have

/]

6p (Z’ J’ n) = HY;’n - }/i,n,{jl,jg,...} HLP = Z (}/;,',n,(]k,1 - Yi>n7Jk)

k=1 »

/] /]

SZ H}fi,?LJk_l - ’LanHLp Zé l ]k?
k=1

Lemma S.5. (Burkholder’s inequality, Rio, 2009). Let X1, Xo, ..., X, be a zero-mean martingale

difference sequence and p > 2 is a constant. Then

n

>

=1

n 1/2
<vp-1 (Z \\Xillip> : (S.3)
i=1

Lp

Proof. When p > 2, the conclusion follows from Theorem 2.1 in Rio (2009). When p = 2, since

. ) 1/2
Cov (X, X;) = 0 for all i # j, |0, Xill 2 = (S I1Xil3:) =

Lemma S.6. (Lemma A.1 in Jenish and Prucha, 2009). Suppose that Assumption 1 holds. Then,

there exists a constant C' < oo such that SUp;cpd H] eRY:m < dij <m+ 1}‘ < COmd-1,

Lemma S.7. (Generalization of Lemma 17.15 in Davidson, 1994). Let B and p be two nonnegative
random variables and assume ||p||;q < o0, ||B|l;» < o0, and ||pB||;» < oo, forg t+p~t=1,¢>1

3 1\ 1/ (=)
and v >t > 1. Then | Boll, < 2 (IBIL" Il 1BolS )

Proof. Let C = (||B| 1 ol 14 HBpH_T)l/ =" and B; = B-1(Bp < (). By the Minkowski inequal-
ity,
1Bpll e < 1Bupllpe + (B = Bu) plle - (S4)

We bound the two terms on the right hand side (r.h.s.) separately. The first part can be bounded



as

1/t 1/t
HBlpHLt:</B <C<Bp>tdu») < v/ (/ deu») < OV B, (s5)
p<

where the first inequality is due to the fact that Bp < C and the second one follows from the

Hoélder inequality. The second part can be bounded as

1/t 1/t
B-Bpl= ([ @morar) scenn ([ mpra) ey,
Bp>C Bp>C
(S.6)
where the first inequality follows from the fact that Bp < C and r > t. Then the conclusion follows
from (S.4)-(S.6). |

Lemma S.8. D,, is a countable lattice in a metric space. For any nonnegative matriz' M =
(mij)‘Dn‘an', where the indexes of M belong to Dy, i.e., 1,5 € Dy, denote ¢pr(s) = sup; Zj:dijzs mij.

Let K > 1 be an integer. Then for any nonnegative matrices M, ..., Mg,

K
e ()€ o () T 1Ml
k=1

jell,.. K}k

Proof. For all k =1,..., K, denote M} = (mgf)) . Then
| Dn | x| Dn|
1 K
¢M1-~~MK (8) = sup Z (Ml T MK)iOiK = sup Z Z ml(ol)l e mngliK'
*o Ui idigig 28 0 iR i 2811, ik —1€Dn

Denote I), = {(z’l, ...yiK) € DX : there exists some k € {1,2,..., K} such that d;,_,;, > %} By

the triangle inequality,

K
{(il,...,iK) S Dﬁ( : dioiK > S} C U 1.
k=1

! A matrix is nonnegative iff its elements are all nonnegative.



Consequently,

K
Orear () < > osup > mll) om0 (8.7)

For any k € {2,..., K — 1},

sup Z ml(;l)l o m'ff((zl'LK = S;lp Z Z Z ml(;'?l T ml(f((LiK

O (i1 yir) €Dy O 41,ip—1€Dy in:diy iy >/ K ikt1,iKk €Dn
_ } : (1) (k—1) § : (k) § : (k+1) (K)
- S}lp M0y My iy My~ iy, mikik+1 Mg

O 41,ip—1€Dy ipidiy_ i, >/ K Tkt 1,5t K €EDn

K
(1) (k—-1) (k) )

=< sup Z Mgiy = My _gip—y | SUP Z M) ik H HMJ HOO

0 11,...,i,—1€Dn te—1 ik:dik_likZS/K j=k+1

<om () II 1Ml

]6{177K}]7£k

(S.8)
where the first inequality is from
(k+1) (K) &
k+1 K
sup Z Miirgr = Mg yige = SUP Z (Mg -+ MK)ikiK = [Mpgr--- Mk < H HMJHOO
Y i tyeig €Dn " €Dy j=k+1

and the last one follows from the definition of ¢y, (s). (S.8) also holds for k = 1 and k = K by

the same argument. Then the conclusion follows from (S.7)-(S.8). |

Lemma S.9. (Similar to Lemma A.7 in Xu and Lee, 2015). Let 0 < n < 1 be a constant. Under
Assumption 1 and D, = {1,...,n}, let A, = (aijn) be an n x n nonstochastic matric satisfying
aijn = 0 when d;j > do, where d;j is the distance between individuals i and j. Suppose sup ||Ay||, <
17‘;0 < 1, and, the random field {v; n} satisfies —1 < v;,, <1 and the LP-FD coefficient of {vin} on
an independent random field {u; ,} (denoted as A, ,(s)) satisfies A, p(s) < Cn®, for some positive

constants C' > 0, for all s > 0. Denote G,, = diag{vin,...,vnn}. Then, for any positive integer ,

(i) The LP-FD coefficient of{gi(?b = (GnAnGn)éi} (denoted as Al()l)(s)) on {u;n} satisfies Al(;l)(s) <



C1n® for some constant Cq > 0.

1) The LP-FD coefficient of s h;ipn = |(Ln — GnAnGyp 1G,A4,G denoted as Ap,(s)) on
b 1/1 7p

{uin} satisfies Ap,(s) < Cssn® for some constant Cs > 0.

Proof. The proof is borrowed from Xu and Lee (2015).

. l

(i) We note that (GpA,Gyr);; = Zjl "'ijq Qijy nGjrjam -~ajl_1i7nvznvj2-1’n . "ngl,l,n' When
A3y nQjrjan " Qji_qin 75 0, we have dij1 < CZo,djle < CZ(), R ’djl—li < CZQ. Define Ik,s = {Ej,n : dkj > S}
for any k € Dy, and for simplicity of the notation, let jo = 4. Then I; s C I, 4, for any s > Id

and h € {0,...,1 —1}. Note that the absolute values of v;,,’s are less than or equal to one and the

product of v;,’s is a Lipschitz function. Then, when s > Id,

2 2 2 2 2 2
VinVYiin V5 0m — Yin L Viin s " Vi 1m0

-1
<6
h=0

-1
2 2
P S Z ijh7n B vjhvnali,s

GZAW s — hdp) <6ZC¢]S hdo,

Lp

‘Ujh,n “ Yinmnody, o

-1

<2 Z ijhvn — Ui, Ii s Lp
h=0

where the second inequality follows from that v? is a Lipschitz function on [~1,1] and the third

one follows from Lemma S.3. When 0 < s < Idj, <2 <max{2,6C} n—hdo,

22
’UJhn Yjnm.Ii,s

Lp
thus the above inequality still holds if we replace C' by max {2,6C'}. Thus, for any s > 0

@

2 2 2
gzn gzn

2
VinYirn " Y5im = Yin L, JViin s " Vi mdi

< E : E :’amma]ljz,

Ji—-1
l — s—hdy s, ldo nilJO —1 max {2760} s
<Al max {2,6C} Y n* " < max {2,6C} n*n o i
h=0

7’LS

Lr

Thus,

0] O]
Gin — gi,n,fi,s

< 017787

@
Ap (s) = g .

max{2,6C}

where Cq = )
1 o1



(ii) Notice that

hin = |(In = GaAnGn) ™" GG i[GAG ingg}l

=1 =1
and
0] Z Z 2 .2 2 2
Gim — glnfzs ‘al]hna‘]l]% VinVjin " Vi = Yin 0 Vi n g, Vg1 s
J1 Ji—1
l
<2 Y i nigen e agyin] < 2[1Anlll,

Jt Ji—1
for any i € D,,, | € N and s > 0. Then, when s < dy,

do

<22HA ” <Qand0 _1_7610

Hhi,n_ i,n,I; o gmlw

When s > do,
l ! ! 0
Hhi,n - hi,n,li,s r < Z ‘ gz(r)L gz(,’r)z,]@s Ip = Z ‘ gz(r)L gz n,1 s + Z ‘ gz n,I; s
=1 leN:ldg<s 1eN:ldg>s
max {2,6C} 60} max {2 6C} .
< -~ 7
< 3 B0, S a2 2, 3 g
IeN:Idy<s 1eN:Idy>s I=|s/do |
2. 6C do | s/do |
_max {2,603, H 2T < o,
TI* 0 — 1 dO 1 —_ 77 0
where Cy > 0 is a constant. Taking C3 = max {02, %}, we have thn - hz‘,n,[,-,s w < Cssn®
for any s > 0. Thus,
App(s) = sup Hhi,n — hin,., S Cssn®.
n,i
[ |

Lemma S.10. Let 2 < pg < qo € R and 2 < wg € N satisfy p% + wg—;l = %, r =min{d;j, : 1 <

Lr



k<u,1<l<wv}, andw =u+v <woy. Denote ||Y|[zr = sup;,, [[Yinllze forp>1. If (i) EY;, =0
for all i € Dy, (i) M = max(1,||Y||zw0) < oo, (iii) {Yin} is L*-FD on an independent random
field {e; ,} with the L?>-FD coefficient As(s), then, for any 0 < s < r1/2,

qp—2w+2

0
Cov (Yisin - Yin, Yisn - Yipn)| < 4wM ™Yoo [Aa(s)]200=2072 .

Remark S.2. Lemma S.10 extends the covariance inequality of NED random fields (Lemma A.1,
Xu and Lee, 2018) to FD random fields. Note that by Lyapunov’s inequality (po < qo) and condi-

tion (ii) in this lemma, ||Y||rro < 0.

Proof. Let Iy n(s) = {j : d(ig,j) > s} for k=1,--- ,u, U =[], Yo, (s)s AU =l Yign —
U. Similarly, we define J;,,(s) = {¢ : d(i,5;) > s} for L = 1,--- 0, V =[], Yjindin(s) AV =
II,-,Yjn—V. When we construct Y ndin(s) forl =1,---,v, we choose the i.i.d. copies €in for

J € Jin(s) to be independent of those €, fori € Ik n(s), k=1,--- ,u. In this way, when r > 2s, U

is independent of V', thus, Cov(U, V) = 0. Let t = %=L gy < qo. By generalized Holder’s inequality

wo—1

and Lyapunov’s inequality,

u u
U+ AU 2 = | [T Yiewllzz < Wiinllzeo || [T Yiesnlloe < 1Y [[zeo M1 (S.9)
k=1 k=2
Since Y, n.1,..(s) and Yi, n are identically distributed for all k = 1,-- -, «,
U g2 < (1Y ][ pro M1 (S.10)
Let A = 25 > wg(ll > 2. In the following derivations, we use the convention that H?n:l =




Hgnqurl =1

AU > =

H ig,n H}/;k,n I ()

k=1

Z <H }/;k n) ( zk,n Ik n ) Tm,m T Zm7n I, n(s))

m=1 k=m+1 L2

S Z <H }Qk’n) ( k:n Ikn ) im,n _Y;m’n Imn(S)) (Sll>
m=1 k=1 k=m+1 L2

2

Y T A—2
SZZ (H 1780 > < H sz,n[kn ) . HYEmV’n‘_}/;m,nIm,n HZA 2.
m=1 k=1 k=m-+1 12
_A
2A—2
H ( ZkH ) ( H }/Zk n Ik n(S ) ( Zm’n B 1/1:"17”71711,71(8)) Y
k=m+1 A

where the first inequality is by Lemma A.3 in Xu and Lee (2015), the second one is by Minkowski’s
: : : A-2 A-2 A )42

inequality, and the last one is by ||Bpl|l;2z < 2 (HpHL2 I1B72 ”B,O”LA) when A > 2
(Lemma 17.15, Davidson, 1994). Similar to (S.9),

m—1
() (21 )
k=1 k=m+1

Moreover, by generalized Holder’s inequality,

< ML (S.12)

L2

m—1
(H Ylkﬂl) ( H s I n ( S)) (Y;m»” - Yim,n,lm,n(s))
k=1

k=m-+1 LA
m—1 u
S H H}/;kvn”LAu ’ H ’ }/ikvnzlk,n(s) Au ’ HYvan - )/;mvnzlm,n(s)HLA“
k=1 k=m-+1 (S.13)
m—1 u
< T Waallon =TT [Yicrminio |, - (Wonllzon = (Vi o)
k=1 k=m+1
<oMY,

10



where the second inequality is by Lyapunov’s inequality (Au < qp) and Minkowski’s inequality.

Plugging (S.12) and (S.13) into (S.11), we have

A—2 A Au

AU 12 < QUM(“—l)QI?(:Zz Ao (s)24-222A-2 \[ 242

(S.14)

3A—-2 2uA—2u—A+42

=22A2q [~ 24-2 Ag(s)% < 4UMUA2(S)%,

where the last inequality follows from the fact that g‘g—:g < 2, M > 1, and W <

w. Similarly, we have ||V + AV |2 < |[Y|lzeo MY Vg2 < |V lzeo MY~ and [[AV]2 <
41)M”A2(s)£4%22. Consequently, by Cov(U, V) = 0, we have

ICov (Vi Yiums Yim - Yium)| = |Cov (U + AU,V + AV)]
<|Cov (U, V)| + |Cov (U, AV)| + |Cov (AU, V + AV)]
<[ Ul[2|AV |2 + |AU || e[|V + AV 12
<Y || o MUY - 40 MP Ag(5) 342 + 4uM®Ag(5) 242 - ||V oo MV~L

qo—2w—+2

= 4w M (Y || oo [Ag(s)) 202052

where the third inequality follows from the bounds for ||V + AV 2 and |[AV]z2, (S.10), and

(S.14), and the last step follows from w = u + v and A = -1 [

w—1"

Lemma S.11. (Corollary 1.8, Nagaev, 1979). When X1, Xa,..., X, are mean zero independent

random variables, for any p > 2, x > 0,

2\? 222
P(ysnyzx)g(ur) R e — (S.15)
D xP eP (p+2)° pn2

where S, = Z?:l X, Mnp = Z?:l HXZ”%D

Lemma S.12. {z,} is a nonnegative sequence. If x,, = O (n%) for some o < —1, then Y o> | xp <

0o and Y07 T = O (n®t1) asn — oo.

11



Proof. Since z,, = O (n®), there exists a constant C such that z, < Cn®. Thus > >°_ 1z, <

m=n M

> oo, Cn®. Then the conclusion follows from > v Cm® < C [ x“dz and

< x%dzx —(n—=1)° -1
lim Jmawtde lim —(" D" _ >0,
n—00 notl n—00 (a + 1) ne a+1
where the first equality follows from L’Hospital’s rule. |

S.2. An SAR Tobit Model

Here, we employ our new tools to establish the CLT for the score function of the SAR Tobit model
studied in Xu and Lee (2015), which is a crucial step for establishing the asymptotic normality of
the MLE (maximum likelihood estimator). The form of the SAR Tobit model is the same as (4.3)

with F'(-) = max {0, -}. We first state some assumptions.
Assumption S.1. (1) ( = [A[sup, [|[Whl <1;
(2) wijn can be nonzero only if dij < do;
(3) for each n, € n’s are i.i.d. N(0,02) random variables; X;,’s and €;,,’s are independent;

X! B

i\n

(4) for some p > 6, || X||;, = sup,; ‘L < oo and {X;,} is LP-FD on an independent
’ P
random field {u;y : i € Dy,n > 1} with the LP-FD coefficient Ax , (s) = O (Cs/go) satisfying

Axp(0) < oo; (ué s ei,n> ’s are independent over i;

(5) ¥ = lim, oo Xy ewxists and is nonsingular, where ¥, = %Var(E?zl gin) and the expression

of the score function g; ., can be found in Section 5 of Xu and Lee (2015, p.269).>

Assumptions S.1(1)-(5) are similar to Assumptions 2, 3(1), 5, 10-11 in Xu and Lee (2015). We

can also consider the case that w;j, decreases as a power function of d;; like Assumption 3(2) in

*Note that our g;, corresponds to gin(6o), the score function evaluated at the true model parameters, in
Xu and Lee (2015).

12



Xu and Lee (2015), but we only consider the short distance connections for simplicity. We have

the following CLT.

Proposition S.1. Under Assumptions 1 and S.1, ﬁ > dim L\ N(0,%).

A ; _x/ ) ~ -1 ~
Proof. Let z; p, = Yin AW n¥n= X8 _ 617*”, Tin = [(In — )\Wn) Wn] , where W,, = G(Y,,)WG(Y,,)

[en
2

and G(Y;,) = diag {1(Y1,, > 0),...,1(Y,» > 0)}, and ¢(-), (-) be the probability density function

and cumulative distribution function of the standard normal distribution, respectively. From Propo-

sition 1(1) and Lemma A.9 in Xu and Lee (2015), {Y;,n}, {(WinYn}, {zin} {zzn} and {g(é’l:))}
are uniformly (in i and n) LP, LP, LP, L?/? and LP bounded, respectively. And from the proof of
Proposition 5 in Xu and Lee (2015), |r;,] < )\IC—_QC. Then, by Holder’s and Minkowski’s inequality,
{¢in} is uniformly L*/2 bounded. To apply Theorem 3.5, we show that every term in Qin 18 L?-FD
on {(u;’n, Ei,n),} By Proposition 4.3(5)(ii) and Assumptions S.1(1)-(4), the LP-FD coefficient of
Yinis O <Cs/(2g")). For {W;.,Y,,}, denote I; s = {j : dijj > s}. When s > do,

n
HWz,nYn - Wi-,nYn,Ii,S Ly < Z |wzk’,n| HYk,n - lef,n,L;,S 17 Z |wzk,n| HYkm - Yk,n,li,s
k=1 k:dik<go

=7 Z [wikal ‘Yk’” ~Yenty g ||, S Z_ |Wik,n| O (C(S_JO)/(2J°)> =0 (Cs/(mO))

k:d;, <do k:d; <do

Lr

as s — oo, where the second inequality follows from Lemma 5.3 and I; s C [j , g, for any k
satisfying d;, < dp and the last step follows from sup,, Wil < 0o. When 0 < s < do,

HWz,nYn - I/I/vi-,nYVn,Ii,S

rp < 28upy [[WinYall, < oo. Thus, the LP-FD coefficient of {W;. Yy}

s O (Cs/(ﬂo)), Since z;, = ei(;”, all of {2}, {z?n} and {i(é:’;))} are independent random fields.

/
By Proposition 5.4, the LP-FD coefficients of {1(Y;,) > 0} and {1(Y;, = 0)} on {(u;n,em> }

s 1\ o
are both O ((2@“)50). Since |A|sup,, [[Whll, = ¢ < <§6d0> , by Lemma S.9, the L2-FD coef-

ficient of {r;,} is O (SC%). So, by Proposition 5.6, all terms except 7;, in ¢;, are LP/3-FD on

/ s .
{ (ufm, em) } with the LP/3-FD coefficient O (C 2(p+1)dg ) . We illustrate this for {1(Ym =0) g((zz)) W/ann}

13



as an example. By Proposition 5.6, the L?/2-FD coefficient of {qﬁ(zi_’") Wi.ann} is O <C5/(2J0)>; by

D(zi,n)
Holder’s inequality, {i(é’”))Wann} is uniformly (in 7 and n) L?/? bounded. Now, by Proposition

i,mn

5.6 again, the LP/3-FD coefficient of {1(Ym =0) g((zz)) WimYn} is O <§2(P+51)30 ) Other terms can

be calculated similarly. Since § > 2 by Assumption S.1(4), we conclude that the L?-FD coeffi-
cient of {g;n} is max {O (sC%) ,O <C2<P:1>50>} =0 <C2<P+sl>d_0>. Hence, by Assumption S.1(5),

Theorem 3.5 and Slutsky’s theorem, we have the conclusion. |

S.3. Proofs for Appendix B

Proof of Lemma B.1. Recall I;,,, = {j € Dy, : dij € [tm—1,tm)}. The conclusion follows from

”V;,n,b(m)HLp =|E (YinlFin (tm)) — E(YinlFin (Lm—l))HLp
= HE (K,n’ﬁ,n (Lm)) -E (Y;j,n,[i’m,L ‘]:i,n ([/m—l)) HLP
= HE (Y;,n|f.z,n (Lm)) —E (}/i,n,l@mﬂb‘fi,n (Lm)) HLP = HE ()/z,n - Y; n Ii’m,L|~Fi,n (Lm)) HLP

Eiad)

< H}/z,n - }/i,n,liym%

Ly < em,p,m

where the second and third equalities follow from the independence of ¢;,,’s and e;f’n’s, and the first
inequality follows from the conditional Jensen’s inequality. |
Proof of Theorem B.1. Assume EYj, = 0 for all j and n w.lo.g. to shorten formulas in
the proof. Recall that Vj,, (m) = E(Yjn|Fjn (tm)) — E(Yjn|Fjn (tm-1)) in Lemma B.1. Since
€in's are independent, V;,,(m) and Vj,, (m) are independent if d;; > 2ty,. The idea of the
proof is to divide {Vjn, (m)}; 7, into several subsequences such that the random variables in each
subsequence are independent with mean zero. Thus, every subsequence is a martingale difference
sequence and we can apply Burkholder’s inequality (Lemma S.5). Hence, it suffices to group the
spatial units such that the distance of any two spatial units in the same group is greater than or

equal to 2¢p,.
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First, we partition R? using big cubes (a cube is a left closed and right open interval in R in

this proof) with length of sides 2¢,,: for any m € N,

R'= | Sk k),
(k1 k) €24

where S (k1,--- ,ka) = [2k1tm,2 (k1 + 1) tm) X [2k2tm, 2 (ko + 1) tym) X -+ X [2kgtm, 2 (kg + 1) tm).
To shorten the notation, denote k = (k1,...,kq). Then S(k) = S (k1, ..., kq) = [2tmk, 2um(k+1)),
where (a1,...,aq) +b= (a1 +b,...,aq+0b) for any vector (ai,...,aq) and scalar b. So, the above
partition can be written as R? = Useza S(k).

Second, we classify these big cubes S (E)’s into 2% groups such that each cube will not be in
the same group as its adjacent cube. Two cubes S <El) and S (EQ) belong to the same group iff
k1 = ko (mod 2), which is defined as k1; = ko; (mod 2) for all i € {1,---,d}, i.e., k1; and ko; share

the same parity for all i. Let A = {(a1,...,aq) : a; = 0 or 1 for all i} and notice that |A| = 2¢. So,

R = S(k)

a€A | keze:k=a (mod 2)

Consequently, each group corresponds to each @ € A, and within every group {S(E) k€
74 k=a (mod 2)}, the distance of any two big cubes is greater than or equal to 2¢,.

Third, we partition each cube S(k) into (2¢,,)? disjoint unit cubes. Denote I(1,) = {(i1, . . . ,iq) :
i; € {0,1,...,2t, — 1} for all 5}, and notice that |I(m)| = (2ty,)?%. Then

5 (E) = U Rwk+i2mk+i+n= |J S (Ei’) .
i€l(tm) i€l(tm)

So,

15



—

Under Assumption 1, there is at most one spatial unit in each unit cube S (I;, i).

Finally, for each @ € A and 7 € I(iy,), denote U(d@,1) = Ty, N S(k,7)| and

UEGZd:EEZi (mod 2)
U(d@) = User,,, U@, 7). Then T, = aea U(@) = Uzea Uses (., U@, 7). Figure S.1 shows an

example of the above partition.

\J

Figure S.1: An example of the partition (The squares with the same color belong to the same big
group (U(@)), and every big group is divided into four smaller groups (U(d,7)).)

For each @ € A and i € I(1,), the random variables in {Vj,n,b (m):j€ U(d’,f)} are indepen-

dent. From the definition of &, limy, 00 Ly = 00. Since Yj, = > >0 | Vj,, (m) for all j € U,

SR I Dub ST HES) b DD DP SUAAE

JET, Lp JET, m=1 p aeA’LEI(Lm)]EU (a,i ) P
1/2
[o¢] o0
2
SO DD 2 Vi) <30 > V-1 D Vima ()L,
m=1a€ATEl (1) ||V (@,7) p m=1a€ATc](1,,) jeU(ay)

=90 IS SIVERI UL

m=1GEA Tel (1)

mpe < Z 2% d/2 T |1/2 Om,p. = de 10y, | T, |1/2
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where the second inequality follows from (S.3) (Since Vj, (m)’s are independent with mean zero

—

for all j € U(d,i), we can regard {Vj, (m)} as a martingale difference sequence), the third

JeUs ¢

inequality follows from (B.1) and the last inequality follows from the power-mean inequality

Lo 1/2y\ 2 -
S ea Sierun U@ )] _ Taea Yiertn) v@n
24 (24,)% - 24 (24,,) 27 (2) "
We obtain the desired result. [ |

Proof of Theorem B.2. The idea of the proof is borrowed from that for Theorem 3 in Wu and Wu

(2016). From Theorem B.1, for any p > 2, we have

HSnHLp = Z Yf,n S 2d vD— 191”(17) ‘Tn’1/2 .

1€Ty

Lp

Consequently, ||Z,];, < 2d\/ﬁ®p,b(p) for p > 2. Recall a Taylor’s formula: (1 —s)_1/2 =
14+ 322, ags®, where |s| < 1 and ap = (2k)!/ (2% (k!)2> for k > 0. By Stirling’s formula,
ag ~ (kw)flﬂ. Hence, k! ~ V2 (k/e)k a,' and ag/ag—1 — 1. Thus, there exist constants c1,c2 > 0
such that ¢; (k:/e)k a;l < k! and aj, < caag—1 hold for all £ > 1. By (B.3), when ak > 2, we have

Oy uek) < 70 (ak)”. As a result, when ak > 2,

ak
klod /o7 —71
tk ||Zn||%§k - t [2 ak — 1@ak,L(&k>i| - 2daktk (Oék o 1)ak/2 ,}/gyk (ak)aku
k! B ¢ (ke a;’t B c1 (k/e)” a;’t
ayth (ak — 1)ak/2 ath
Caty (ak)? T atfye

where the equality is by tg = (2adeoryg‘)71 and v = L -1 and the last step is due to (z — 1)”””/2 Jxt/? <

e M2 forall z > 2. When 0 < ok < 2 and k > 1, we have || Z, || por < [ Znl 2 < 290,y < 272770,

17



and so

) ZlIhe _t* (272790) " otk gk gk 92/a-

k! - k! e (kj/e)kalzl B Cltlg (akj)k B Cltlg min {a,oﬁ/a}’

tk 2dak 2uak,y((]1k

where the equality is by tg = (ZO‘deafyg)fl, and the last inequality follows from the following facts:

k 2 _1_1
20eR 2% v =~ — 5, and

Because e =1+ 572 2% /k!,

t*E | 7, |2k 7|15k th 117, 11%%
m“):1+§: L \ 14 2: ol HLk+_§: Hmhk

k=1 1<k<2/a k>2/a
k 2/a—1

apt 2 akt
<1+ E - + E <1+¢, E ak—
< - 3 <

1<k<2/ citg min {a, a?/*} k>2/a 0\[
tk th t/to
<l+¢, § C20k -1~ 1+Ca g ap =1+ ca—"——7,
k=1 t§ L (1 —t/to)"

where ¢/, cq > 0 are constants depending only on «, and the last step follows from the formula

(1-— 5)71/2 =1+ 32, aps®. Using Markov’s inequality and letting ¢t = @ and z = /[T, e, we

obtain
P(ISn| > [Tl €) = P(|Zn| 2 x) = Plexp (¢ Zn|") = exp (t2%)] < exp (—tz®) m(t)
V2¢q o \fca ITn\l/(”Q”) (2/(1+2v)
{1+ exp < ad+1 a> ad+1 Jor ’
2 20dtleqny 2907 eang
where the last step is due to a = 2/(1 + 2v). [ |
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Proof of Lemma B.2. Since I;,,, C {j : dij > tm—1}, by Lemma S.3,

Omp. = sup 0p (i, Lim,,n) < sup 39, (4,{j : dij > tm-1},n) = 38p(tm—1)-

[ |
Proof of Lemma B.3. Since limg_,o A1(s) = 0, for all m > 1, there exists ¢, such that
A1(tm) < m™2 Let 1o = 0 and w.l.o.g., we suppose that t,, > (1 for all m > 1. For this

sequence ¢ = (tg,t1,- -+ ), by Lemma B.2,

oo

Zﬂmug?)ZAlel—SZAleg Z 2 50ass— o0.

m=s—1

The desired result follows. |
Proof of Lemma B.4. We select ¢ satisfying ¢,,, = ml3/(5=d/2)]+1 Notice that tm < tm41 for all

m > 0. Then, for sufficiently large s, by Lemma B.2,

Osp. = Z L;jn/Qem,p,L <3 Z L%QAP(Lm—I) =3 Z w20 (tm=1)

o
<Ch Z m3=o0 (3_1) as § — 00.

To show ©,,, < oo, we only need to show that Lﬁf@m,p,b < oo for every m € N. This directly follows
from 1%/% < 00 and Omp, < 3A,(0) < oo by Lemma S.3. [ |
Proof of Lemma B.5. Let ¢ be a sequence satisfying ¢, = m!3/(5=4/2J+1 Then , € .#. By the

conditions in this lemma, for all p > 2,

m=1 m=1 m=1
o0
<30(p") Z m™3 = 0(p¥) as p — oo,
m=1
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where the first inequality follows from Lemma B.2, the second inequality follows from Ay(s) <
O(s™*)O(p¥), and the third equality follows from the fact that O ((tpm—1)"") does not depend on

p. Thus, we have 79 = sup,>op~ "0, < 0. n

S.4. Some Proofs for Section 3

The proofs in this section rely heavily on the theory of the second-type LP-FD coefficient in Ap-
pendix B. Recall .# = {v = (v0,t1,...) 1 to0 = 0,tm > tm—1,tm € N for all m > 1}.

Proof of Theorem 3.1. By the condition in this theorem and Lemma B.4, there exists a sequence
L € # such that ©,, < co. Applying Theorem B.1 and letting C' = 2¢,/p — 10,,, yields the result.l
Proof of Theorem 3.2. By Condition (ii) in this theorem and Lemma B.5, there exists a sequence
L € F such that v = sup,>op "0, < co. Taking () =, for all real numbers p > 2 in Theorem
B.2 yields the result. |
Proof of Theorem 3.3. This proof is inspired by Wu and Wu (2016). We only need to consider

the case that > 1, since otherwise we can select Cy and C satisfying Co exp (—C3) > 1

oz
Y-l | Tn /2
and then the result holds trivially. Recall that V;, , (m) = E (Y, n|Fjn (tm)) — E(Yjn|Fjn (tm=-1))
in Lemma B.1. In the following proof, we take ¢ = (t,¢1,---) as ¢ = 0 and ¢, = [m”] + 1 for
m > 1, where k can be any number such that x > 1 and £ > ﬁ > 0. Thus, ¢ > tm—1 and
m" < 1y, < 2m” for any m > 1 and there exists a constant C, > 0 such that Cxipy < typ—1 + 1 for

any m > 1. As in the proof of Theorem B.1, we decompose S, = > Y, as

J€Tn

525 5 % Vi

€ATEI(1m) jEU(E,D)

-

where A, I(ty,), U(d,i) are all defined in the proof of Theorem B.1. To make the presentation

clearer, we denote

W(d,i,m)= > Vin.(m). (S.16)



5o 3 Y Y waiar XY Y wain

m=|Tn|+1 €A T (1,,) m=1a€ATec] (1)

Sn1 Sn2

By our construction of U(d, 1), the Vj,, (m)’s in (S.16) are independent. Thus, by Burkholder’s

inequality (S.3) and Lemma B.1, for any @, i, m and p,

1/2

Lo - 1/2
(w@im)| <=1 3 Win)l} | <Vo-1[UGH|" npe  (87)
jeU(@,)
Now we will handle S,,1 and S, respectively.
Sni: Following the proof of Theorem B.1, we have
ISl ={ > > > wa@im| < > 3 Y |wa@im)
mZITn‘J’_l acA ZG](Lm) (S 18)

m=|T|+1 €A T (1) .

/ —
9m,P7L S 2d p - 1@‘Tn|+1,p,L‘Tn|1/27

Y Y Y Ve —1|U(@

m:\Tn|+1 aceA ;EI(L»m)

where the second inequality follows from (S.17) and the last one follows from the power-mean

inequality
L2\ 2 L=
Saea Steron [V@D] 7\ Taea Treron [V@0] 1z,
24 (24,,)? - 24 (24,,)" 24 (20,,) %
By Markov’s inequality and (S.18), for any = > 0,
d 1)7/2 @P /2
P (1S > 2) < Pl 270 = T O e TV
nll = - axP - xP ’

21



Note that, by Lemma B.2, the definition of HY.Hp’w and Cyty < b1 + 1,

Ompo < 308p(tm—1) <3Vl (bma +1)7 < 3CTY Yl

p,w m

Hence,

o0 oo

_ d/2 —w d/2—w
8|Tn|+1,p,b - Z [’w{ emJ’:L < 3Cn ||Y‘|p7w Z Ln{
m=|Tn|+1 m=|Tn|+1
oo

SO Wil Y ) < Vil [T < G Vi T2

m=|T,|+1

(S.19)

where (' is a constant not depending on n, the second inequality follows from ¢, > m®, the third

one follows from Lemma S.12, and the last one follows from w > d and

3(d/2 —w) —(w—d) —3/2d 1 1 1
/2 — 1< 2279 g o <_S<_Z
Mdf2-w)+1s 5=+ 2w—d) — 2-p 2
Thus
ClY.lp. [ Tnl
P(ISn| > ) < ————,
xP

where the constant C' does not depend on n nor x.

Suz: Denote R = Yge s Siesy W@ i-m). Then Sy = STl R, Recall W(@,

ZjeU(a 3 Vi (m) and the Vj,,, (m)’s in U(d, i) are independent. For any x > 0,

(S.20)

Z, m)

- > icv@n Vime ()7 2
P(|w@iim)| 2 ) < 0 =00 L gexp | - z ;
: Cr 2 setan Vime ()|
)U(a, Z)] 0, 2
<Cp " +2exp | — x -
g Cpa U@, D) 62,5,

here Cpy = (1+2)", Cpo = o2
where pl — +p B p2_ep(p+2)27

22

the first inequality follows from Lemma S.11 and the last



one follows from (B.1) in Lemma B.1. Thus, we have

<|Rm\>2d2Lm ) ZZP(‘W@*? ‘ )

GCATET (1)

7)\ O .

Zz2exp— :c

o ‘U(a, Z)‘ 62

<> > Cpl’

acA7 iel(tm) Fz'GAZE[(Lm) m,2,t
\ |07 ?
B P p2|T wm 2,

where the last inequality follows from .. 4 Zze] (1) ‘U(c‘i, Z)‘ = |T], H(tm)] = (2um)* and |A| =

2¢. By letting y = 2¢ (2Lm) x, we obtain

22pdbpd‘T |05, y?
PR > ) <O P | g2dtld
(1Bl 2 9) < G =1 R P\ G2 T,
d—
s Tl i v
yP 03||YH2w|T e

where the last step follows from (S.19). Therefore, by letting \,, = Cym!'/27%«@=4) where Cy 1—

S mlt/2hlw= d)<ooby/<c> ( 7y> We have Z‘ Tl 1 Am < 1 and for any = > 0,

m=1

1T
P(|Sna| > @) < > P(|Ru| > Ana)
o ! - (S.21)
Co |[Y|E T, Tl pd—pe n 2
. Y- Tl Y exp [ 22 _
2 1 Am o] Cs [|Y-II5 1 Taler:

where the last step follows from ¢, < 2m" < 2|T,|". We analyze the two terms on the r.h.s. of

(S.21) respectively. Note that

d—
e

Py

—0 (mnp(dfmmpn(wfd)—p/z) -0 (m—p/z) as m — o,
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thus

|Th| Lpdfpw 00 Lpdfpw
m m
v S T <G (5.22)
m=1 m=1
2
for some constant Cy > 0. For the second term, consider h(u) = E‘T" 1 €Xp ( C’\Qd ZUJ) for u > 1.

Denote Cs = Cy 1C>2\. Then

)\2

m~1 > CflC«gml—Qﬁ(w—d)mQﬁ(w—d)m—l = C-.
2d—2w 3

Thus,

(7, = 2 ’
exp (—Csu?) exp (—Csu?)
Z exp (=Cymu’) <) | exp (~Cymu’) = T~ oxp(—Csu?) = 1—exp(—Cs)’

By letting u = > 1 (as mentioned at the beginning of the proof, we only consider

x
Y[l 1T l/2

TVl 2 1), we obtain that
A2,wltn

| T 2
A2 x? Csx
ex <C exX —_—— . 823
2 p( Cs [IV-|2,, [Tl 2“’)‘ ° p( HY-\%,W!Tn!> (5.23)

m=1

Hence, the result follows from (S.20)-(S.23) and P (|S,| > 2z) < P (|Sn1| > x) + P (|Sne| > ).
Proof of Theorem 3.6. Denote A = {\ € RPY : ||\|| = 1}. It suffices to show that X’ (‘7” - Vn) A=

op(1) as n — oo. Let y;n, = N'Yi, so that {y;,} is L>-FD on {e;,,} with the L2-FD coefficient
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Ay(s). Then,

N (f/n . vn) A

= Z kn(s)‘Tn|71 Z Z YinYjin — Z ’Tn|71 Z Z E(yi,nyj,n)

>0 i€Tn jETn:dijE[s,5+1) 5>0 1€Th j€Tn d;ij€[s,5+1)
=T Y Wi = Byt) + ) kaIT T Y D i — E@anin)l +(S.24)
1€Ty s>1 1€Th jET,:d;ij€ls,5+1)
PILACESI Y Yo E(iayin)
s>1 1€Th jE€Tn:dijE[s,s+1)

Epn,l + Pn,2 + Pn,3'

In the following proof, we will show that as n — oo, the three terms in the last line of (S.24) are

all op(1).
Pngi
Pasl <D ka(s) =TT Y D0 1E(inysin)l
s>1 1€Ty j€Ty: d;j€ls,5+1)
s _ .
<2V llz2 ) [kn(s) = U Aa(H)ITn| ™" Y {5 € T+ dij € [s,5 + 1)}
821 ieTn
S d—1 _ oca+1 —cp—1 cp—ca+d
<20V || 2 2 [fn(s) = 1] Aa(5)s 7" = 22T CCLOA Y || b7 SZ;S Kea

=o(1),

where the second inequality follows from Corollary 6.1, the third one is by Lemma S.6, the first
equality is from conditions (ii) and (iii) in this theorem, and the last step follows from conditions
(iii) and (iv) in this theorem (b, — 0o and ¢ — ca +d < —1).

P Recall Py = 2521 K (8)[T| " > et ZjETn:dijE[s,s—i—l) [Win¥in — E@Winyin)], [kn()] < 1,
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and ky(u) = 0 when u > b,. Thus,

EP?%,Q < ‘Tn|72 Z Z ‘Cov(yi,nyj,rw yk,nyl,n)|
1,J€Tn:d;i; €[1,bn] k,l€Tn:di €[1,bn]

§|Tn|_2 Z Z |COV(yi,nyj,m yk7nyl,n)| )

820 17]7k7leTndu € [17b’n] 7dkl € [lvb’n] 7dij;kl € [878—"_1)

(S.25)

where d;j.1; = min{d;, dit, dji, dji}. When s =0, we have i =k, i =1, j =k, or j = 1. Thus,

T~ > |Cov(Yinjns YknYin)|
i,j,k,lETn :dij € [l,bn] ,dkl € [1,bn] 7dij;kl =0

AT D > 1CVYinYjm: Yinyin)|

€Ty, jeTn:dijE[l,bn] lETn:dilE[l,bn]
S4“Tn|72 Z Z Z (‘Eyinyj,nyl,n‘ + ‘Eyi,nyj,n’ |Eyi,nyl,n|)
1€Ty jGTn:dijE[l,bn] l€Ty:dy €[1,bn]

Lbn ]

<2y Y Y > 2yt

1€, r=1 jE€Ty:di;E€r,r+1) €Ty :dy €[r,r+1)

[br b1
SSCHY LTS 0D < SOV [ a2 s
r=0 0
8C2||Y||7.
=T, (b, + D)H T =001

where the second inequality follows from Minkowski’s inequality, the third one is by generalized
Hoélder’s inequality and Lyapunov’s inequality, the fourth one is by Lemma S.6, and the last equality
holds under condition (iv) in this theorem.

When s > 1, we apply Lemma S.10 to bound the covariance of the product terms. Specifically,

q0—6

we take wy = w = 4 so that |Cov (YinYjn, YknYin)| < 16M3|| Y| Lro [Az(2)]290-F when 0 < x <
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dij:ki /2, where M = max{1, ||Y||za }. Then,

a0—6
EP2y < 16M3(|Y | Lro | T2 > [As(s/2)]20-6 + o(1)
§214,5,k,1€Tn:d;; €[1,bn],dri €[1,bn],d;j; k1 €[5,5+1)
a0—6
<16MP|[Y || oo | Tl 2D 4 > sup [{j € T, : dij < bn}[* [Ax(s/2)]20075 + o(1)
n,t

s21  4,k€Tyh:d;,Els,s+1)

2 —6
<64C3d MY || oo T Y (2de) [Aa(s/2)]%0-5 571 4 o(1)

s>1
(a0—6)ca 490—6 _(a0=6)ca | 5
=2 2i0-0 TOPC3 G N[V || g CRACR0C T, |72 3 5T 2i0ms T 4 o(1) = o(1),
s>1
where the third inequality is by Lemma S.6 and
[bn]

sup[{j € 15, : dij < bp}| < Zsup|{j €Ty :dij €ls,s+ 1)}

n,i s—0 Mt
[bn] b1

<C> sTl< C/ e e < Cd7 (b, +1)¢ < 29Cd b,

s=0 0

the first equality is from conditions (iii) and (iv) in this theorem, and the last equality holds under
conditions (iii) and (iv) in this theorem (—1 + 2dc, < 0 and _lao=O)ea | g < —1).

2qo—6
Po1: Recall P,y = |T,|71 > ieT, (yfn — Eyfn) So

B SLEY Y Y [Cortada)

§204€Ty j€Ty:d;;E[s,s+1)

When s = 0, because ‘Val"(yzn)

< ‘Eyf‘,n

)

(Tl 72 ) [Var(y?)| < Tul ™ Y [Byin| = O(T0l ™).
1€Ty 1€Ty
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Thus,

EP2 < ITl ) )" > |Cov(yln,yia)] + o(1)

§>14€Ty j€Tp:di; €[s,5+1)

GV [l T 2SN [A(s/2)] 0 + o(1)

s>14€T, jETn:dijG[S,S-Fl)

qp—6
<16MP|[Y || oo | T 1D Cs™! [Ao(s/2)]20-6 + o(1)
s>1

(a0—6)cp _(@0=6)ep | ;5
=2 2105 OM3|Y||peo [T LY s 200 =1

s>1

+o(1) = o(1),

where the second inequality follows from Lemma S.10, the third one is by Lemma S.6, the first
equality is from condition (iii) in this theorem, and the last equality holds under condition (iii) in

this theorem that —%76_)? +d—-1< —1. [ |

S.5. Proofs for Section 4
/
Proof of Proposition 4.1. For any I C D,,, denote X,, 1 = ((X{nl) b > . Then
b b le n

Sp (i,4,m) = ||him (Xn) = him (X 53) HLF < mijn || Xjn — X;nHLP < 2[|X || o Mijm,

where the first inequality is from (4.2) and the second one follows from the Minkowski inequality.

Therefore, for any s € [0,00), by Lemma S.4,

Ap(s) < sup sup Z dp (i,7,n) < 2| X||» sup sup Z Mijn = 2| X, ¢(s) = 0as s = oo.
n2Li€Dn jep, . d;;>s n2Li€Pn e D dy;>s

So, the conclusion holds. |

Proof of Proposition 4.2. (i) For all i,k € D,,, by (4.2),

517 (Z7 k? n) = HY;JL - }/;,n,{k}“Lp < Z Mijn HXj,n - Xj,n,{k}HLp = Z mij,n5X7p(j, ]C,TL)
jE€D, jE€D,
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(ii) For any i € Dy, s € [0,00) and 5 € [0, s], by (4.2),

H}fi,n - Y:i,n,{k:dikzs}HLp > Z Mijn HXjn - ]n{k dlk>S}HLp = Z mij,n(sX,p (]7 {k s > 3} 7”)

= Z Mijndxp (J,{k : dix, > s}, n) + Z Mijndxp (4, {k : di, > s}, n)
]dwzg jd1]<§
<3 > Mijnbxp (j: Dnon) +3 Y mijndxy (j, {k 2 djg > s — 5}, n)
jidi;>58 Ji:di; <8

§3AX,p(0) Z Mijn +3 sup Z Mijn ( S{UP 5X,p (]7 {k : djk > 85— 5} vn)>

jidiy >3 nzGDn] d;;>0 n,j€Dy,

<BAxp(0)¢ (8) + 306 (0) Axp(s — 5),

where the second inequality follows from Lemma S.3 and the fact that for all 4, j € D, satisfying
dij < 8, {k:d;y, > s} C {k:dj, >s—5}. Thus, taking the supremum on both sides of the above

inequality yields

Ap(s)= sup [[Yin = Yin thayzsl 1 < 38x,5(0)0 (3) + 3¢ (0) Axp(s — 3).

n,i€ Dy,

So, the conclusion holds. [ |
Proof of Proposition 4.3. (1) In this proof, for any vector or matrix A = (aj;),,.,,, We denote
|A| = (aij]), s, Direct calculations show that |A+B| <* |A|+|B| and |[AB| <* |A||B|, where A =
(@ij),msen < B = (bij),,«, Mmeans Vi, j : a;; < bj;. To shorten formulas, denote v;, = X{’nﬁ + €im,
Vi, = XnB + €, and the solution of (4.3) as Y,, (V). Then Y, (V;,) = F(AW,Y, (V,,) + V,).
Consider YTEI) =Y, ( 751)> and YTEQ) =Y, (VTSQ)>. So, for any 1 <i < n,

v

= [P (Y0 + vg},g) - P (N + o)

e

i,n :

y® -y

<L Z |wijnl
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The above inequality can be written in a matrix form:

- Y,@‘ <L ‘v,§1> - VTEQ)’ . (S.26)

Since M, = L (I, — L|AW,|)"" = LY 72, (L IAW,|)!, all entries of M, are nonnegative. As a
result, we can multiply M,,/L on both sides of (S.26): ‘Y,S” — ngz)‘ <* M, ’V,gl) — Vf)‘. So, for

any 1 <1 <mn,
e

in|-

Zm

(S.27)

(2)

We take Uz(lrz = v;, and v, = 0. Next, we will show that Yi(i)’s are uniformly bounded.

v®

i\n

:‘ (M ¥, )) ‘F(Awm (2)>—F(O)’+|F(O)\§’L)\wi,,nY,EQ)’Jr\F(O)].

Denote the n-dimensional vector I, = (1,...,1)’. Then the above inequality can be written as

| <

LAWnY,EQ)( + F(0)l,,. Consequently, [v;(?

’ <* F(0)Mjl,/L. So, it follows from
1M, ||OO<LZHL|>\W| H <LZgl (.28)

v @

i\n

o ie., Y( Vs are uniformly bounded. Hence, by the Minkowski inequality,

that sup; ,, < Ji“(o)
)

v@| <

,n

1%, nd (S.27)-(S.28), we have

Supi,n ¢

(0) < LCucp + F(0)

n
1Y, - Zlmwn loinllpe + T = —7 ¢
]:

So, Y;,’s are uniformly LP-bounded. [ |

(2) With (S.27), conclusion (i) follows from Propositions 4.1, and conclusion (ii) follows from
4.2 and that the FDM dxp(i, j,n) of {XZ(’nB +é€n:i€Dy,n>1}on{ujpy:i€ Dy,n>1}is
bounded by (||8|| + 1)dx.(3, j,n). [ |
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(3) We prove the conclusion using Proposition 4.1. First, condition (4.2) follows from (S.27) and

Crep = SUDy iep, ||Vinlp < 0o. Under Assumption 3(1), <|Wn|l) =0if d;; > 0 and | < d;;/do.
ij

Thus, when s > 0, by the Neumann’s expansion my;, = > o L!*! b\k (|Wn|l) i

ij

¢ (s) = sup Z Mijn = SUp Z iLH’l (|)\Wn|l>

™t GeDydij>s ™ jE€Dpidij>s 1=0 g
o oo
I I

S D IIEED SR A CUADFESED DEED DI (LAY IS

M €D s 1= | s /dy | +1 T iz |s/do | +15€Dndiy s ’

0o 00 I B

< Z Lt H)\WnHéo < Z Lt < igfs/do —0 ass— oo.

1= s/do | +1 I=[s/do]+1

From (S.28), ¢ (0) = sup,, || M|, < TLC < 00. In sum, (S.29) holds for all s € [0,00). Therefore,

@,n?

Ap (5) < 2C5cpi(s) < 2Czergs/do, u

(4) To apply Proposition 4.1, we only need to calculate ¢ (s) = sup, ; ZjeDn:dijzs Mmijn for

/
by Proposition 4.1, {Y; ,} is LP-FD on the random field { (X( 5i,n> } with the LP-FD coefficient

s> 0and s = 0. From (S.28), ¢ (0) = sup,, | M|, < l—fc < 0o. Next, consider s > 0. We fix a

constant 5 > 0, whose value depends on s and will be determined later. Define W,, = (Wijin)psens

where
Wijn = Wijn, dij <S8,
Wijn =0, dij = 8.

= L<In — LW,

~ -1 ~
Define M,, = (mijn) ) and ¢ (s) = sup,, ; ZjeDn:dijZS Mijn. Then

nxn

d(s)=sup > mym<sup > {iiijn + Imijn — Mijnl}

ek jGDnZdi]'ZS e jEDnldijZS
, (S.30)
<sup g Myjn -+ SUP g |Mijn — Mijn| < 7@9/5 + sup ‘Mn - M,| ,
n,g . n,g . 1-— C n 00
" j€Dn:dij>s " j€Dp:d;ij>s

where the last step follows from (S.29). In order to bound sup,, ||M,, — M,|| , we denote ¥ (s) =

o
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SUDpi D jeD,: diy>s |wijn]. Then, when s is large enough,

o e.)
1 (8) = sup Wijn| < sup cd.* < Ce m*Im™ < 507,
R S HEES SRS SR cs

Tt JEDy:d;i;>s ” m=|s] j€Dn:d;;€[m,m+1) m=|s]
(S.31)

for some constants C,C7 > 0, where the second inequality follows from Lemma S.6 and the last

one follows from Lemma S.12. Therefore,

sup ‘Mn — M,| =sup ZLZH AL (Wi - Wi)
n oo n =0 o
00 -1 ~ ~

—sup [ 3" LA S (W - Wy ) Wt

" =1 h=0 0o

! S ~ (S.32)

<o 3 e - ot

"= h=0 > > *

oo 1—1 [e'e) ~
<L (s Wl ) 6 ) < w2 Y K = W
=1 " =1 a

where the first equality follows from Neumann’s expansion, the second equality follows from the

fact that A' — B! = Zlh;lo B" (A — B) A== for all square matrices A and B, and the second

inequality follows from HWn - W, W,

< 1 (3) and sup,,

Combining (S.30)-(S.32), when s > 3§,

< supy, [Wall-
o]

L% |\
Cl | |§d70{‘

s =1 rs/5
o) <LU-07 ¢ TR

When s is large enough, taking § = ( < s yields

s
d—a)log s/ log ¢

L 4o CiL*|N (log¢ \ T 4 —d —(a—d —d
< o @ (logs)* =0 (s D (logs)**).  (S.33
o) S T e lama) o (ogd (s (log ) ™). (5:33)
Then the conclusion follows from Proposition 4.1. |

(5) We apply Proposition 4.2 to prove the conclusion. First, condition (4.2) follows from (S.27)
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and ¢ (s) < 1LTCCS/J0. By Assumption 4(2) and the definition of FD coefficient, {X{ynﬁ + ei’n}
is LP-FD on {u;,} with the LP-FD coefficient less than (||3]| + 1) Axep (s). Then the conclusion
follows from Proposition 4.2. |
(6) We still apply Proposition 4.2. Condition (4.2) follows from (S.27) and ¢ (s) = O (s_(o‘_d) (log s)o‘_d).
From the proof of conclusion (5), {X{’nﬁ + Gi,n} is LP-FD on {u;,} with the LP-FD coefficient less
than (||3]| + 1) Axep (s). Then the conclusion follows from Proposition 4.2. [ ]
Proof of Proposition 4.4. By Assumptions 5(2) and (4)-(5), it follows from Proposition 4.3(1)
and (4) that {¢;,} is uniformly LP-bounded and LP-FD on {v;,} with LP-FD coefficient A, ,(s) =
0 (s_("‘_d) (log s)afd), which satisfies A¢ ,(0) < co. Together with Assumption 5(3), { (Xi’m, fi,n) /}
is LP-FD on { (u;yn, vim)/} with the LP-FD coefficient A x, ,(s) < A¢p(s)+Axp(s) =0 (s_(o‘_d) (log s)aid).
Thus, Assumption 4(2) is satisfied. Therefore, by Assumption 5(1)-(2), the desired result follows
from Proposition 4.3(6). [
Proof of Proposition 4.5. Since €, = v, — pM,v,, the FDM (i, j,n) of {€in} on {vi,}

satisfies ¢ (7, 7,n) < 2[p|mijn| + 1(i = j)] ||v||;» for any 4, j € D,,. Thus, A ,(0) < co and

Acp(s) Ssup D7 beplingin) <20l D il = O (7€)
YT jid>s Jidij>s
as s — oo, where the first step follows from Lemma S.4 and the last step follows from Assumption
6(2) and (S.31). Together with Assumption 6(3), {(Xlﬂn, eim)/} is LP-FD on {(u;n,vm>,} with
the LP-FD coefficient Ax,,(5) < Acp(s) + Axp(s) = O <s_(o‘_d) (log s)aid). Thus, Assumption
4(2) is satisfied. Therefore, with Assumption 6(1)-(2), the desired result follows from Proposition
4.3(6). n

Proof of Proposition 4.6. In this proof, for any vector or matrix A = (a;;) we denote

nxm’

|A| = (ajl),,s.,- Direct calculations show that |A4B| <* |A|+|B| and |[AB| <* |A||B|, where A =
(@ij) i <5 B = (bij),,y,, means Vi, j : a;; < b;;. We regard the underlying independent random

/ /
field as {(U;,n,%’,n) } and denote the FDM of {X;,} and {¢;,} with respect to {(u;n,qi’n) }

33



as dx p and dp respectively. Then dxp, < dxcp and dcp < 0xep. For any i € D,,, denote A(¢in) =
A11(%‘,77, < ’Y) + )‘21((]72,71 > 7) and /B(Qi,n) = ﬁll(Qi,n < ’Y) + ﬂ21(Qi,n > ’Y)- Then |)‘(an)‘ < X and
18(¢in)ll < 18] = max {||B1]],||B2]|}. We first establish the uniform LP-boundedness of {Y;,}. It

follows from [V | <A 7y [wijn| [Vin| + 1 Xinll |51 + |€in| that

Sup [|Yinll gy < Asup [[Wallog sup [Yinll g, + 18] 11X o + llell 2o -
1€Dy n 1€Dy,

Consequently,

X
< UBIIX T e + llellr
1_)‘8uanWnHoo

1V]l0 = sup | Vi
n,t

Now, for any fixed unit ¢ € D,, and any s > 0, denote Iy = {j € D), : d;; > s}. Notice that I, # 0,

as Iy 3 i. For any k € D,\ I, define

Vienz, = M) WeenYo1, + Xpo 1,8(@kn) + €knr,-

Thus,

Ve = Yinz.l = [Marn) Ween Yo = Yor,) + (Xip — Xkont,) B(@kn) + €k — €knl

S)\ |Wk,n| |Yn - Yn,IS| + HBH HXk,n - Xk,n,IsH + |€k:,n - Ek,n,IS’ .

For any matrix A € R™" AT ¢ R™*(=lI)) denotes the sub-matrix of A after deleting the

(m—II])

columns whose indexes belong to I, A" € R X" denotes the sub-matrix of A after deleting

the rows whose indexes belong to I, and AT e R"=IDx("=) denotes the sub-matrix A after
deleting both the rows and the columns whose indexes belong to I. Denote ||X,, — X, 1| =
(X120 = X1zl s+ | Xnn — Xnnr.|l)" in this proof (and only in this proof). Writing the last
equation in a vector form, we have

Is- Is-

. s® * s® Is-
Vi =V | <X W | [V = Yo r |+ 1811 X — X r 1™ + | — e,

€
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Is1 Is- Is- Is- Is- Is- Is-
=A ‘Wns e — Yn,SIS +A E ‘Y;“JI - Y;”JL,IS, ern + 18] HXn — X1, H I ens,ls ’
7’615
where W.,.,, is the rth column of W, and €,,. 7, = (€1.n.1.,- - - » €nn.1.) . Denote MIs = ml‘z =
b b 310y 210y ao,m a,beDn\Is

(I - A ‘W#IS )_1, where the indexes of M/!s and W/s!s are the same, i.e., a,b € D,\I;. By Neu-

mann’s expansion, all entries of MTILS are nonnegative. Thus, by the above inequality,

W+ 1B11Xn = Xnr | + e — e,

< MTILS {)\Z|Yr,n_Yr,n,Is| - ' }
rels

n n,ls
(S.34)

I, I
L

Note that W/s’s is the spatial weights matrix of units D,\I;. By the same argument as in the

proof of Proposition 4.3(4) and (S.28), we have

wp Sl =0 (e gy ) o
s,n,a€Dp\Ig beDp\Is:dgp>m

~ I,

as m — 00 and sup,, 4 HM,I; o < 00. We extend M/ to an n x n matrix Ml = (mab n)
) ) a,beD,,

by

filling 0’s, i.e.,

Y A
Mgy = Myl y A€ Dy\Is and b € D\,
mls =0 otherwise

abn — '

Then (S.35) becomes

¢y (m) = sup Z ﬁzéﬁm =0 (m_(o‘_d) (log m)a_d)

s,n,a€Dp be:dgp>m

i

n

as m — oo and sup,, 4
)

< ¢,7(0) < oc0. As i € Dy\I, by taking the LP-norm on both sides
o0
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of the ith row of inequality (S.34), we have

Sy p(is Lom) < 2X (Y| D Zmlknwm + 18l Z mis 0% p(k, I, ) +mei Oep(k, Is,n)
rels k=1 k=1

<2A Y| Zmewm+ 18] +1 Z il xep(k, L),
rels k=1
(S.36)
where the first inequality follows from ||Y,.,, — Yrn 1|, < 2||Y]|;» and the last one follows from

Oxp < dxep and ¢y < 6xcp. We analyze the last two terms in (S.36) respectively. For the first

term,

n
~I.
§ Z mzk nwkrn < sup § Z mizynwkr,n-

rels k=1 MAE€Dn Lo p i > k=1

Denote ¢ 1,y (8) = SUDy e, D reD,ds, >s 2 he1 ML Wep. By (S.31) and Lemma S.8, as s — oo,

@bMIsw(S)
< sup [Whll s O ((;)_(a_d) (log ;)a_d) + sup

n,§

o
M,

. O ((;) _(a_d)> =0 (3_(0‘_d) (log s)a_d> .

For the second term, we use the same argument as that in the proof of Proposition 4.2. We have

ZmzknéXﬁp (k,Is,n) = Z an5X€,p (k,{j:dij > s},n)
k=1

> g Oxep (B {d i dij = sy,n)+ D> gy Oxep (B, {5 dij > s},n)
kdlk28/2 kdzk<5/2
~ T . S
<3 Sl xep (b, Dn) +3 S il xep (k {J Ly > §}n)
k:dikzs/Q k'dik<8/2
. s
<3Axep(0) Z mlkn ( sup Zmzk n) ( sup Oxep (k, {] sdy > 5} ,n))
kidy>s)2 nzGan 1 n,k€Dy,

<3Axep(0yt (5) + 303700 (0) Axep (5) = 0 (57 (log 5)°~*) ,

where the first inequality follows from Lemma S.3 and the fact that {j : d;; > s} C { Jidg; > %}
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holds for any k € D, satisfying djz < 5, and the last inequality follows from Assumption 7(3).

Thus, the two terms on the r.h.s. of (S.36) are both O (s_(a_d) (log s)aﬂl) as s — 0o. Hence, as

5 — 00,
Ay p(s) = supdyp(t, Is,n) = O (s_(o‘_d) (log s)o‘_d> .
n,.
Finally, as Ay, (0) = sup,, ; 0y (i, Dn,n) < 2[|Y]|1,, the conclusion follows. [ |

Proof of Proposition 4.7. (1) To simplify the notation, we assume \,~, p > 0 and all entries of
W,, are nonnegative in the proof.> Note that all expectations and LP-norms are taken conditional

on C, but we omit the subscript C to simplify the notation. It follows from sup, HS;ZIHOO =

! _
supye [| 20 )| = 20N = Ly that supy [Axlle = supy IS5y + oW |, <
g = ( < 1. Besides, SR,I, Ap and their products are all nonnegative, so Lemma S.8 is applicable.
Since yir = Y 1oy Z;V: 1 (A}]L\,S]T,I)ij €j(t—n) and €j¢’s are independent conditional on C by Assumption

11, for any pair ((i1,t1), (i2,t2)) € DJQVT,

55 (irt1,int2) = H (Ag\lfitQSKfl)ilig (Ei2t2 - 6f2t2)

<2l (45753)

1112

if t1 > to; 55 (i1t1,i9t2) = 0 otherwise. Thus, by Lemma S.4,

AS (s) < sup ~ sup > OC (ixty, iato)
(N.T) (1t1)€DNT (i2,t2) EDNT iyt 509ty 28
ti—ts g—1
<2||€||;p sup sup Z (A]\l, ’Sy )i1i2

(N,T) (i1,t1)€EDNT (i2,t2) EDNT iy 1 sigty >5,t2 <t

<2ell o sup  sup > (AR, 2 (AR5,
(N’T) (Zl,tl)EDNT (ig,t2):t17t228 (Z'Q,tg):dili?28,0§t17t2<s
(S.37)
a.s. We now bound the above two terms separately.

Term 1 For any (i1,%1) € Dy and s € [0, 00), because sup HSK,lHOO < L that supy [|An|| o <

3This simplicity of notation does not change the essence of the proof; without it, we need to add many absolute
value signs in the proof.
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G

00 N 00
Z (Atl t2S_1 1112 - Z Z ( )111'2 = Z Sl]ifp HA%SXRHOO
h

(ig,tz)'t17t2>s h=|s] i2=1 =Ls (S.38)
X C CLsJ CLSJ
<ZHAN||OOHS Hoo—z A)(l—C):l—)\—’Y—P
h=|s]

Term 2 For any (i1,t1) € Dnr,
[s]
3 (A ts),, <3 Y (Aﬁlvsjgl)m. (S.39)

(i2,t2): d1112 >5,0<t1 —t2<s h=012: d”z2

Recall the definition of ¢as(s) in Lemma S.8. For any s € [0, 00),

Gyiy oy (s) =71(s =0) +sup Y pwijn < Cip(s+1)"*7,
! Jidij>s

for some constant C; that does not depend on s, where the inequality follows from (S.31). From

(S.33), there exists a constant Cy > 0, such that for any s € [0, 00),

bg1(5) < Co(s+1)"D (log (s +2))*

N

Because A% Sy' = Sy (vIy + pWy)" Syt forany h € {0,1,2,...},

vl

v + p, by Lemma S.8, for any s € [0, 00), we have

PN GETAY s h (v+p\"! s
Pap syt () < (h+ >(1—>\> P53t <2h+1>+(1_)\)2(1—)\> ol oW (2h+1)

(a—d) s a—d
SCgCh(h+1)<2h+l+1> [log<2h+1+2>]

a—d
e h a—d _(a_d) s
CoCh (h+ 1) (2h + 1)~ (s + 20 + 1) {bg <2h+1+2)}

<Cu¢" (h+ 1) (s + 1)@ D (1og (s + 2)) 79,

38
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where Cs, Cyq > 0 are constants depending neither on s nor A, and the last inequality follows from
—d

the fact that (s 4 2h+1)""% and [log (ﬁ + 2)]a both are decreasing in h and h > 0.

Thus, by (S.39),

Ls]
sup Z (Aljf\l[*t2 Sxfl)ilig < sup Z quJ}(’S;’l (S)

(A)EDNT (3, 12):d; 5y >5,0<t1 —ta<s (i,t)EDNT p—

5]
<> "+ 1) (s + 1) (log (s +2)* 7 < C5 (s + 1)@ (log (s +2)) 77
h=0

(S.40)
where C5 > 0 is a constant not depending on s, and the last step follows from Y ;% ; ¢ (h + 1)~ <

oo. Combining (S.37), (S.38) and (S.40), as s — 0o, we have

gLSJ o o o o
Ag (S) S 2H€”LP m"’C% (5+1) (a—d) (10g (S+2)) d — ||€HLPO(S (a—d) (lOgS) d> )

|

(2) Multiplying both sides of (4.8) by Wy, we obtain WyYn: = > 72, WNA%S&1€N7t,h. Then
the proof for the LP-FD property of {W;. yYn} is similar to that for {y;}, and thus we omit it
here. |
Proof of Proposition 4.8. In this proof, all the statements are conditional on C. We first show
the uniform LP-boundedness of {y;;}. For any (i,t) € Dy, denote & = €,(yorln + Znior +
INBLF; + Vyt). By Assumption 12(2), we have [l ¢ = supy gy I€itll o ¢ < 00. Recall (4.8):

Yit = D r Zjvzl (A%S;,l)ij &ji—n- By supy HS 1HOO < m and supy [|An||,, < ¢, we have

¥ lpsc = sup Hyztum<2supHANsN (G

»77

P ele 1€l
—Z <00
T= Tl 1=yl = el = s
Since supy [Will = 1 supnzs [Vie-ill e < S lwignl -1l e < V]l e < oo. Simi-
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larly, supy 7. HeéWJ%fYN»t—luLp,c < oo and supy 7, “e;W]{’,YN,t_l“mc < oo. Thus, [V, =
supy it | Witll 1o ¢ < 00 as each component of W;; has been shown to be uniformly LP-bounded.
By Proposition 4.7, {y;} and {Y;:} are both LP-FD on {v;} with the LP-FD coefficient AI(DI) (s) =
0 (3*(0‘*@ (log s)o‘_d> as s — oo. Next, we will show that {¥;;} is also LP-FD on {v;}, and
it suffices to show each component of W;; is LP-FD. Denote the LP-FD coefficient of {y;;—1} as
Ag) (s). Note that AS) (0) <2|Y||»c and when s > 1

{(i1,t1) € DN = ditsiye, > s} C{(i1,t1) € D1t dip—15,0, > 5 — 1}

Thus, by Lemma S.3, Al()z) (s) < 3A,(31) (s—=1)=0 (3*(0‘*‘” (log s)o‘_d>. Denote the LP-FD coeffi-

cient of {Yi,t—l} as AJ(D?’) (s). Define Wt = (Wi, 5iats) as

DnTXDNT

Wiyip, N, t1 =12,
Wiytyinty =

0, otherwise,

ie.,
Wn
Wnt = Wi

/
/ / % Yy Yy N !
Denote Qnr = (YNyT_laYN,T_Qa . ) and Pyr = (Yir—1,.. ., YN7—1,Y110-2,- -, Y NT—25---) -

Then

Pyt = WNTQnNT.

Because

_ 2 : Z d—
¢W(S) = sup sup wi1t1;i2t2 — Sup wij,N - O(S a)
(NT) (ir,t1)€DNT (i2,t2) EDNTdiqty1inte =S Ni€Dy JEDN:dij>s
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by (S.31), we have AS)(S) =0 (s_(o‘_d) (log 5)a7d> by Proposition 4.2. By similar arguments,
we conclude that {eéW]%,YN,t_l} and {e;W]{’,YN,t_l} are both LP-FD on {v;} with the LP-FD
coefficient O (s_(a_d) (log s)o‘fd). Conditioning on C, {1},{zi+},{F;} are all nonstochastic. So
far, we have shown that the LP-FD coefficient of each component of ¥; = (x;t,r;t), is either
0 (s*(o‘*d) (log s)o‘_d> or 0. Therefore, the LP-FD coefficient of {¥;} is O (s*(o‘*d) (log s)o‘_d>.
Since 1, and ¢, are true parameters, wi = yir — V1Y it — Tydr = vir. Thus, ¥, (uir)’s are
independent over ¢ and ¢, i.e., LI-FD coefficient of {¢; (u;)} on {vi} is zero for any ¢ > 1. By

Proposition 5.6, the L2-FD coefficient of {s;; = ¥, (ui) - Y3} on {vy} (denoted as As(s)) satisfies

Ba(s) < Wl e x 0+ sup (U (ui)|| 2, O (s~ (log )" ") = O (s~ (log 5)*~*)

L2y ’

Finally, since « —d > 1 (d+ 1) (as @ > 3¢ + 1 from Assumption 12(3)) and supn it l|Sitll o o <

Ul|;p» < o0 (as |1-(-)] < 1), by Corollary 3.1, L2 Gyt — EGNT LYY 0, 1), where
Lr.C NT

by Assumption 12(6)*. As Q = limy 700 (NT) ™' Zx7 (Assumption 12(5)), by Slutsky’s theorem,

Q*ﬂw 4 N(0,1).

|
Proof of Proposition 4.9. In this proof, all the statements are conditional on C. From the
proof of Proposition 4.8, the LP-FD coefficient of {¥;} is O (s_(o‘_d) (log s)aﬂl) and [|¥||, 0 =

supy 7. ¢ | Witll 1» ¢ < 00. By Proposition 5.2, the LP/2-FD coefficient (denoted as A, /2(s)) of each

“Refer to page 6 in Xu, Wang, Shin and Zheng (2022).
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entry of {W; W} on {v;} satisfies®

Bya(s) < Cr (2019 e +1) O (s (log 5)* ) = O (57~ (1og5)* ") = 0

as s — oo. By Hoélder’s inequality and [|¥|[;, » < oo, each entry of {W;W},} is uniformly L2

bounded. Then the result follows from Theorem D.1 and

N T N T
)Y Y E (LT [ C) B NlTirgoo(NT)_lz:ZE (0¥, | C) .

i=1 t=1 ’ i=1 t=1

S.6. Proofs for Section 5

Proof of Proposition 5.1. Since |H;y (y) — Hin (y*)] < Clly — v°|,

0z,p (i 1,n) = [[Hin (Yin) = Hin Yin, D)o < CWYin = Yin 1l o = Coyp (i, I,n).

We obtain the desired result.

Proof of Proposition 5.2. By (5.1) and B;,, (y,y*) < C1 (Jly||* + |ly*|* + 1),

0z, (i 1,n) = [ Hin Yin) = Hin Yin, 1)l Lo

SOl + 1Y on 1 + 1) - Yin = Yin 1l 1o

<Cr Iy,

A Wi g I+ Ul e 1Yin = Yinall o < CrQIY 7 +1) 0y (i, 1,m)

(S.41)

(S.42)

where the second inequality follows from the generalized Holder inequality, and the last one follows

from the Minkowski inequality.

Proof of Proposition 5.3. Denote B = [|Y,||* + [|Yin1||® + 1, p = [|[Yin — Yin1l, and r =

5Note that U, Wl, is a matrix.
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a5 > p. Because ¢ > z%’ by the Lyapunov inequality and the Minkowski inequality, we have

lolle < 20Yinll o < 2V Lo < o0 and

1Bl oro-n S IBllara < MYanll*lara + HYan o1l pore +1 < 2[Y[7q +1 < 00

1_a
T q

+ = (as r = —L), by the generalized Holder inequality,

Because s}

Q=

1Bpll e < llpllpa 1Bl para < 21Y N0 211Y (|70 +1) < oo
Then, by Lemma S.7, for all n > 1, ¢ € D,,, and j € D,,, there exists a constant Cs > 0 such that

0z (i, 1,n) = | Zin = Zim1llpp < Cr(NYinll* + 1Yin,1
)1/(107“*10)

DY = Yol = CullBoll

<Gy (Hn,n —Yinr )(q_ap_p)/(pQ—ap—p)

<2C1 (Jlpll? IBIlF sy 1Bl o

=Cy {8y (i, 1, n) Y4 oP~P)/(Pa=ap=p)

Thus the desired result follows. |

Proof of Proposition 5.4. For any € > 0, let B = {|Y; | <¢€,|Yin 1| <e€}. It follows from the
inequality |1 (zq > 0) — 1 (z2 > 0)] < Lj”'l(]:cﬂ >eor |xa] >€)+ 1(|z1]| < € |z2| < €) that

1

1Zin— Zintllpy = 1 (¥in > 0) =1 (Vs > 0}, < |

MY =

1/p
/ Yin = Yip[PdP+P (B)}
BC

Y, ) i
EZ7N,I||LP +]P>(D/Z?n| < 6)l/p S Y.p (167 7n) +(Cl€)1/p,

for some constant C; > 0, where the second inequality follows from the fact that (a? 4 bP )1/ P <a+b
for any a, b > 0 and p > 1, and the last one comes from the uniform boundedness of the density

}p/ (p+1)

function of Y; ,. By letting € = {0y, (¢, 1,n) , we have
5Z7P (iv I, n) = HZi,n - Zz',n,IHLp < (1 + Cll/p) {5Y,p (i, 1, n)}l/(p+1) < (9 {5Y,p (i, I, n)}l/(P'H) ,

43



for some constant Co > 0, which gives the conclusion. |

Proof of Proposition 5.6. The result follows from

5X,p (17 I7 TL) = HYE,nZi,n - Y;,n,IZLn,I

p = N Yin = Yinr) Zin +Yin1 (Zin — Zin1) | 1o

S ”(Y;,n - Y;,n,l) Zz‘,n

lp + 1 Ying (Zin — Zin, 1)l 1

(S.43)
<NYin = Yinillgo 12l + 11 Zin — Zig 1l poo 1Y [ 2
= HZHLTl 6Y7Q1 (4, 1,n) + ||Y||L’“2 5Z7t12 (i,1,n),
where the second inequality follows from the generalized Hélder inequality (as p~! = q Ty Ty L=
g +ry). n

Proof of Proposition 5.7. The proof is similar to that of Proposition 5.3. It follows from
Xin = YinZin that X1 = Yin1Zin1. Denote p = |Yj, —Yi,g| and = 2 > p. By the
Lyapunov inequality and the Minkowski inequality, (pll;, = [[Yin — Yin1ll, < 2/ ze < o0,

And by the generalized Holder inequality (¢ = 2r),
1 Zimpll e < Nollpa [ Zimll o < 21Y N0 1210 < o0
By the fact that p%l <q,

1 Zin

lp/o-1 < N Zinlle <N Z| 1a < 0.

Then, by Lemma S.7,
1/(pr—p)

| (Vi = Yin) Zill o = 1 Zinpl o < 2 (101557 1 Zinll o Fsy 1 Zinpl )

< Oy ([lpll ) @2 @720 = Oy ([ — Vir | 2P P2 = O {8y (i, 1, m) 7290/ (a=20)
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for some constant C7 > 0 that does not depend on ¢, I, n. Similarly,
Yint (Zin = Zin)ll o < CollZin = Zimallgy ™" P72 = Co{87,(i,1,m)} 0=/ @720
By the above two results,

Oxp(i, I,n) = 1YinZin — YiniZinill o = |(Yin — Yin1) Zin + Yin1 (Zin — Zin, 1)l 1o
<N (Yin = Yin1) Zinll o + Yin1 (Zin — Zin, 1)l 1o

<Cy {0y, (i, 1, n) Y=/ (Pa=2) 4, {5Z7p(z'717n)}(q—2p)/(pq—2p) '

We obtain the desired result. [ |

S.7. Proofs for Section 6

Proof of Theorem 6.1. (1) By the independence of €;,, and €

7,m?

}/i,n —-E (E,nLFZ,n (5)) = Y;JL —E [n,n,{jeDn:di]Zs} fi,n (3)}
=E [}/z,n - }/Z',n,{jEDn:dijZS} €k,n, k€ Dn} .
Thus, the desired conclusion follows from
sup (Vi = E (Vi Fin (D)l = sup |[E[Yin = Vi gjepaa, oo | ks b € Do |

n,i€Dn, n,i€Dn Ly
< sup ‘ Yin = Yin{jeDpdy>s}||. = Sup 0p(i,{j € Dn :dij > s},n) = Ap(s) =0 ass— oo,

n,i€Dn LP  nieD,
where the inequality follows from the conditional Jensen inequality. |
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(2) From Y;,, = ZjeDn W;jn€jn and the independence of €; s,

Ap(s) = sup ||Yin — Yin (jeD,:di;>s) T Z Wijin (€jm = €0)
7’L7’LEDn n;ZEDn jeDn:dijZS Ip
<2 swp || Y winein| =2 sup [Vin —E[Yin [ Fon ($)]ll < 20 (s).
n,i€ Dy, JED:di;>s p n,i€ Dy,
Thus the result follows. [ |

Proof of Corollary 6.1. For any i € Dy, m > 0, denote &}, = E (Y; n|Fin (m)) —EY; , and 0, =
Yin—E(Y;n|Fin (m)). From Theorem 6.1,

m
ni,n

mll L < EEGialFn )l < [Winll < Vllge and

, < Ay (m). Because the conditional expectation

minimizes the L2-distance, we have

Yin —EYjn =&, +n,, we have

©,n

dij
2 bl

M L < \WYinll2 < Y| f2- Forany i # j and 0 < s < since Y; , — EY;n, = &/, + 17, and

We bound each term on the r.h.s. of the above inequality respectively. First, because F; ,, (s) and

E (&.650)

B (&) | S N&all o 1minll 2 S NV 12 A2 (s),

Fjn (s) are independent, = 0. Second, by the Cauchy-Schwartz inequality,

B (050 Y50) | < |05l 2 ¥l 2 < Y2 D2 (s).-

In sum, we have |Cov (Y, Yjn)| < 2||Y] ;2 A2 (s) for any 0 < s < d# [
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S.8. More Examples of Spatial Functional Dependence

S.8.1. The Semiparametric SAR model in Su and Jin (2010) and Su (2012)

In this section, we discuss the application of our FD theory to the semiparametric SAR models
considered in Su and Jin (2010) and Su (2012). Since the model in Su (2012) is a special case of

the one in Su and Jin (2010), we focus on the model considered in Su and Jin (2010):

Y, = F OAWn Yo, 4+ X8 +m(Z,) + €) (S.44)

where W,, = (wij,n) is a nonstochastic and nonzero spatial weights matrix, F' : R — R is a Borel-

nxn

measurable function, F(a) = (F(a1),...,F(ay)) for any column vector a = (ay,...,a,)" € R",

A € R and B € RE are true model parameters, X,, = (X1n Xom, ... ,Xn,n)/ e RvKr and 7, =

(Zins Zopy - an)’ € R™ X2 are the exogenous variable matrices, €, = (€1ms€2my---» en,n)' e R"
is the disturbance term, m(Z,) = (m(Z1,),...,m(Zny)), and m(-) : RE2 — R is an unknown
function.

To establish the FD properties of Y;, generated by model (S.44), we state some assumptions.
Assumption S.2. (1) The Lipschitz constant of F : R = R is L, and { = L |\|sup,, ||[Wh| <
1;
(2) |wijn| < cdi;* for some constants ¢ > 0 and o > d;
!/
(8) for some p > 1, {(X{yn,q,n> :i€ Dp,n > 1} 1s LP-FD on an independent random field
w = {ujp : i € Dy,n > 1} with the spatial FDM §x.,(i,1,n) and the LP-FD coefficient

Axep(s) satisfying Axep(s) = O (s_(o‘_d) (log s)a7d> as s = 00 and Axcp (0) < 00; Zip's

are independent over i;

X!, 8

in

(4) llelle = suppi ll€inllpp < 00, [ X|[Lp = supy,; ‘Lp < o0 and || Z| pp = sup,, i [|m(Zin)l 1» <

Q.
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In Su and Jin (2010, Assumption 1), they assume that X; ,,’s and Z; ,,’s are nonstochastic, which

is a special case of our Assumption S.2. Thus, our conclusion directly applies to their settings.

Proposition S.1. Under Assumptions 1 and S.2, the {Y; »} generated by the model (S.44) is LP-FD

i,n

!/
on {(u’ Z{m) } with the LP-FD coefficient Ap (s) = O (s_(a_d) (log S)aid) as s — oo.

/ /
Proof. By Assumption S.2(3), {(X{’n, m(Zin) + 6i,n> 21 € Dp,n > 1} is LP-FD on {(u;n, Zz’n> }
with the LP-FD coeflicient Axz, (s) satisfying Axezp (s) = Axep (s) for s > 0 and Axcz, (0) <
Axep (0)+2]|Z||p < 0o. We regard m(Z; )+ €;n, as a whole. Then, the conditions of Proposition

4.3(6) are satisfied. Then, the result follows from Proposition 4.3(6). [ |

S.8.2. The Functional-coefficient SAR model in Sun (2016)

In this section, we consider the functional-coefficient SAR model with nonparametric spatial weights

in Sun (2016). The model can be written as
Yy = WY, + mtx { X, 0(Dp)} + €n, (S.45)

where X,, = (X1, Xop,..s Xnp) € RN Z0 = (Z1 0, Zog, .o Znp) € RVE2 and D, =
(D1,n; Doy -+ -, Dnp)' € R™! are covariates, mtx{X,,0(Dn)} = (X{ ,0(D1n), -, X}, ,0(Dnn)),
Wn = (Wijn) x> Wijn = 9(Zin, Zjn), €n = (el,n,egm,...,en,n)/ € R" is the disturbance term,
and both 6(-) : R — R5t and g(-,-) : RE2 x RX2 — R are unknown functions. It is interesting to
notice that this setup allows the spatial weights matrix W, to be endogenous under the following

conditions.

Assumption S.3. (1) (X;,,Z;

i D; . €in)’s are independent over i;

(2) Wyl < ¢ <1 as. for some constant ¢;

(3) 19(Zin, Zjn)| < cdi_ja a.s. for some constants ¢ > 0 and o > d;
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(4) llell e = supy ll€inll pp < 0o and [|X6]| L, = sup,; < 00,

X{,ne(Dl,n) P

Proposition S.2. Under Assumptions 1 and S.3, the {Y;,} generated by (S.45) is LP-FD on
{(X{ Z! ., Din, ei,n)} with the LP-FD coefficient Ay (s) = O (s_(o‘_d) (log s)a_d> as s — oo.

i,m’ “in

©,m? “i,n

Proof. In this proof, we regard {(X s 2t Din, ei,n)} as the underlying random field and assume
the weights w;j,’s are always nonnegative w.l.o.g. Denote e;, = X;}nQ(DLn) +¢€n and e, =
(E1ms s enn).

For any fixed unit £ € D, and any s > 0, denote Iy = {j € Dy : dy; > s}. Let wsjr, =
9(Zin, 1., Zj,n,ls)a Wi, = (wijJs)nXm M, =~ Wn)_l = (mij)nxn and My 1, = (I — Wn,ls)_l =
(Mij,1,) - BY (S.45)

Y, = M,e,,.

Similarly, Yy, 1, = My, 1,en1,. Let My. , and M. ,, 1, be the kth row of M,, and M, ., respectively.
Then,

Yinit, — Yoo = My p1.en1, — My nen = My o1, (en1, —€n) + My 1, — My ) €n .

Q1 Q2

We handle 1 and @2 respectively. For @1, note that e;, 1, = € if dp; < s, and e;,, 1, = e;n

otherwise. Thus,

1@l < M1, (€0 = €in) || < 2(lell o + 11X ) M 1, -
J7

Jidgj>s p Jidgj>s

By Assumption S.3(2)-(3) and (S.33), ||Q1ll» = O(s_(o‘_d) (logs)a_d). For Q2, by M, =

Zfio W,i and the formula l
-1
Al _ Bl — ZBh (A _ B) Al—l—h (S46>
h=0
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for all square matrices A and B, we have

oo -1
l h l—1—h
My, = Mn—Z L.~ ZW DD Wil (Wat, = W) W™,
=1 h=0
and
n oo -1
h l 1-h
> Mk t, = Mikgn| = > Z (Wn) |Why ko 1, — wkle,n!( ol ) . (547)
kkq s koks
ks=1 I=1 h=0 k1 ,ka,ks=1

When 0 < h < -1, by Lemma S.8, (S.31) and Assumption S.3(2)-(3), ¢y (s) < O (h(hil (%)diOA),
where ¢(s) is defined in Lemma S.8. Besides, ¢|Wn , _Wn|(8) =0 (sd_a). Because Z; .1, = Z; p if
dii < s and Z; 1, = Z:n otherwise, when dy; < s and di; < s, we have w;; 1, — w;j, = 0. Thus,

h Wwi—1-h :
(I/Vn)kk1 | Wi ko, I, — Wy kg ( ol )k L= 0 if dy, < 5 and dy,x, < 5. As a result,
2R3

n n n
Wi-1-h
g E E Wh) Wy ko, I, — Whyk ( )
(nkk1| 1k2,1s 12,n| n,ls koks

k1=1ko=1k3=1

n
S0 SIN () D 9B S R SAR] (70 Nt
= Kk, ’ 1k2,1s 1 2771’ n,Is keoks

k1:dgr, >s/2 ko=1ks=1
n n
h l-1-h
> (Wn)kk > Wkikots — Whiko E : ( s )k i
k=1 Y kgidgy oy >5/2 k=1 2

<dw» (%) H<WH,IS—W)W£11 hHoo d I — ( )H Wi hH
0 (e (5)) 20t to ()~ o (n (7)),

When h =0,

n n n
h
> D <Wn> Wk by I — Whika,n
kkq

kl—l kg—l kz=1

I—1—h
<W"»IS )k k
2R3

n

—Z Z|wkk2,ls wkkz,n\( nIS) e > Wkt — wkkw’Z( "Is>k2k3

kaks
kg 1k3 1 k}g:dkaZg kg 1
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<O, 0 [Wa | = €O (+770)

The implicit constants in the O(+) in the above two inequalities depend neither on [ nor n. Thus,

by (S.47),

n

55 st {0 () + B0 (1))
h=1

k3=1 =1

< i {1 + (l o l)a—d+2} Cl_lO(Sd_a) — O(Sd_a).
=1

The implicit constants in the O(-) in the above inequalities do not depend on k or n. Hence,

n

n
1Q2ll e = || > (M r. — M) ko < (lello +1XONL0) D 1M1, — Mig.n] = O(s7).

ks=1 v ks=1

Therefore, ||z, ~ Yinll < 1Q1lls + @2l < O (57 (log 5)*~) uniformly in  and n as

s — 00, and the conclusion follows. |

S.8.3. The Smooth-coefficient SAR model in Malikov and Sun (2017)

In this section, we consider the smooth-coefficient SAR model in Malikov and Sun (2017). The

model can be written as
Y, = p(Zp )WY, + mtx {X,,, 5(Zn)} + €n, (S.48)

where W, = (wjj;n) is the nonstochastic spatial weights matrix, X, = (X1, Xon,. .. ,Xn,n)/ €

nxn
R K1 and Z,, = (Zim, Zom, -, Zn,n)/ € R™*K2 are the covariates, €, = (E1,ms€2my -+ s enm)' e R"
is the disturbance term, p(-) : RX2 — R and () : Rf2 — RX1 are the unknown functions, and
0(Z,) = diag{p(Z1n)s -, p(Znn)} € R and B(Z,) = (B(Z1n),- -, B(Znn)) € RPELand

mtx{ X, 3(Z,)} = (Xi,nB(ZLn)a e 7X’;L,TLB(Z'”7”))/'
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Assumption S.4. (1) (X],,Z;

i n €im) s are independent over i;

(2) sup, |p(u)|sup, |[Whll. < ¢ <1 for some constant ¢;

(3) |wijn| < ed;;* for some constants ¢ > 0 and o > d;

(4) llel e = supn i ll€inllpp < 00 and [ X5l 0 = supy ;| XipnB(Zin)|| , < 0.

Proposition S.3. Under Assumptions 1 and S.4, the {Y;,} generated by (5.48) is LP-FD on
{(X( Z! em)} with the LP-FD coefficient A, (s) = O (s_("‘_d) (log s)a_d> as s — 0o.

,m? “i,n

Proof. The proof is similar to that of Proposition S.2. We take {(X;n, Z{m, Ei,n)} as the underlying
random field. Denote e;,, = X;nﬁ(Zi,n) +é€in and ey, = (e1p, .- - 7€n,n)/- For any fixed unit k € D,,
and any s > 0, denote Iy = {j € Dy, : dy; > s}. Let M,, = (I—p(Zn)VVn)_1 = (Mijn), s, and
Mg, = (I = p(Zng)Wa) ' = (Mijn,1,) s Denote |A| = (Jai;|) for any matrix A = (a;;). By
(S.48),

Y, = Mye, and Y, 1, = M, .en 1,.

Let Mjy. , and M., 1, be the kth row of M,, and M, 1, respectively. Then,
Yint, — Yin = M pr.ent, — Mi.nen = My 1, (en1, — en) + (M1, — M. n) en = Q1 + Qo.

3 . — . 1 . . — * iQ
For Q1, since €;, 1, = €;p if dp; < s and €;,1, = €in otherwise, we have

@il < || D mujr, (€5 —esm)||  <2ello +1XBle) D muja,- (S.49)

Jidgj>s p Jidgj>s

By Assumption S.4(2)-(3) and (S.33), ||Q1]|;» = O (s*(a*d) (log s)o‘_d> as § — 00.

For @2, by Neumann’s expansion and (S.46),

MTLJS - My, = Z [p(Zn,Is)Wn]l - Z [p(Zn)Wn]l
=0 =0
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oo -1

=N 10(Z)Wal " {[p(Zn.1.) = p(Z0)] Wi} [p(Zot )Wl T

=1 h=0

and

n

E |mkk3,n,15 - mkk’g,n|
k3=1

oo I-1

g > (IpZ)Wal") NP Zts 1) = 0(Zi)) s (10 (Zo )Wl =)

koks
=1 h=0 k1 ,k2,k3=1 2/3

E14lh,n
(S.50)

When h = 0, Ajp,, = 0 because Zj 1, = Zg. When 0 < h <[ —1, by Lemma S.8, (S.31) and
Assumption S.4(2), sup,, ;supy, Zj:dij>s (|p(Zn)Wn|h) <0 (hch L(s )d a> as 5 — oo, Since
= ij

Zkl,n,fs = Zkl,n when dkk1 <s,

An =3 (leZwal"), S S ) — 6 st (160 W)

ki:dgg, >s ko=1k3=1

o) = 02 W lo(Za g )Wl |

koks3

oo
k1idgg, >s

<ch=tpe=d+1. g (Sd—a> Lol — (I-1pa—d+l g (Sd—a) ’

where the implicit constant in the O (sd_o‘) depends neither on [ nor n. Combining the results for

h=0and 0 <h<1[—1, by (S.50), we have

oo -1 [e%S)

3 It = ] £ OGS (1004 <0803 1= 1721 = ofst-,

k3=1 =2 h=1 =2
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By the above inequality,

n

n
Q2| < sup > (Mg, = Miksn) k|| < (lellpe + 1XBI o) > 1Mkks, 1, — Mk
n ks=1 ks=1

Lp
(S.51)

o < 1@l + Q2] < O (57 (logs)°~)

uniformly in k& and n as s — 0o. And the conclusion follows.

Therefore, by (S.49) and (S.51), |Yin.1, — Yin

S.8.4. The SDPD model in Shi and Lee (2017)

The SDPD model in Shi and Lee (2017) can be specified as

Yne = A\WWNYNe + YN -1 + pWNY N1 + XneB +Tn fe + Ung, (S.52)
wheret =T, T—1,...,i=1,...,N,Yn: = (y1t, Y2t - - -, ynt), W = (wij,N) v« v 1S @ nonstochastic
spatial weights matrix and invariant as ¢ changes, Xn¢ = (214, ...,2n¢) € RV*P is the regressor

matrix, I'yy is the N x r factor loading parameter matrix, fi’s are the time varying unknown
common factors, Un; = (u1y, ..., une) is the disturbance term satisfying Uy; = aWnUnt + Vi,
Wy = (Wij,N)NxN is a nonstochastic spatial weights matrix, Vy; = (viy, ... ,uny), and vy’s are
i.i.d. random variables. Denote Sy = In — \WWy, Sy = Iy — aWy, Ay = S;,l (vIN + pWh),
By = S&lgﬁl, ent = (e1t,...,ent) = XneB + I'vfi. Then (S.52) can be written as Yy; =
ANYN -1 + S;,lz—:Nt + BnVn¢ . Under some suitable conditions, by iterating the above equation,

we have

Yne =Y ARSy'eni—n+ Y AYBNVNi—h- (S.53)
h=0 h=0

To establish the FD properties for {y;;}, we need the following assumptions.

Assumption S.5. Let C = [V2__o(f:)] V[V¥_10(Tn)] be the o-field generated by all factors and

factor loadings.

o4

= O(s79).



(1) Conditional on C, (z},,vi)’s are independent over i and t;
(2) supy [[Willoo <1 and [A[ + |y| + |p| < 1;
(3) € =supy [l | <1

(4) llell o ¢ = supn rsup;sll€itll o e < 00 and |[vl|p e = supy rsup;; [vitll oo < 00 for some

p=1;
(5) |wijn| < edi;* and |Wijn| < ed;* for some constants ¢ > 0 and a > d.
Remark. Under Assumption S.5, ( = % < 1.

Proposition S.4. For model (5.52), under Assumptions 1 and S.5, {yi : (i,t) € Dy} is C-
conditionally LP-FD on { (x4, vit) } with the C-conditional LP-FD coefficient Ag (s)=0 (s*(a*d) (log s)a_d)

almost surely as s — o.

Proof. To simplify the notation, we assume A, 7, p,a > 0 and all entries of W), are nonnegative in
the proof.® Note that all expectations and LP-norms are taken conditional on C, but we omit the

subscript C to simplify the notation. It follows from supy HS&lHOO = supy HZloio (AWN)ZH <

o0

PoAl = 11 that supy [|An|, = SupN}|S&1(’yIN+pWN)HOO < X = ¢ < 1. Similarly,

sup HS’;,:LHOO < ﬁ and supy || Bn||,, < m Besides, Sy', Ax, By and their products

are all nonnegative’. Thus, Lemma S.8 is applicable. Since y;; = Yo Z;Vﬂ (A}]‘\,S]Ql)ij €jt—h +
>orto Z;VZI (AR,BN)Z.]. vj+—n, and (€4, vj¢)’s are independent conditional on C by Assumption S.5(1),
for any pair ((i1,41), (iz, t2)) € D3y,

i1i2 (EiQtQ B 62<2t2) + (Aﬁ\lf_tzBN)iﬂz (vi?t? - 0’72152)

05 (int,iat2) = [ (AR 7"257")

p

t1—t2 o—1 t1—t
§2 ||6||Lp (A]\lf 2S(]V )’iliz + 2 ||U”Lp (A]\lf QBN)iliQ :

5This simplicity of the notation does not change the essence of the proof; without it, we would need to add many
absolute value signs in the proof.
"A matrix is nonnegative if and only if all of its elements are nonnegative.

95



When t1 < tg, (55 (i1t1,1i9t2) = 0. So, in the following, it suffices to consider the case that t; > to.

By Lemma S.4,

Al(s) < sup  sup 0 (irty, into)
P (N,T) (il,tl)GDNT ( Z P

i2,02)EDNT iy tq 509ty >S5

<2 sup  sup Z [HEHLP (A?fbs&l)- j

‘ i112
(NT) (@1t ) €D (i2,t2) EDNT iy ty5int9 >8,t2<t1

Flol (A% Bw),,, ]

<2 ||6||LP Sup  sup § : (Ag\lfitQSJ:fl)ilig + Z (Ag\lfitQS&l)hiz
(N,T) (i1,t1)€EDNT (i2,t2):t1—t2>s (i2,t2): d1122>5 0<t1—ta2<s
Term 1 Term 3
2 Atl _t2B Atl —tQB
+ HU”LP sup ) sup N NJitio + N NJivig
(NT) GLt)EDNT (55 )ty —ty>s (iz,t2):diy iy >5,0<t1 —ta<s
Term 2 Term 4

(S.54)

a.s. We bound the above four terms separately.

Term 1 For any (i1,t1) € Dyr and s € [0, 00), because sup y HS;,lHOO < L andsupy [|An|, <

¢ < 1, we have

S s, s 33 (), < 3 s ansy]

(iz,tg)‘tl—t2>s h= LSJ i9=1 h:LSJ (S 55)
< 3 Iniklsilos 3 5 — = |
h=[s] e x5 N1 =¢) 1-A=v—p
Term 2 Replacing Sy' in (S.55) by By, since supy || By ||, < m we have
Ls]
AT By). < ¢ . :
D s T T T (559

(12,t2):t1—t2>s
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Term 3 For any (i1,t1) € Dnr,

Ls)

3 (A5, L <Y Y (A’;Vsjgl) . (S.57)

. . 1112
(i2,t2):diyip >8,0<t1 —t2<s h=012:d;iy>s

Recall the definition of ¢ (s) = sup; >_ . d;;>s Mij for any square matrix M = (my;) in Lemma S.8.

For any s € [0, 00),

Oyiy4own () = (YIy + pWn)" y1L(s = 0) +sup > pwyn < Cip(s+1)" @9 (358)
b jidig>s

for some constant C; that does not depend on s, where the inequality follows from (S.31). From

(S.33), there exists a constant Cy > 0 such that for any s € [0, 00),

bg1(s) < Co (s +1)" D (log (s +2))* . (S.59)

N

Because A%,S;,l = S;,h (vIn + pWN)hSKTI for any h € {0,1,2,...}, (= g’

Sn'lloo < 255 and

IVIN + pWi |l < v+ p, by (S.58), (S.59) and Lemma S.8, for any s € [0, c0), we have

& 1(s)<(h+1)<w h¢1 S IR U e Hqs 5
Al syt\S) = 1-x) "Sv\2n+1) 12 \1-A N teWn \ op 11

—(a—d) a—d
<Oyt (h +1) <2hi = 1) [log <2h5+ : +2>]

a—d
— h 1 2 1Oé—d 2 1—(a—d) 1 S
C3("(h+1)(2h+1) (s+2h+1) og 2h+1+2

<Cu¢" (h+ 1) (s + 1)@ D (1og (s 4 2))*7,

where C3,Cy > 0 are constants depending neither on s nor h, and the last inequality is because

o7



a—d
both (s + 2h + 1)7(°‘7d) and {log (ﬁ + 2)} are decreasing in h > 0. Thus, by (S.57),

Ls]

sup 2 (AN 2SN, € s 3 G s

(1 1)EDNT (45 1), dijin25,0<t1—t2<s (#1,8)€DNT p=p

5]
<> "+ 1) (s +1)7 D (log (s +2)* 7 < C5 (s + 1)@ (log (s +2)) 77
h=0

(S.60)

a—d+1

where C5 > 0 is a constant not depending on s, and the last step follows from > 3° ;¢ (h + 1) <

Q.

Term 4 For any (i1,t1) € Dnr,

Ls]

>, (A BN, <> > (AkBy) (S.61)

. 1122
(i2,t2):diy iy 25,0<t1 —to<s h=0ig:d;, iy >s

Under Assumption S.5(5), by the same argument as that for (S.59), for any s € [0, 00), we have
$5.1(s) < Ca(s+1)" 7% (log (s +2))* . (S.62)

Because A% By = Sy" (vIy + pW)" Syt Sy forany h € {0,1,2,...},

vl

~ + p, and HS’&IHOO < 1%5, by (S.62) and Lemma S.8, for any s € [0, 00),

h+1/(~v4+p h s h Y+ p h=1 s
Sarpy(8) < 7 <1 —,\> syt (2h+2> + 1-N2(1—¢) (1 - A) Orln+o W (2h+2>
P

(a—d) s a—d
gcﬁch(h+1)<2h+2+1> [log<2h+2+2>]

a—d
=CoC" (h+1) (2h +2)* % (s + 20 +2) @D |log < s 2”
d

<Cr¢h (h 4 1)779H1 (5 4 2)~(0=d) (1og (g n 2>)a_ ,

< L vIn + oWl <



where Cg, Cy > 0 are constants depending neither on s nor h, and the last inequality is because

a—d
both (s + 2k + 2)~@" and log | 5725 + 2 are decreasing in h > 0. Thus, by (S.61),
2h+2

sup Z (Aﬁ\l,_tQBN)i122 < sup Z quh BN

(i1,t1)€DNT (i2,t2): d11l2—8 0<t1—ta2<s (i1,t1)€DNT h=0

Ls]

<3 Orch (1 (5 4+2) @ (tog (5 42)) T < O (52 (log (5 +2))
h=0
(S.63)

where Cg > 0 is a constant not depending on s, and the last step follows from Y% /¢ (h + 1>a—d+1 <
0.

Combining (S.55), (S.56), (S.60), (S.63), as s — 0o, we have

Ag (s) <O (8_(°‘_d) (log s)a_d) :

References

Davidson, J. (1994) Stochastic Limit Theory: An Introduction for Econometricians. Oxford Uni-

versity Press, Oxford.

Jenish, N. and I. R. Prucha (2009) Central limit theorems and uniform laws of large numbers for

arrays of random fields. Journal of Econometrics 150, 86—98.

Malikov, E. and Y. Sun (2017) Semiparametric estimation and testing of smooth coefficient spatial

autoregressive models. Journal of Econometrics 199, 12-34.

Nagaev, S. V. (1979) Large deviations of sums of independent random variables. The Annals of

Probability 7, 745-789.

59



Rio, E. (2009) Moment inequalities for sums of dependent random variables under projective con-

ditions. Journal of Theoretical Probability 22, 146-163.

Shi, W. and L.-f. Lee (2017) Spatial dynamic panel data models with interactive fixed effects.

Journal of Econometrics 197, 323-347.

Su, L. (2012) Semiparametric GMM estimation of spatial autoregressive models. Journal of Econo-

metrics 167, 543-560.

Su, L. and S. Jin (2010) Profile quasi-maximum likelihood estimation of partially linear spatial

autoregressive models. Journal of Econometrics 157, 18-33.

Sun, Y. (2016) Functional-coefficient spatial autoregressive models with nonparametric spatial

weights. Journal of Econometrics 195, 134-153.

Wu, W. B. and Y. N. Wu (2016) Performance bounds for parameter estimates of high-dimensional

linear models with correlated errors. FElectronic Journal of Statistics 10, 352-379.

Xu, X. and L.-f. Lee (2015) Maximum likelihood estimation of a spatial autoregressive Tobit model.

Journal of Econometrics 188, 264-280.

Xu, X. and L.-f. Lee (2018) Estimation of a binary choice game with network links. Working Paper,

Xiamen University.

Xu, X., W. Wang, Y. Shin and C. Zheng (2022) Dynamic network quantile regression model.

Journal of Business € Economic Statistics 0, 1-15.

60



	Some Useful Lemmas
	An SAR Tobit Model
	Proofs for Appendix B
	Some Proofs for Section 3
	Proofs for Section 4
	Proofs for Section 5
	Proofs for Section 6
	More Examples of Spatial Functional Dependence
	The Semiparametric SAR model in suprofile2010 and susemiparametric2012
	The Functional-coefficient SAR model in sunfunctional-coefficient2016
	The Smooth-coefficient SAR model in malikovsemiparametric2017
	The SDPD model in shispatial2017


